On the Definition of Clifford Algebras

by

Leonard Tornheim

Clifford algebras are usually defined in one of two ways. Let K be a field of characteristic not two. One method is to give a basis of the algebra [1]. The basis consists of the elements e_A where A ranges through the subsets of the set $N = \{1, 2, ..., n\}$, including the null set \emptyset . We write e_i for $e_{\{i\}}$ and define

(1)
$$e_i^2 = a_i e_{\phi}$$
 (i = 1, ..., n)

where the a are elements of K; also

(2)
$$e_{i}e_{j} = -e_{j}e_{i} \quad (i \neq j)$$
.

Then if $A = \{i_1, \ldots, i_r\}$ with $i_1 < \cdots < i_r$, we require that $e_A = e_{i_1} \cdots e_{i_r}$ and $e_{\phi} = 1$. From (1) and (2) products of the e_A can be defined. That multiplication is associative needs to be verified by computation.

A second method of definition is more intrinsic [2]. Let V be an n-dimensional vector space over K. Let T(V) be the tensor algebra of V, i.e., the free associative algebra over K consisting of sums of products of vectors in V, where it is assumed that the product with a scalar is commutative. Let f be a symmetric bilinear scalar function on V. Let J be the ideal of T(V) generated by all vw + wv - 2f(v, w), where v and w range through V. The difference algebra T(V)/J is defined to be a Clifford algebra.

The two definitions are connected by choosing an orthogonal basis in the space V with the metric defined by f, i.e., a basis u_1, \ldots, u_n of V such that

$$f(u_i, u_j) = \delta_{ij} a_j$$

Let $\overline{u_i}$ be the residue class of u_i modulo J. The mapping

$$\theta: e_i \rightarrow \overline{u}_i$$

is clearly a homomorphism onto. In order to show that it is an isomorphism it is necessary to prove that the $\overline{u_{i_1}} \dots \overline{u_{i_r}}$ ($i_1 < \dots < i_r$) are linearly independent. This can be done by considering the inverse mapping θ^{-1} but then one must already have the algebra as given by the first definition. We shall prove directly that the $\overline{u_{i_1}} \dots \overline{u_{i_r}}$, which we shall denote by $\overline{u_A}$ (A = $\{i_1, \dots, i_r\}$), are linearly independent.

The proof is by contradiction. Suppose $\sum c_A \overline{u}_A$ = 0 (c_A in K). Then $\sum c_A u_A$ is in J and so

(3)
$$\sum_{i=1}^{\infty} c_{A} u_{i1} \cdots u_{ir} = \sum_{i=1}^{\infty} a_{ij} (u_{i}^{2} - a_{i}) b_{ij} + \sum_{i=1}^{\infty} c_{ijk} (u_{i}^{u} u_{j} + u_{j}^{u} u_{i}) d_{ijk},$$

where the a_{ij} , b_{ij} , c_{ijk} , d_{ijk} are non-commutative polynomials in the u_i . Suppose for some $B = \{j_1, \ldots, j_s\}$ we have $c_B \neq 0$; we may assume $c_B = 1$. Since (3) is an identity in the indeterminates u_i , we can equate those terms in which u_{j_1}, \ldots, u_{j_s} appear to odd powers and the other u_i to even powers. Hence

$$u_{j_1} \cdots u_{j_s} = F$$
,

where

$$F = \sum_{ij} a'_{ij} (u_i^2 - a_i) b'_{ij} + \sum_{ijk} c'_{ijk} (u_i u_j + u_j u_i) d'_{ijk};$$

consequently

(4)
$$u_j \cdots u_j u_j \cdots u_j = (u_j \cdots u_j) F$$

and every term in this expression contains each u_i to an even power and every u_{j_1}, \ldots, u_{j_s} to a power at least 2.

Let x_1, \ldots, x_n be a commutative independent indeterminates over K. To each expression $\sum cu_{i_1} \cdots u_{i_p}$ where each subscript appears an even number of times in each term we make correspond $\sum (-1)^v cx_{i_1} \cdots x_{i_p}$ where v is the number of inversions from the natural order in i_1, \ldots, i_p . This is a homomorphism onto $K[x_1, \ldots, x_n]$. Clearly addition is preserved. In order to show that multiplication is preserved it is sufficient to prove that if $i = (i_1, \ldots, i_p)$ and $k = (k_1, \ldots, k_q)$ are both in natural order, then $(i_1, \ldots, i_p, k_1, \ldots, k_q)$ has an even number of inversions. But this is true because the numbers in appear in pairs of adjacent equal numbers.

Under this mapping $c''(u_iu_j + u_ju_i)d''$ has image 0. Hence from (4) we find that

$$(x_{j_1} \cdots x_{j_s})^2 = (x_{j_1} \cdots x_{j_s})^2 \sum g_i(x_i^2 - a_i),$$

where g_i is a polynomial in x_1^2, \dots, x_n^2 . Division by $(x_{j_1} \dots x_{j_s})^2$ gives

$$1 = \sum_{i=1}^{n} g_{i}(x_{i}^{2} - a_{i}).$$

But this is impossible because under the mapping

$$x_i \rightarrow a_i^{1/2} \ (i = 1, ..., n)$$

into the field $K(a_1^{1/2},...,a_n^{1/2})$, the right side has image 0.

References

- 1. C. Chevalley, Theory of Lie groups, vol. 1, p. 61 (1946).
- 2. M. Eichler, Quadratische Formen und orthogonale Gruppen, p. 22 (1952).

University of Michigan January 1953