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On n-dimensional Uniform
D}stribution Modulo 1

by
W. J. LeVeque

1. J. F. Koksma [1] has shown that if g;(x) is a func-
tion of the real continuous variable x and the positive
integral variable k, which safisfies rather general
conditions in the interval a < x < b, then the sequence
of numbers g;(x), g (x), ... is uniformly distributed
modulo 1, for almost all x € (a, b); i.e. that for al-
most all x € (a, b) the following statement is true: for
arbitrary & and/e with O <« <,8 < 1 the relation

lim ——(i’é— /3 «

N—-0

holds, where N(a(,(e) is the number of integers k< N
for which - ..

&< g, (x) </3 (mod 1).

Defining the discrepancy D(N) as

this is clearly equivalent to the assertion that

limp,,, D(N) =0 for a. a. xé&(a, b). More recently,

P. Erdos and Koksma [2,3] have gone further in this
direction, and have not only relaxed the conditions on
g but have given very sharp estimates for D(N) and
the associated exponential sum
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(1) k; e 78k .

Using a lemma of Kac, Salem and Zygmund [4] on
quasi-orthogonal func tions, the present author [5] ob-
tained a metric theorem in which somewhat more:is
assumed about g than in the general theorems of [1]
and [3], and which yields slightly weaker estimates
for D(N) and the duantity (1), but which asserts the
convergence almost everywhere in (a, b) of certain

sums

00 —
(2) Z_ c e&TTl,@gk(x) ,
k=l k

where 1 approaches zero at a suitable rate as k —co.
We propose now to generalize the method of [5] tothe
n-dimensional case.

This can be done in various ways: by introduc-
ing additional continuous or sequential variables, or
by considering s-tuples (g (x), ..., hy (x)) (which
leads to uniform distribution over the s-dimensional
unit cube). Eventually we shall consider s-tuples of
functions of r continuous variables and n sequential
variables, but first we note a trivial extension of [5]
to a case of several continuous variables.

Suppose that {ﬁk (x)_} is a system of complex-
valued functions in LZ(a, b), and put

b
- / ACTACES

Kac, Salem and Zygmund have termed the system
. {;Jk} quasi-orthogonal in (a,b) if the complex quad-
ratic form Zﬁ)k:ﬂ ajk u; up is bounded in Hilbert

J
space; that is if
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They showed that if
C

(3)  fay |
I max (1, ]jk|§)

for some C, & > 0, then the system {ka} (or

{;Jk /k(l-E)/Z} is quasi-orthogonal if £ > 1 (oré<1),
and used an easy generalization of the Rademacher -
Menchoff theorem (cf. [6], vol. 2, p. 763) to deduce
the convergence of certain series. It was shown in

[5] that if g, (x) is suitably restricted and

2rig gy (x)
gk (X) = € ],agk 5
then (3) holds; this shows the convergence of the ser-
-ies (2), and this in turn gives bounds for the sum (1).

Now suppose that ff, instead of being a function
of x alone, is a functionof %, ..., z. Corréspond«
ingly, ik is now defined as a multiple integral:

‘/bl br
= e dx ... dz .
%k a) /a/r gjak X ... dz

With this new a, , quasi-orthogonality is defined just
as before, and the remainder of the argument of [4]
- goes through just as before. If now gk(x,' ., Z)is
taken to be of the form fj(x) + hy(y, ..., z), where
f; satisfies the conditions imposed in[5], and

Orlx, ..., 2) = exp (27Ti/8gk(x, ..., z), then



/br 2i (e (x)-1, (x))
o d = 1, e x
/bz /~br e27r}a(h )-h, (v, ,Z))dy dz|
R by 2mlE (x) -1, ()
<(b_-a_) .(br—a ) | A e dx
.

