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Compactness of Composition Operators
on the Bloch Space in
Classical Bounded Symmetric Domains

ZEHUA ZHOU & JIHUAI SHI

1. Introduction

Let D be a bounded homogeneous domairCih The class of all holomorphic
functions with domairD will be denoted byH (D). Let ¢ be a holomorphic self-
map ofD. For f € H(D), we denote the compositiofio ¢ by Cy f and callCy
the composition operator induced by

LetK(z, z) be the Bergman kernel function D The Bergman metriéf, (u, u)
in D is defined by

8%logK(z,2) _
H (u,u) = > Z 9 uiy,
= 07107k

wherez e D andu = (uq, ..., uy) € CV.
Following Timoney [T], we say that € H(D) is in the Bloch spacg (D) if

I fllgp) = SUDpr(Z) < 00, @
where
Qs(z) =su vA@ul cueCV — {0}}
1/2
(u, u)
and wherevf(z) = ("({;(i) L e )) andvf(zu =YV, "’Qf)

Let D be the unit disk irIC. Mad|gan and Matheson [MM] proved that, is
always bounded ofi(D). They also gave the sufficient and necessary conditions
for C4 to be compact o (D).

More recently, Shi and Luo [SL] proved th@}, is always bounded of(D) and
gave a sufficient condition faf, to be compact o (D), whereD is a bounded
homogeneous domain &,

By using Cartan’s list, all irreducible bounded symmetric domains are divided
into six types. The first four types of irreducible domains are called the classical
bounded symmetric domains. The other two types, called exceptional domains,
consist of one domain each (a 16- and a 27-dimensional domain).
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In what follows, 2 c CV denotes a classical bounded symmetric donijn
(A = I 11, 11, 1V) (the first four types of irreducible bounded symmetric do-
mains) andp denotes a holomorphic self-mapQf If U = (ux;)xn iSanm x n
complex matrix, writeu = (ug1, ..., Uy, ..., Upa, ..., Uyy,) @S the corresponding
vector of matrixU andiz” as the conjugate transposea:fNote thatC is a positive
constant, not necessarily the same at each occurrence.

In this paper, we will give a sufficient and necessary condition for the compo-
sition operatoiC, to be compact o (£2).

Let A = (aj)mxn @NAB = (by,)pxq. The Kronecker product of and B, de-
fined byA x B = C = (cjur), IS @nmp x ng matrix, wherecy, = ajib;.

It is well known [H] that the classical bounded symmetric domats R,
Ry, andR)y, can be expressed as follows:

Ri(m,n) = {Z : Z is anm x n complex matrix,l,, — ZZ' > 0}, wherel,, is

them x m identity matrix(m < n); .

Ri(p) =1{Z:Zisap x p symmetricmatrixz = Z', I, — ZZ > 0O};

R (q) =1{Z : Z is ag x q antisymmetric matriZ = —-Z', I, + ZZ > 0};

Rv(N)={z:z=(z1,....,2n), 1+ 122/ — 22z’ > 0, |zz'] < 1}.

Their respective Bergman metrics may be listed as follows (cf. [Lu]):

Hl(u,u) = (m +n)ully —ZZ) " x (I, = 2'2)', )
whereZ € R|(m,n) andU is anm x n complex matrixu is the corresponding
vector ofU, andi’ is the conjugate transposeunf

H'w,u) = (p+Dul, — ZZ) ™ x (I, — ZZ) ™, )
whereZ € Ry (p), U is ap x p symmetric complex matrix, andis the corre-
sponding vector ot/;

H" (w,u) =2(q —Dull, + 2Z) ™ x (I, + 2Z) ™", 4)
whereZ € Ry;1(¢g) andU is ag x ¢ antisymmetric complex matrix with the
corresponding vector df ; and

2N
— u
A+ |z7'|2 — 2277)?

’ _ 2 _/ —_—
x[(1+|zz’|2—2zz/)1N_2<§)<1 Z?[ZI Z_i)(i)]u )

wherez € R,y (N) andu € CV.
Our main result is the following theorem.

HZ'V(u, u) =

THEOREM. Let Q C CV be a classical bounded symmetric dom&p (A =
[, 11, 11,1V ) and ¢ a holomorphic self-map of2. ThenC, is compact on the
Bloch spaceg(R2) if and only if, for every > 0, there exists & > 0 such that

Hy(Jp(2)u, J(2)u) . ®)
H,(u, u)

forall u e CV — {0} whenevedist(¢ (z), Q) < §, whereH_ (u, u) is the Bergman
metric of .
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ReEMARK 1. We haveR|(m,n) = B, whenm = 1, so the result holds when
Q= B,.

REMARK 2. Whenm, n = 1andR, = D, the Bergman metric of the unit digk
is H,(u, u) = |[u>’/(1—|z|%? (z € D, u € C). Hence

Hyo(9'(2Ju, ¢'(D)u) _ { 1—|zJ?
H (u,u) 1—|p(2)I?

whereg is a holomorphic self-map db. Thus, by the preceding theorem we can
also obtain Theorem 2 in [MM].

