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On the Definition of Clifford Algebras

by

Leonard Tornheim-

. Clifford algebras are usually defined in one of
two ways. Let K be a field of characteristic not two.
One method is to give a basis of the algebra [1]. The
basis consists of the elements e, where A ranges
through the subsets of the set N = {1, 2y vy n}, in-
cluding the null set . We write e; for e} and de-
fine '
(1),ez‘=ae (i=1"-...,n)

T ig
where the a; are elements of K; also
(2) eiej = --ejei (i#3j).
Then if A = {ij,...,i } with iy <--- <i_, we require
that e, =ej; -+ e; and e =1. From (1) and (2)
products of the e, can be defined. That multiplica-
tion is associative needs to be verified by computa-

tion.

A second method of definition is more intrinsic
[2]. Let V be an n-dimensional vector space over
K. Let T(V) be the tensor algebra of V, i.e., the
free associative algebra over K consisting of sums
of products of vectors in V, where it is assumed
that the product with a scalar is commutative. Let
-f be a symmetric bilinear scalar function on V. Let
J be the ideal of T(V) generated by all vw + wv —
2f(v, w), where v and w range through V. The dif-
ference algebra T (V)/J is defined to be a Clifford
algebra.
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The two definitions are connected by choosing an
orthogonal basis in the space V with the metric de-
fined by f, i.e., a basis Uy «-e 5 Up of V such that

flu, u)= & . a..

1] 1y ]
Let ﬁ_l be the residue class of u, modulo J. The map-
ping

is clearly a homomorphism onto. In order to show
that it is an isomorphism it is necessary to prove

that the q;... .'ﬁir (iy €< --+ <1iy) are linearly indepen-
dent. This can be done by considering the inverse
mapping 6-1 but then one must already have the al-
gebra as given by the first definition. We shall prove
directly that the 'ﬁil- . .'ﬁir, which we shall denote by
up (A ={ij, ... ,i}), are linearly independent.

The proof is by contradiction. Suppose ZCATJ.'A
=0 (c, in K). Ther?ZCAuA i; in J and so

() epuy ey, =) Al - )by

+ Zcijk(uiuj + ujui) dijk .
where the ajj, bij’ Cijk: djjk are non - commutative

polynomials in the u;. Suppose for some

B :{jl,o.,,,js"gwe have cp £0; we may assume cg = 1.
Since (3) is an identity in the indeterminates uj, we
can equate those terms in which Ujys -+ s Ujg appear
to oddpowers and the other u; to even powers. Hence

ujl st uj = B,

where
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2
F =)a' (u -a.)b',
_ ij ~ i 1" ij
4+ ) c! dl. ;
+ Zcijk (uiuj + ujui) i3k
consequently
(4) u, -+ u, u, ---° Uu, ::(u. eoou.)F
J JS Jy Jg Jq Jg

and every term in this expression contains each u; to
an even power and every Uy
least 2.

17 g to a power at

Let SRR
indeterminates over K. To each expression
Zcuil -+ u; where each subscript appears an even
number of times in each term we make correspond
Z(-I)V CXjy ' X where v is the number of inver-

» X be n commutative independent

sions from the natural order in il, cees ip, This is a
homomorphism onto K[xj,...,x,]. Clearly addition
is preserved. In order to show that multiplication is
preserved it is sufficient to prove that if
i=(i,... ,ip) and k = (ky,... ,kq) are both in natural
order, then (il’ ey ip, kl’ cens kq) has an even number
of inversions. But this is true because the numbers
in i appear in pairs of adjacent equal numbers.

Under this mapping c”(uiuj +'ujui)d" has image
0. Hence from (4) we find that :
2 2 2
where g; is a polynomial in xlz, ,xnz. Division
by.(le st)z gives
) 2
1 = - .
) &l - 2)

1

(le ¢ e« o st

But this is impossible because under the mapping
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1/2 (s

X, = a. i=1,..,n)
i i
into the field K(all/z, ,anl/z), the right side has
image 0.
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