— max (1, IJ - k|,‘)

Thus, writing the conditions on fk explicitly, we have
the following theorem:

Theorem 1. Suppose that for a; < x < by, ...
a. < z < b_ the functions fi (x) and hi(y, ..., 2) have
the followmg properties:

(i) dfk/dx and dsz/dx exist,

(ii) d(f,(x) - f (x )/dx is monotonic, and different from

zero for j # k, and that ]d(f (x) - f (x))/dx|
>C|J-—kl for some C,€>O andall_], k,

(iii) exp (ih

(yyen. ,2)) is integrable.

k
Then the sequence fj(x) + hy(y,...,z),
fo(x) + hp(y,...,2),... is uniformly distributed (mod
1) for all such r-tuples (x,...,z) except for a set of

r-dimensional Lebesgue measure‘ Zero.

For example, for almost all pairs (x, y) the se-
quence {xek + yeZk} is uniformly distributed (mod 1)
and for almost all pairs (x,y) for which max (x,y)>1
the sequence {Xk‘ + yk} is u.d. (mod 1).

The principle involved here, which depends on
the factorization of a multiple integral, will recur in
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the general case.

2. For simplicity we abbreviate the n-tuple
GLs e v oo in) of.positive integers to (j), gnd write
() < (t) or (§) < (t) if
< < ) 1< < )
Py <h Sy
< i < t_, 1 <ji <t ,
1 < JZ t2. or < JZ <t
1<j <t ., 1<j <t ,
— 'n n — "n n

respectively. Moreover, we write Z () for

s,
i "o o e 9 j :l,’
Jl Jn
designate a point (xy,...,x,.) of r-dimensional space
by x, and write (t) - oo for min (t},...,t,) > o0. Fin-
ally, e2WiX will be abbreviated to e(x) and

2,1/2

(L) o)

()" |

Let R be a set in r-space, having positive r-
dimensional Lebesgue measure, and let {ﬂ } be
an n-fold sequence of complex- valued functlons in L2

in R. Define

to S(u

00 =/ Fog

where J is the complex conjugate of . We say that
the system {Q'(] }15 quasi-orthogonal in R if thereis
an M such that the inequality
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|<Ms(u

@12 =609 %) T oL

(3), (k)

holds for all complex sequences {u(J } As is pomted
out in [4], quasi-orthogonal functions enjoy many pro-
perties similar to those of orthogonal functions. For
example, if f € LZ(R) and

iy = S T

then

) 2 2
LTy iMf €)% ax ,

which is Bessel's inequality except for the factor M.
For if { } is an arbitrary complex sequence, then

0</|f J)< (|

- ®dx - Z CHN S
= [ 1% et 96 <6+ ) )
+ Z a C c |

(), <) 26009 () (k)

2 ) = <
< Jo I01% ax - G %6 6 T 6
,, ) 2
MG e

) 2. 2 1/2 L -1/2y 2
/R 17 de iy M ey - M)

1) 2
“ MG
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J
3., The theorem of Rademacher and Menchoff asserts

that, if {Wk} is an orthonormal system in (a,b), and
{Ck} 1s a sequence such that

Q0
2 2
kZl Ickl log k < o0,

—

Putting c( ) = b’(j) M-, the desired inequality follows.

then the series Z CID ckwk (x) converges almost ev-
erywhere in (a,b). R. P. Agnew [7] has generalized
this to a real double orthogonal series; he shows that
such a series converges almost everywhere in the re-
gion of orthogonality if

>

5 -
e .logz(j+l) log2 (k+1) < oo .

Cjk
An examination of the proof shows that, withno essen-
tial change in the ideas but with a considerable in -

crease in complexity, his method suffices to prove the
following theorem:

Theorem 2. If {;X(J)} is an arbitrary n-fold
system of complex-valued functions, quasi-orthogonal

in a region R, and if {C(J)} is a sequence such that

(JZ) e |* (log (5, + 1) -+~ og (i, + 1) < @,

then the series

)3
6 <6 o ™

converges almost everywhere in R.