2
} 19'(2) 12,

REMARK 3. For the two exceptional domains we conjecture that condition (6) is
also necessary, but their Bergman metrics are very complex. We will not discuss
them here.

2. Some Lemmas
In order to prove our theorem, we need the following lemmas.

LemMa 1 [T, Thm. 2.12]. Let D c CV be a bounded homogeneous domain.
Then there exists a consta@t depending only orD, such thatH,;)(Jé (2)u,
Jo(z)u) < CH,(u, u) for eachz € D wheneverp holomorphically mapg into
itself. HereH. (u, u) denotes the Bergman metric &h J¢ (z) = (B‘QIZZZ))RUKN
denotes the Jacobian matrix gf, and J¢ (z)u denotes a vector whogth com-

ponent is(Jé (z)u), = Y4, 2@y, 1=1,2,..., N.

0zx

Using the Bergman distance #i{D) and Montel's theorem, it is easy to prove (by
the definition of compact operators) the following lemma, which is a characteri-
zation of compactness @f, expressed in terms of sequential convergence.

LemMA 2 [SL, Lemma 3]. Let D be a bounded homogeneous domairCi
ThenC, is compact org (D) if and only if, for any bounded sequer{gg} in 8(D)
that converges t0 uniformly on compact subsets Bf, we have| fi o ¢l gDy —
Oask — oo.

LemMma 3 [SL, Thm. 3]. Let¢: D — D be a holomorphic self-map, whef2
is a bounded homogeneous domairCifi. ThenCy is compact or8(D) if, for
everye > 0, there exists @ > 0 such that
HyoU@u, Jp@u) _
H,(u, u)

for all u e CN — {0} whenevewist(¢(z), 3D) < 6.

Proof. For the reader’s convenience, we give the proof of this lemma again. In
order to prove thaf’, is compact o8 (D), by Lemma 2 it is enough to show that,

if {fx}is a bounded sequenceiD) that converges to 0 uniformly on compact
subsets oD, then|| fi o ¢llgcpy — 0.
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In fact, if we letM = sup.|| fillg¢p) then, for givere > 0, there exists & > 0
such that

)

Hy»(Jp()u, Jo(2)u) - ( P )2
M

H,(u,u) M

for all u € CN — {0} whenever distp (z), 9D) < §.
Using the chain rule yields

V(fi o )(2) = V(fi)(@(2)) J$(2).

If ue CN — {0} andJ¢ (z)u = O then it follows from the equality just displayed
thatv(f; o ¢)(z)u = 0. If u e CN — {0} andJ¢p (z)u # 0O, then

V(o) @u _ V(0@@)Ie@u  HE U@, 19 @u)
HG 0 HAUe@u, 1) H?

(8)

(u, u)
It follows from (8) that
IV(ﬁ; Z (b)(z)ul ueChN _ {0}}
H/ (u, u)
V(io ) @ul

1/2

Of09(z) =SU

=su — {0}, Jp(2)u # O}

(u, u)

Hgy(Jp(2)u, Jp(2)u)
H,(u,u)

12
< Q5 (@(2) Sup{[ } ,ueCV — {0}}. 9)

For anyz € D, if dist(¢(z), 3D) < § then, by (7) and (9), we have

&
. < fomi—e 10
Ofop(2) < ||fk||;3(D)M =M (20)

On the other hand, it is easy to see that
inf{HY?(u,u) : lu| =1, dist(w, dD) > 8} =m > 0.
So if dist(w, 9D) > §, then

W(l]/cg)(iw,);;' _ VU@l [V W) |V(fk)(w)|. (11)

H 2wy HP@/ |l uflul) —m
Our hypothesis is thdtf;} converges to 0 uniformly on compact subsetdof
and inequality (11) implies tha®, (w) — 0 uniformly for distw, D) > § as
k — oo. Thus, from (9) and Lemma 1 it follows that, for large enough

Orio9(2) = CQp(9(2)) <& (12)

whenever distp (z), 0D) > 4.
Combining (10) and (12) shows thiafy o ¢llgpy = SUR.p Qf0p(2) < € @S
k — oo. This ends the proof. O
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Lemma 4. LetD be a bounded homogeneous domaiiCdf, and letT'(z, z) de-
note its metric matrix. 1f'(0, 0) = Aly, wherex is a constant depending only on
D, then a holomorphic functiof onD is in (D) if and only if

sup{ Vf(2)T "Xz, )V (2)'} < oo (13)
zeD

If (13)holds, then there exists a constahtepending only o® such that
Ifllgemy < C squ{ V(T 2, ) f ()}
Z€

Proof. For anya € D, let ¢, € Aut(D) with ¢, (a) = 0. Then

T(a,a) = (J$a) (@T(0,0)(Jpa)(a) = A(Jpo)' (@) (Jga) (@),

where(J¢,)' is the transpose afg,,. Denote<¢>;1 = Y,; theny(0) = a, JY, =
(Joo)%, and

1 1
T Ya,a) = X(Jqsa)(a)—l«ma)’(a))—l = (V) O U)'(0).