The only theorem in the relevant portion of Ag-
new's work which mustbe modified because of the lack
of orthogonality is the Riesz-Fischer theorem, which
has the following analogue in the present case: if
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2
G lew!

and
Sy ) = (j)%(t) Gy ) -

then there is an f€ Lz (R) such that

(i)~ lim _/lf— ':Oa

(t)=o0

@) [ B o = (%:) ")) “G)

(iii) 1£]%dx = ) ., cp Ty -
/R ‘ (J),(k) (J)(k) (J) (k)

The proof is along the same lines as in [7] and we
omit it, since the result is notused in the proof of the
Rademacher -Menchoff theorem.

4. Theorem 3. a) If 0<E< 1, there'is an M such
that | T

") () |
1 6,5 9215 - )

) S (v, ).

< MS{ug;) S lvgy

(b) If £ > 1, there is an M for which
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v

(k)

Z’ - ") ~
: RN logJ(jV+1) logJ(kp+1)

o i, e

means a summation over palrs (i), (k) for

Here
wh1ch _] ;fk fory =1,...,n.

~ To sunphfy typography we carry out the proof of
(a) only for n = 2; the method is general. We put

K (j, ks 4, m) -

0 if j=or k=m

1
. if jZLor k#m.
(Jklm) (1-8)/2 Ijvulle‘,k--m’l£ , |

Then
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Z K(j, ki d, m) ujk Vim

i, k, 4, m=1 |
= (L2 gk /e L1z 1/4
~ (75) .jk (Jk) Im

J,k, , m=1
A F P T kGesmfd) V2 )2
_(j,ézl Jk ,l,zr:n=l J (Tr;’) '

3 v, |° v K(j, ki m) '—QP— 1/2 1/2,
(,gﬂ 23 j,21;=1 : (Jk)

and since K is homogeneous of degree -1 in eachof
the pairs J,l{ and k, m, the last expression is identi-
cal with the product of '

1
(00 0 my~3 1 1/2
(LZ_ lujklz ZH:] K(l’h J£ k)(_)k) i 31?)

and

- 2 & i K k -1\
: ik )ik Z
(ljr:nzllv m' jlg:lK ’m’l’l)lm Z—r;) )

Since the multiple integral -

o [® 1/2
= /o /(; K (1,L;z,w) (zw) dz dw

converges, we have

lim Z K(1, 1; -,l, 2)(——-—— -— =1,
jak"’CD Af,m:l
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and since the existence of the double integral implies
that of the corresponding repeated integrals, we have
that for all j, k,

s m Jm '1/2 1
zgle“’l;f’ ) G % < S

~ for some constant Cl' By symmetry, we conclude
that

8. 8)

| %: K(j, k& m)u, v, |

j:k, m=1 ' ) Jk "m
1/2 L L 1/2

<G/"Ss (ujk) C S(Vzm)

and'part (a) is proved with M = Cl.
To prove (b), we note first that, if { k)}1s
an arbitrary sequence,

L6imm <o o) (k)'
1/2

2

o y l1/2
()(k) (k)

| A

) e |
IRRAIE G

| A

Yo el Y ey Vil
= Z |, . IZZ lc,. l)(z lv | Z ]c )

(j)

so that to prove the desired inequalities it suffices to
show that the quantities
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. 1
Z/ n. ’ |

. $. d
a) v];[l(lJy-fkvl log®(j,+1) log (kp‘fl))‘,

n o . @, 1
= TI— {lqg V+1 - Z kvrlogé(jpﬂ)}

=1

M
N
oo
‘—-l
Oy
v:

B ¥
) 1L 15,k | b=t P

are bounded uniformly in (k) But

/
10g"(k+1) JZ [3-k[ 1og® (3+1)

k-
1 2—_711 | 1 |
logé(k+l) | J=1 [j-k| logd(j+1) .

oo 1 .
t ) [5-k[ Tog® (j+1)

j=k+1

< 1og61(k+1) (j{-; &[T Z [7-k[1og?® (j-k) )

j=k+1

C2 log (k-1) C3 (&)
< , <
= Togd(k+1) T Togd (k+1)

C, (d) .,

n
where the C's are independent of k, and

Z _I___[t< Z T_L]3.=z’2o:o i =23(8) .

j=-00 j=1
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The proof is complete.