Thus
- 1
Vf(@)T Xa,a)(Vf(@) = va(a)(ﬁ/fa)(o) (Vf(@)Jya(0)
1
= Z19(f e v O
Now the desired result follows from Theorem 3.4(5) in [T]. O

LEMMA 5. LetG(z) =+/1—z+V/1—2z. If 0< A <land|z| <1 then
IG(D)| = 20— |z]).

Proof. We writez = x + iy, 1 — z = d1e’®, and 1— Az = d»e'2, whered; =
11—z, 01 =argdl—z), d» = |1— Az|, andd, = arg(l — Az).

Itis clear thav, = arctan(y/(1—x)), 6, = arctan(y/(1— Ax)), 1—x > 0, and
1-1x >0, so

—m/2<01=<7/2, —m/2<02 <72
furthermore,
—m/2<(01—602)/2<7/2

Then

G(2) =vV1—z7+V1=xz = Jd1e'®/? + \/67261'(62/2)
= (V/d1 cO%01/2) + y/dp c0802/2)) + i (y/d1 SiNB1/2) + V/d2 SiN(62/2)),

G (2)| = Vi + dy + 2/d1/d5 COL (61 — 02)/2)
> Jdi+dy=/11—z|+ 1 2z| = /20— z]).
The proof is complete. O
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Lemma 6 [T, Prop. 4.5]. LetD be a bounded homogeneous domaiftih If £
is a bounded holomorphic function i, then f € (D) and there exists a con-
stantC depending only o® such that

I fllgepy < CSUDHf(Z)I-

LEMMA 7. LetF(z) =(1—2)/(1—2x2).1f 0< A <land|z| <1 then
|F(z)] < 2.

Proof. Since O< A <land|1—iz| >1—A|z] >1— A > 0O, it follows that

1-z A—rz) —(@A— M)z
F = =
) ‘1—“ ‘ 1- iz
1—A 1
=|1- <l+4Qd-r1N— <2
‘ Zl—kz‘_ FA=NTT T
This proof is complete. O

It is well known that everyn x n (m < n) matrix A may be written asA =
U(kazlxkEkk)V, whereU andV arem x m andn x n unitary matrices (re-
spectively),A; > --- > A, > 0, Ey is anm x n matrix, the element of theth
row andkth column is 1, and other elements are 0. Hence for eResyR, (m, n),
m < n, there exist am x m unitary matrixU and am x n unitary matrixV such
thatP = U( Y} AcEw)V, where 1> 23> - > 4, > 0.

In [Lu] the author proved the following lemma in Chinese; for the reader’s con-
venience, we give the proof of this lemma again.

LEmMA 8. Let

AM 0 0 O 0
0 Ao 0 O 0
P=U . V eR,
0 O Am O 0
and write
1
- 0 0
vVi1-2g .
0 - 0
Q =U 1— )\.2 U/’
1
0 0
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! 0 0 o ... O
V1-23
0 ! 0 0 0
_, V1-25
R=V . v,
1
0 0 e. — 0 ... O
1-22
O(n—m)xm In—m

whereU andV arem x m andn x n unitary matricegrespectivelyand 1, >
-+ > Ay > 0. For ZeR,, denoted(2) = Q(P — Z)(I, — P'Z)*R~L Then
(1) 8 e Aut(R)):;
1 @M1=ol;
(i) 9©) =0and ! (P) = P;
(V) do(Z)|—p = —QdZR and doV(Z) ;0 = —QWZR ™,
V) oW(z) =0 XU, — ZP")X(P — Z)R for Z<c Ry;
(V1) (L —ZP)Q(1,, — 5(Z2)®Y(2)) Q') — PZ') = 1,,— ZZ' for Z€ Ry.
Proof. (V) Itis easy to demonstrate th@? — PRP’ = I,,, R — P'Q?P = I,,
PR? = Q?P, and P'Q? = R?P’. In order to show (V) we only need to prove
(P — Z)R*(I, — P'Z) = (I, — ZP")Q*(P — Z), thatis, PR? — PR?P'Z —

ZR? + ZR?P'Z = Q%P — Q%Z — ZP'Q?P + ZP'Q?Z, but this is an equality.
(V1)

(In — ZP)Q(1, — P (2)00(2)) 0’1,y — PZ")
=, — ZP)Q?*, — PP") — (P — Z)R¥(P' - Z')
= 0?—- Q%P7 — ZP'Q*+ ZP'Q?*PZ’ — PR?P’
+ PR?*Z' + ZR?P' — ZR*Z'

=1,—27.

(1) It is clear thatd>f[,')(P) = 0. SinceQP = PQ, we have¢>fl)(0) =f
O~ 'PR = P.
(V)

dP(Z)|zp = —Q NI — PP') 'dZR = —QdZR,
d®Y(Z)| 70 = Q'dZP'P — Q"ZR
= -0z, - P'P)R=—-0YZR™

(1), (I1) From (VI) we know thatd is a holomorphic self-map oR,, so
P = <I>§,') o cI>1()') is also a holomorphic self-map &,. Because®(0) = 0 and
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d®(Z)|z—0 = dZ, by Schwarz's lemma we have(Z) = Z, that is,(<1>§,'))‘l =
QJS) andd>§,') € Aut(R)). The proof of Lemma 8 is complete. O

3. Compactness o, on B(R) and B(R))

SinceR, (A = 1, 11, 111, 1V ) are all bounded homogeneous domains, the suffi-
ciency of condition (6) has been proved by Lemma 3. Hence we need only prove
that condition (6) is necessary.

Suppose&’, is compact orB(R,) and that condition (6) fails. Then there exist
a sequencé€Z’} in R\(m, n) with ¢(Z/) — R, asj — oo, au’ e C"™ — {0},
and angg such that

Hy(J$(ZNul, J§ (ZNul)

H)(ul, u) -

€0 (14)

forall j =1,2,....
Using (14), we will construct a sequence of functigyig satisfying the follow-

ing three conditions:

(i) {f;}is abounded sequencefiiR));

(i) {f;} tends to O uniformly on any compact subsetsRepf
(lll) ||C¢fj||/3(R|) 4 0asj — oo.
This sequence will contradict (by Lemma 2) the compactneg,of

We construct the functions according to the following four parts, A-D.

Part A: To construct the sequence{gf;}, we first assume that
¢(Z))=riEn, j=12,..,

whereE,; is anm x n matrix, the element of theéth row and/th columnis 1, and
other elements are 0. Itis clear thak0; < 1andr; — lasj — oo. .
DenoteJo(Z)u! = w/ = (Wi}, ..., W], Whyy ovy Wy oves Wiy ey Winn).
Using formula (2), we have
I Joapi
Hy 7w’ w’)

| o
= HrjEll(w’, w’)

(1—rj2)*1 0 ... 0 (1—rj2)*1 0 ... 0

, 0 1 ... 0 0 1 ... 0)_

= (m + n)w’ . . ] x . o
0 0 ... 1 0 0 ... 1

w2 L (& o
=(m+n)[ s+ | D w P+ ) wi
A=rP? 1= p

1=2 =

j 2
+ E lwi, i|
2<k<m,2<I<n

Denote
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1 " . " .
= 1_r2(2|w{1|2 + Z|wzl|2),
JoNi=2 k=2
=Y IwA
2<k<m,2<l<n
then o
Hy .\ (w/, w’) = (m +n)(A} + B + C)). (15)
We construct the functions according to three different cases as follows.
Case 1.If, for somej,
max(B}, C;}) < A!, (16)
then set
fi(Z) =log(l — e~ z1) — log(1 — z11), (17)

whereZ = (z) withl < k < m and 1< [ < n and wherez is any positive
number.
Case 2.If, for somej,
max(A}, C;) < B}, (18)
then set

1 1
(7) — J A _ 19
fi(Z) ( 2 :g 2yt Ze Zkl)(\/l_ ez V11— le>’ 49

k=2

wherea is any positive number and whefé, = argwj, and¢}; = argw},. If
wi, = 0 for some orw;; = 0 for somex, replace the corresponding teen®izy,
or e %z by 0.
Case 3.If, for somej, . |
max(A!, B) < C/, (20)
then set

fi(Z2)
= < Z eigl{lzkz>\/1— zn( !

1
2<k<m,2<l<n \/1 —e A= zy, J1- le) '
wherea is any positive number anf, = argw;, for2 < k < m and 2< [ < n.
If w,{l = 0 for somek or [, replace the corresponding teaﬁi"x{lzk, by 0.
Now we will prove that the functions defined by (17), (19), and (21) all satisfy
conditions (i), (ii), and (iii).
For the functions defined by (17), it is easy to see that

0 0
Vf;(Z)=( ) (2),. f] (Z) Zfl (2),. 2 (Z)>

8Zf’ﬂl‘l
9
( iz ,o,...,o,...,o).

0z11

(21)
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From formula (2), it is easy to know that the metric matrixty{m, n) is
T(Z,Z) = (m+n), —Z2Z)*x U, - Z'2)7,
soT(0,0) = (m +n)l,, and

TZ,2)=m+n) U, —2Z")x U, - Z'Z).
Thus

VE(Z)TXZ, Z)Vfi(Z)

=(m+n)t

of
an(Z)

2 n n
(1— Dzmz) <1— Dzmz)
=1 k=1
_e—u(l—rj) 1

n n
_ 1 2 2
= (m+n) (1—121:|zu| )(1—;|Zkl| )‘1_6,1(1,/

2
s<m+n>—1<1—|zn|2>2< 2 )

1— |zl

2

_l’_
)zn l—zn

< 4(m 4+ n) YA+ |zu))? < 16(m +n) L

Lemma 4 now gives
Il fill prry < 16C(m +n)~™

This proves that the functions (17) satisfy condition (i).
Let E be a compact subset &f; then there exists a < (0, 1) such that

lzul < p (22)
foranyZ = (zx) € E. We have
‘ 1— efa(lfrj)z
f:(Z) =log(1— e @ z1) — log(1 — z3) = log u
1-—zn
Since
1— e al=rzy, 1’ ’1_ e~z 14 7
1-—zn B 1-znn
— ‘ 1 |1_ efa(lfrj)| < |1_ efa(lfrj)|
1-zn 1—zul