Using Theorem 3, we can prove the following
analogue of Lemma 1 of [4]:

Theorem 4. Let R be a set in r-space, having
positive r-dimensional Lebesgue measure, and let
{Q(J) } be any sequence of functions all belonging to

L4%(R). Suppose that there are positive constants
C5, € such that

lagyag! = 1/ 95y Fag ]

for all sets (j), (k). Then

(i) If €< 1, the series

5 Lo
B G

converges almost everywhere in R provided < £/ 2.

(ii) If € =1, the series

5 P15y )

(j) {10g(j1+1)- -log(j +1)} 5/2+# 1 ,jn)l/Z

converges almost everywhere in R if > 0.

(iii) If £€> 1, the series

D6 Yo &
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converges almost everywhere in R if

) 2
c {10 j.+1): - - log (j +l)} < .
() | J)I e n ,

We first dispose of the trivial difficulty that
arises when some of the indices J are equal to the
corresponding k;. Consider for example case iii)
with n = 2; there.we wish to show that

Jk Um
; %:m _; max e ,(Ia) max (1, [k-m|?)

MS S
We have
00/ ujk V[m
i 1,2, ey max(ls 15-£19) - max(1, [k-m[?)
d qu v m Z/ qu ij
= é d [+ k-m
B J’k:l’m !J-ll ]k-m, [ j,k,m
N D B D R
i) . ’
ik 4 13-4 T jk jk

the sums on the right being over all sets of indices for
which the denominator of the corresponding summand
is different from zero. The first of these sums is
covered by Theorem 2 with n = 2, and the last by
Holder's inequality. As regards the second term,
(there is a similar argument for the third term), we
have
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Jk Jm

Z

Z Jk _]rn

j,k, m

and by Theorem 3 with n =1, this is

g (E jk|2)1/.2(;%O lvjm]_2)1/2

k=1 m=1
<S (ujk) S ('vlm) .

In the general case, just as here, terms with certain
indices equal can be grouped together,and are then
covered by Theorem 3 with smaller n. Clearly the
number of such sums is 2%; we designate C5.2n.,M
by C().

We now prove Theorem 4. In case (i), we have
from Theorem 3 that

j) MON P oy
; Jk,, 57z | < % 5 (uy) S
J: k v ‘ R

*1

)(1 6/2} .

so that the system {Q J) x)/(3y, -+ iy is quzisi-

orthogonal in R, and so by Theorem 2 the series

75y )

= ) Gy {1-€)/2

1 "n

converges almost everywhere if
2 2 /
Z: (IC(J)| ﬁ log (‘]I) + l)) < oo,
(3) v =1 o

_]_/2-
Take - 1 e o o ]

(3)

7];, the desired result is
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obtainedwith §= &/2 - 7.
In case (ii), the same reasoning shows that the

system |
{85/ 11 108 (3, + 1}

is quasi-—6rthogona1 in R if § > 1, and here we take

-1
1/2 . 3/2+m,.
(5 {32 10, 74, 1)) ,

which leads tothe desiredinequality with ¥+ = n+d- 1.

Part (iii) is a direct consequence of Theorems
2 and 3.

5. We come now to the principal theorems. We first
consider a special case in which r =n.

Theorem 5. Suppose that C,, €& are positive
numbers, and that, for ¥ = 1,...,n, the function
fp (z,j) has the following properties in the interval

3 < x < by
(). di, (2, )/dx, d%f,(=,])/dz exist,

d
(ii) o3 (fp(z.‘,j) - fp(z,k)) is monotonic, and is differ -
ent from zero for j £k,

’

(iii) for z = a,, and =z =b,, the inequality

4

(5) a%—(fp(z,j) -tz 0)> |5 -k[EW=1,...,n)

holds.

Suppose finally that /.:3 12+, are integeré,
and that certain of them, say B, .. 78h(h>1) are dif-
ferent from zero. Then if R' is the paralleletope

< <b.,..., < < s
a X ] ah —Xh < bh then
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|j e(e) £ (xp 3448 f (0 0)

—9511" k) +ﬂhhxh n) )) dx' |

<
"ﬂ"max ’ -V

Where Cg depends only on Cy.

|5

(Here, as in what follows, we use a dash to in-
dicate that what would othetrwise have been an n- tuple
is now, on account of the vanishing Of/6k+1’ .. /3n
only an h-tuple. Also, z is a,one- dlmensmnal real
variable. )

Since the integral in (6) factors into a productof
single integrals, and since this theorem with n = 1 was
proved in [5], there is nothing to show here.

COmbiﬁing Theorems 5 and 4 (the latter with
n = h), we have the, first part of

Theorem 6. If f,...f, satisfy the conditions
of Theorem 4, then according as £€< 1, € =1 oré>1,

the series

sﬁlfl(x +/3h h h’ Jh))
Z ( i jhfl e <)
e (ki) 4y (x5, )

m vT.I 1/2 10g5/2+29(-v 1)

, @%>0)
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Z ooty dp) e A R 0’ n))
(3)’

where IC,,
( (ZJ;:, (J).

2.
° ﬁlog (3, +1) < oo)
1% =] B
respectively, converge almost everywhere in R'.
Consequently, the bounds

e9@1f1+- .- +/6nfn)

o((Nl : Nh) Nh+l. Nn),
5
/2 _1/2 )
= 2
O(N1 o o e Nh Nh+1- * o Nn (10g Nlo o = ]-Og Nh) ) 3
1/2 1/2 , 3 14
O(N1 e Nh Nh+1° . Nn (Log Nl. .. log Nh)Z' )

respectively, hold for almost all x€R, where R_is
the paralleletopg a; f_ Xy f_ bl’ cees Ay i Xp f_ bn

The second part follows easily from the firstby
repeated partial summation, since by that device one
easily shows that the convergence of ZOO ak/f (k),
where f(k) increases monotonically and without bound,
implies that le\T a). = 0 (£(N+1)). This proves the re-
sult for almost all x'& R', and the extension to x& R
follows by noting that if x' is a point of R' for which
the bound holds, then for all x € R for which the first
h coordinates are those of x', the bound also holds.
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The importance of Theorem 6 lies in the fact
that, according to van der Corput's generalization (cf.
[8], pp. 92-94) of Weyl's criterion for uniform distri-
bution (mod 1), a necessary and sufficient condition
 that the system (gy(x, (j)), . . ., g5(x, (j)) be u.d. (mod 1)
(for fixed x) is that for every set of integers
*,81, Y - B not all zero,

. ,
i )
im N N

(Moo 17T ()< ()

(8,8, (6 (N4 488 (6, () = 0.

Theorem 6 asserts that this is the case when gv(x,(j))
= f)(x5 )@ = 1,...,n), for almost all xe R, and de-
scribes the growth of the exponential sums. For ex-
ample, ciesign’atirig by <z> the fractional part of z, we
have that the points (<zJ>, <ky>) are u.d. over the
unit square 0 <u; <1, 0<u; <1, for almost all(z,y)
for which |z| > 1.” -

Theorems 5 and 6 can easily be extended to the
case g,o(x, (j)) = f/g()so, (j)) forp=1,...,r, for here
the integral (6) still factors into a product of single
integrals. All that is necessary to obtain u.d. (mod1l)
is to replace (5) by the condition that to each/o there
corresponds a p such that '

— - > -
dz (f/o(z!(.])) /O(Zs(k))), > Gy IJD kz)' ’
and that, for each such pair /O, v,

c(li_z (f,a(z, () - Ia(zs (k)))

is monotonic, and different from zero for jv fkv.
For then it is clear that any sum | ‘
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Z elg f +.. 4 f))
(G)<(N). Fl_lw_’eh‘h:

will be o(N'l, - Nn) 'In any particular case, bounds.
analogous to those in Theorem 6 canbe given for ’?;hése
sums, but'a general statement is  awkward to formu -
late. : | | . _

Finally, we can ‘consider the general case of a
set of s functions g _(x,(j)) of r continuous variables
X0 and n sequential variables jp'