1 —a(l-rj)
51_pa e,
it is clear that 1— ¢~ *@~"%) — 0 asj — oo. Therefore,(1 — e~ & 7)z19)/
(1 — z11) converges to 1 uniformly on a compact subggtthat is, f;(Z) =
log((1 — e=?@~")z41)/(1 — z11)) converges to O uniformly ol asj — oo, SO
the functions (17) satisfy condition (ii).
Now we prove thaflCy f;ll gz, 7 0. In fact, by (15) and (16),

Hd')(zj)(wj, w’) = (m + n)(A.II- + B]! + Cj') <3(m+ n)A}. (23)
Combining (14) and (23) yields
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1Cs fillpcrr)
= |f; o dllpr)y = Qfop(Z))
_ v(ie o P)(Z)u'| _ V(i) (@(Z)))JP(Z7 ) u'|

1/2 1/2

i wd, ud) (u, ul)
V() (@ (Z)) I (Z))u!| { Hyz)(Jp(Z))ul, J§(Z))u)) }1/2
HYZ, (Jo(Z))ud, J§(Z9)ud) Hyz (u, ul)

3

AL/ LU B B L
T HY R i wiy TV 30m+n) jwli/a—-r?)

efa(lfr_,-)

1—-r, 1- ey,

€0
3(m + n)

€0 1 @ —rpe e
3(m +n) 1— ey )

— ) p—al-ry)
lim [1—(1 r;)e }= 2 xo

j—o0 1—e—o@&ny a+1

a-rd

and

This proves thaﬂC¢f]~||ﬁ(R|) /4 0asj — oo.
For the functions defined by (19), we will prove tHg}} is bounded orR,. In
fact, for anyZ € R (m, n) we have

I, 77 = <aﬁ - Zzskztk) >0,
k=1

1<s,t<m
I, — 7'7 = <55, — szszk;) > 0.
k=1 1<s,t<n
Hence
511—ZZ11231=1—Z|Z11|2>0, (24)
=1 =1
811 — ZZklel =1- Z |zxal? > 0. (25)
k=1 k=1
Now (24) and (25) imply
| /;(Z)]

n . m . 1 1
0 n
— 87191’Z11 + § eleklzkl) ( _ >
‘ ( 1=2 k=2 \/1 —e @z Vl-zn

S(élzul+élzul)<‘\/ )<

‘«/1—211

a(l—r,)zll
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n

() () N )

(f+\/_)\/T<\/ )

<4(Vm+/n). (26)

By Lemma 6, (26) means the} € S(R|) and{ f;} is bounded orB(R).
For the compact subsét of R|, by (19) we have

n m
VI—zn—/1—e &g
fj(Z) = <Z€ ﬂzu + Z klel) = &
=2 V1—em a8 izy

n
_ipgd _igd
— <§ e lgllzll + E e lOkle:L)
=2 k=2

(e — 1)z

X .
V@ = ez — z10) (\/1——111 ++v1- e*“(lfr-f)zll)

Since|z11] < 1 and since O< A = ¢~ *% ) < 1 we havey/|1 — e *d7i)zqq| >
v 1—|z1; from Lemma 5, it then follows that

[Vi1-zn+ V1 e @mzy| > /20— |zul).

By (22), 1— |z11l = 1— p > 0; thus

1— —a(l-rj) C
@) =c . < (L= eme0m),

—lzu)V2@A — lzul) ~ V2@ - p)A— p)

It is clear that lim_.. (1 — e9@=") = 0, so{f;} converges to O uniformly on
compact subsetg of R,; that is, the functions (19) satisfy condition (ii).
Now we prove thaflCy f;ll gz, 7 0. In fact, by (15) and (18),

H(;)(Zj)(wj, w’) = (m + n)(A.II« + B]! + Cj') <3(m+ n)B]I 27)
Combining (14) and (27) yields

I1Co fillpero
= 1fj o Pllgwry = Qrop(Z7)
Vo )@Nul| [V @(EZ)Ig(Z)u]
a 1/z(u u) 1/2(14 u)
_ VU@ EZ) Iz {H¢<zf)(1¢(zf>uf,J¢><zf>uf>}1/2

HYZ, (J¢(Zhyui, I (Ziyui) Haz) (), ul)
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f; .
_j(rjEll)wlil

> /@ IV(fi)(r En)wfl €0 1<k<m,1<l<n
HY?2 “V3(m+n) 1 " "o 12
H gy(wi, wi) 2 2
: (—1_r,z<w -3 i)
1
y1-rf (Z|wu|+2|wk1|)
€0 T2 gmatn, rj \/1_ T
3(m + n) n . )
> lwil?+ le,illz
1=2 k=2
&0 1-7; 1= €0 1— 1-7
3(m+n) [\ 1— ey, 3(m +n) 1— e @y |
and
1- rj . 1-r _ 1

lim ——a——— =1im = )
j—oo ]l — g9 r,)r r>11— e—al-ny a+1

Thus||Cy fillgr)y 7~ 0 asj — oo, which means that the functions (19) satisfy
condition (iii).

For the functions defined by (21), we will prove thg} is bounded orR,. In
fact, for anyz € R, from Lemma 7 we have

0 1 1
| fi(Z)| = ’( Z ele“Zkl)\/l— 211( - )’

2<k<m,2<l<n Vi—e @z, JI-zn

Z
<Cy1-zul ( ‘Tl—lij +1>

)z11
<c(vV2+1) <cC. (28)

By Lemma 6, (28) means the} € 8(R|) and{ f;} is bounded orB(R).
For the compact subsét of R|, by (21) we have

fi(Z)
= < Z e_ie’{’Zu)\/l—zn( ! - ! )

2<k<m,2<l<n \/1_ e_u(l_rj)zll \/1_ in

i0) (e —Dzy
= Z e hizy .
2<k<m,2<l<n V1—e 1@z (VI—zn+V1—e 9 zy)

Since|znl < 1 and since O< A = ¢4~ < 1, we havey/|1— e~ 7| >
v 1—1z1|, and from Lemma 5 it follows that

V1= zin+v1—e @z > /20— [zul).
By (22),1— |z11) = 1— p > O; thus




394 ZEHUA ZHOU & JIHUAT SHI

1— e—a(l—rj)

C
<
V1—lzulvV2@ = |zul) ~ V21— p)
Itis clear that lim_, o (1 — e~*®=")) = 0, so{f;} converges to 0 uniformly of
and therefore the functions defined by (19) satisfy condition (ii).
Now we prove that|Cy f;ll gz, 7 O. In fact, by (15) and (20),

Hy o w/, w’) = (m+n)(A] + B+ C) <3m +m)Cl.  (29)
Combining (14) and (29) yields
1€y fillprr)
=|fjodllswr) = ijoq&(zj)
2 V(e o §)(Z))u| _ V(i) (@(Z7)Jp(Z))u!|

1/2(u ) 1/2

IV(f)(P(Z))Jp(Z) ) ul| {qu(zi)(-](P(Zj)Mj, J¢>(zf>uf>}1/2

(1— @),

Ifi(Z) =C

(u, u)

HY2, (6 (Z9)ul, J§(Z)yui) Hy (W), )
9F; A
s
>\/—|V(fj (riErpw/| - €0 1<k<misi<n Ok

rEu(wj w_}) - 3("’l+l’l) i 1/2
, Lz )

2<k<m,2<l<n
1 1 ;
> lwgl

e’“(l”f)rj \/l_ Tj

€0 2<k<m,2<I<n

3(m +n) C\Y2
(% wif)
2<k<m,2<l<n

£0 1-7 1
3(m+n) [\ 1— e 2@y
__fo 1— 1-7
3(}1’[ + n) 1 _ efa(lfrj)rj B

and

1- 7, 1—r 1
im ———— =1lim .
j—oo 1— ey, M1 ea@n; a1

ConsequentlyCy f;llgr)) 7 0asj — oo; thatis, the functions defined by (21)
satisfy condition (iii).

Part B: We assume that
P(Z2)) = rj(l)Ell + rj(Z)Ezz,

where 1> r¥ > r > 0. Since¢(2’) — dR,, we may assume thaf" — 1
andr(2> — Ao, Wherero < 1
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If 2o = 1 then, using the same methods as in Part A, we can construct a se-
guence of functiongf;(Z)} satisfying condition$i) (iii).
If Ao < 1then, by Lemma 8, there eX|§1,<1>En+,<2)E22 € R, and ®! rVEy €
R. such thatCD,a)Eu +r;2>522(”( En+rPEz) = 0 and@'(l)Ell(r DED) =0(j =
). Ifwe denoteb () = (<I>'<1>E )o@ POt Oz thenw V) € R, and
J
\p<f>(¢(21)) = WOV En+ rPEz) = rPEn = 1, En, wherer; = r.

J
Setg; = fjo \IJ(J) Where{f]} are the functions obtained in Part A. Since

W) (Z) e Aut(R)), itis clear that
Hy (!, w!) = Hy; o 0 (TY@(Z)w!, JO((Z7))w)
= H, v/, 0, (30)

wherew’ = J¢p(Z/)u’/ andv/ = JW W (¢ (Z/))w/. It follows from (30) that

V()@ ZN)w!| _ VU GEDI Y@ (Z))w))|
Hyowi,wi)  HYE(JWD(S(Zi)wl, WD ($(ZI))w)
_ VU@ Ew)|
HY 2, (0], v))
and
1Cygillpr))

= llgj o llpry = Qgop(Z))
_ 19 0 9)(ZNDul| _ V()@ (Z)Ip(Z )]
T HPwu) HZ i, ui)

|V(g) (P (Z7))Ip(Z))u'| { Hyzn(J(Zul, J$(Z)ul) }1/2

HYZ, (J$(Ziyui, I (Ziyui) Hy (), ul)
[N _ |V(Ji// (B )| -
H¢(Z/)(w]1 w]) r,En(vJ U])

Now, the discussion in Part A shows tHadsg;llsr,) 7~ 0 asj — oo; that is,
{g;} satisfies condition (iii).

We prove thafg;} is a bounded sequence #i{R)). In fact, since¥/)(Z)
AUt(R)),

Q4 (Z) = Qs ui(Z) = Q (W(2))

and sol|g;jligr)y = |l fillgcry) is bounded.