Theorem 7. Suppose that for each choice of integers
A, . 7@s not all zero, -the 'éxpresé,fon

L(j)‘ = .8, (x )+ - +/65gs(xs (7))

can be written as a sum of two functions having no

x, as common argument, so that

/O

(7) L(J) = f(x l, oo 1N}§oh: (J)) + F(X’ (J))

where

OF___ -.. .= 3F

0x ox
L1 £ h

(The numbers h’/al’ N may, of course, depend
331/31, c.. ps, and F may vanish identically, in which
case h = r) For simplicity, write f(x',(j)) instead of

f(Xpl,o..,}%h, (J)) > ]

Let R be the r-dimensional region

a, <x. <b,,..., a <x <b,
1 —-—"1-—="1° T — Tr — 1

i
=)

and put A = (a;,... ,a.), B = (bl’ ... ’br)' Suppose
that f and F have the following properties:
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(i) For some v, the inequality

" .
| o= Y (£(x', (3)) - £(x', (k)))|
% T
i' C9 ijl - kvll (C99£ > 0)

holds for x = A and x = B, for all (j), (k).

(ii) For all (j), (k) for which j %kv ; the quantities
— S| 1

..ah
om0 (i, () - £, (1))
P1 P h
and
| 2h
P =@ (1, (1) - (', (1))
" 9x, °crO0X
P1 Pn -

are different from zero for x€ R.

(iii) e(F(x,(j)) is integrable over R, for all (j).

Then the system (gl (x,(3))s - - wgs (x,(3))) is
uniformly distributed (mod 1) for almost all x€ R.

For by the decomposition (7), we may write

~= / ! e(f(x"(j)) —f(X’,(k))) dx'
/ ne(F(X”,(j)) - F(X”,_(k))) dx" |

where x' = (x ,x, ) and R' is the h-dimensional

o %
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region

a <x <by,,...,a;, <x, <b
s Ballad Bl Pv = /b~ /n
and x', R" have analogous (r-h) - dimensional mean-
ings. The second integral on the right has absolute
vale at most equal to the (r-h)-dimensional volume
of R", which is smaller than some constant C,, de-
pending only on R. To the first integral on the right
we apply multiple integration by parts (cf. [6] vol. 1,
'p. 493), supposing that j k_,:
P ), supposing ip, # pio

L, < ) - s 09) Ty g @'

_‘[__1__ Celilx', (§)) - f(xwk)))] B

A e (YN R Y
1 t (3 ' ROk ’
+ %Fi ‘4' e(f(x', (j)) - £(x', (k)))- (f*)Z dx l

< ! ! -+ 1
— 21 Tex(ar, (G), (k)] [£x(B', (), (k)|

*Ju

fokse

| A
O
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Hence, applying Theorem 4 with Cg =2 CgCloﬁr and
n = 1, we deduce the convergence of a certain simple

series (summed over jp;), and partial
summation shows that

N,
21 e(w)
iy, = (3)

whence it follows that

H e(L.)=o(N..;N),
(:%‘(N) ) oo

all this being for almost all x € R. The same reas-
oning canbe applied for each choice ot'/Gl, .. ’/@s’ and
the theorem now follows from the generalized Weyl
criterion. |

Here again better estimates for the associated
exponential sum can easily be deduced from Théorem
4 in any particular case.

Theorems 5 - 7 list very special cases in which
the hypotheses of Theorem 4 are satisfied, and asis
pointed out in. the introduction, more is assumed in
these theorems in the case n =r =s =1 than. in the
theorems of Erdos and Koksma. If Theorems 5 -7
were all that can be deduced from Theorem 4, the ad-
vantage of the present method would depend solely on
the ease with which it can be applied to generalize the
simple case. In a later paper, however, we show how
Theorem 4 can be applied to some cases not amenable
to the Erd8s-Koksma argument; there we show, for
example, that the sequence {zkiis uniformly distrib-
uted (mod 1) for almost all complex z with |z|> 1,
‘and that {k cos ko(,} is uniformly distributed (mod 1) for
almost all real g..
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