Now we prove thai{g,} tends to O uniformly on a compact subgetof R,.
If we write )(Z) = (1//,”(2))1<1<m 1<k<n then, by the definition oft/) and
Lemma 8, a direct calculation shows that
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{12221

1p(/)(z) — Z11+rj(2) ( 5
’ <

. (32)
22
It is easy to show tha)‘f(”(Z) converges uniformly tar1y(Z) = z11 + AO#OZ;
onR,(m,n).

Sinceig < landigEq + AoE22 € Ry, there similarly existsl(Z) € Aut(R))
suchthaW (i oE11+AoE22) = AgEq1, and the firstcomponent df(Z) is v11(Z).
It is clear thaty11(Z) is holomorphic onR|. Let M1 = sup,.g|Ynu(Z)| =
|[Y11(Zg)| for Zg € E. FromW¥(Z) € Aut(R)) we knowM; = |y1(Zg)| < 1,
so we may choosd/y > 0 with M; < My < 1 Thus, forj large enough,

1w\ (Zo)| < Mo and from this it follows that
— (@) >1- Mo > 0

by the definition off;(Z), it is easy to see thatj(Z) = f; o ¥(Z) tends to 0
uniformly onE.

Henceg;(Z) satisfies condition@)—(iii), and this contradicts the compactness
of C4 by Lemma 2.

Part C: Assume that

m
P(Z)) = er(k)Ekkv 1> ’j(l) > rj(Z) >...>r" >0
k=1

Just as in Part B, we can construct a sequence of funcfiggsthat satisfies con-
ditions (i)—(iii).

Part D: In the general situation we haygZ/) € R|(m, n), so there exist an
m x m unitary matrixP; and am x n unitary matrixQ; such that

Pip(Z)Q; =Y Y En.
k=1

We may assume th@ — P andQ; — Q asj — oo (let P, = (p}') andP =
(p*); P; — P means thap"l — pMasj — ocoforany1l> k > m and 1>
[ > n). Letw’(Z) = PZQ; andeJ(Z) = PZQ for Z € R|(m, n). Itis easy to
show thatP is anm x m unitary matrix,Q is ann x n unitary matrix, andy’(2)
converges uniformly ta(Z) on R,.

Letg;(Z2) = f;(¥V)(Z)), where{ f;} are the functions obtained in Part C. From
the same disscussion as that of Part B, we knowgh@t) satisfies conditions (i)
and (iii). For the compact subsEtc R, itis easy to see that(E) is also a com-
pact subset oR|, so we can choose an open subBgtof R, such that/(E) C
D1 C Dy C R,. Sincey)(Z) converges uniformly tay(Z) on Ry, it follows
thaty/(E) C D1 asj — co. Since f;(Z) tends to O uniformly orD1, we know
2/(Z) = fi(yY)(Z)) tends to O uniformly orE C Ry; that is,g; satisfies condi-
tion (iii).
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The last claim follows from the previous discussion. This completes the proof
for B(R)). For B(R)), the proof is the same as that {&¢R,); we omit the details.

4. Compactness o’y on B(Ry; )

As in the case oB(R)), we need only prove that condition (6) is necessary. Sup-
poseCy is compact org(R;) and that condition (6) fails. Then there exist a
sequencé¢Z’} in Ry (g) with ¢(Z/) — 3Ry asj — oo, a sequence af x ¢
antisymmetric complex matricés’ £ 0, and ane, such that

Hyzi\(JO(Zu', Jo(Z)u?) _ (33)
Hyi(ul,ulb) =0

forall j =1,2,..., whereu/ is the vector corresponding &/ .
Using (33), we will construct a sequence of functidifs} satisfying the fol-
lowing three conditions:

(i) {f;}is abounded sequencefiR );
(i) {f;} tends to O uniformly on compact subsetsRyfi ;
(lll) ||C¢fj||/3(R|||) 7L> 0 aSj — OQ.

This sequence will contradict the compactnes€pfby Lemma 2.
To construct the sequence{of }, we first assume that

¢(Z)) =ri(Er2— Ez), j=12,...,

whereEy is ag x g matrix whose element in thi¢h row andkth column is 1 and
whose other elements are 0. Itis clear that @ < 1andr; — 1asj — oo.
Denote

w!

o . ; i i .
Jo(ZHYu! =w’! = (Wgy +ees Wi ees Wogs ooy Wy,

whereW/ is the matrix corresponding to the vecto/. Using formula (4), we
have

HIII

¢(Zj)(wjv wj)

1 j j
= Hy (g, (W', w7)

1- rj?)*l 0 0
0 Q-rHp™* 0
=2(q —Dw’ 0 0 1
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1-r?)? 0 0 0
0 a-rHp* 0 0
» 0 0 1. e
0 0 0o ... 1
=2(q — 1)[—22(|w{1|2 + [yl + [wh)? + [w
(1_rj)

2 il A A 1 , ,
1 <Z(|w{klz +w D+ Y (wh?+ |w;2|2)>
k=3 =3

J
+ 3 |w£,|2] (34)
3<k,l<q

Sinceg holomorphically map®,, into itself, it follows that$ (Z) € Ry, for each
Z € Ry; namely,¢(Z) is ag x g antisymmetric matrix. If we writep(Z) =
(P (Z))1<1,k<q, thenw’ = Jp(Z/)u’ gives

and¢ (Z) = —pu(Z) impliesw), = —w], forl,k =1,2,..., g, soW/ is also
an antisymmetric matrix. Thus (34) becomes

o 1 - 2 :
HYL, il wh) = 2( - 1>[mlw12|2 + 1 2 (Wl + il )
T; i =3
Py |w,{l|2]. (35)
3<k,l<q
Denote
1T J 2
L = ——|Ww 5
J (1_”./‘2)2| 12l
2 A
B = 5 D (wh P+ wiil.
Y
J k=3
CJHI = Z |w1{1|2,
3<k,l<q
then
HY, i wl) =26 — DA + B + ¢/, (36)

We construct the functions according to three different cases.
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Case 1.If, for somej,

maxB}", /") < A}, (37)
then set
fi(Z2) = 2log(L — e “®z15) — log(l — z12), (38)

whereZ € R anda is any positive number.
Case 2.If, for somej,

maxAl', ¢!y < B}, (39)
il i . 1 1
[(Z)=2) (e "wzy + e_’(’?kzzk)( — ) (40)
! ; \/1 - e_“(l_r»")zlz V1-7z12

whereZ e Ry anda is any positive number and whe#¢, = argw;, ande;, =
argwy,. If wi, = 0 orwj, = 0 for somek, then replace the corresponding term

then set

e_igikzlk or e_iOZIkZZk by 0.
Case 3.If, for somej,
max(A', B") < ¢, (41)
then set

fi(Z) = ( Z fie{’zu)vl— Z12< ! ! >, (42)

3<tizq Vi—e @@z,  J1-z1

whereZ € Ry, a is any positive number, arttf, = argw}, for 2 < k andi < q.
If w;fl = 0 for somek or/, replace the corresponding te@rﬁi"f/zkl by 0.

The proofs that functions defined by (38), (40), and (42) satisfy conditions
(i)—(iii) are similar to that forg(R)), so we omit the details here.

A simple exercise shows that, for aidye R (¢), there exists g x ¢ unitary
matrix U such that

_ { U/()\l(EIZ - E21) +--- 4+ )‘«U(EZUALZU - E2v,2v71))Uv q= 2U1

UMi(Ero— Ex) + -+ Ay(Eop—120 — E2p20-1) + OU, g=2v+1,

where1> 11 > --- > A, > 0. So, using constructions similar to those in Parts B,
C, and D of Section 3 foB(R)), it is not hard to complete the proof f@(Ry,).
We omit the details.

5. Compactness oy, on B(Ry)

In order to study the compactness of composition operatpen S(Rv ), we first
introduce a new domaiRy as follows:

Ry = {¢ €C" 1 &1 = z1+iz2, {2 = 21—iz2, & =~ 221, 3<k < N, z€ R }.
If we define the biholomorphic map = (Y1, ..., ¥y): CY — CV by
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Vi(z) = z1+izo, Ya(2) =z1—izo, Yi(2) =2z (k=3,4,...,N),

thenR,y = ¥ (R ); thatis,R)y is equivalent biholomorphically t&)y .
By the definition ofR,, we can writeR,y as

Ry ={¢=(1,....en0) €CV 1 14 |talo + 365 + -+ 3¢8]" — ¢’ > 0
1- ot + 365+ + 362" > 0},
(43)
ForR v, we have the following proposition.
ProrosiTioN 1. If ¢ € R}y, then|gy| < land|¢p] < 1
Proof. If |¢1| = 1, then¢ € Ry shows thatz|? < 2, so
1621 + 1P + -+ lenl? < L (44)

moreover,
14 [c162+ 365+ + 3¢5 — ¢¢’
= a1l + 301823+ + £2) + %§1§2(§§+~-—~~|—§§,)
+ G+ B = e = — e
= 10023+ + 8 + Late GG+ + 82
+ 3188+ AP = (Pt v
< 1g2(galP + - - + lenlD + 5P+ -+ 1en D2 = (a2 + - + [en]?)
< [V1- &P+ +1enP
+ 30232+ + lew ) — 1Azl + -+ 1ev ). (45)

Let A = |¢3)> + -+ + |¢v|? It follows from (44) that 0< A < 1. Let g(1) =
VI=X+ 31 -1 then,since < A < 1,

Mzi(l_L><o

dx 4 1-2

and sog(1) is a nonincreasing function. Singg0) = 0 we knowg(A) < 0;
hence, by (45) we have that
°-

14 |oata+ 388+ + 38| — 5’ <0

This contradicts the first equality of (43), §a| # 1.

If |21] > 1then it follows, since, 0e R,y = ¥(R)y) andR,y is a domain, that
in Ry there exists a continuous curg€) = (¢1(z), ..., tn(@)), 0 <t <1, such
thatz(0) = 0 and¢ () = ¢. Given1(0) = 0, 21() = ¢1, and|z1] > 1, there
should exist & (t09) € ¥(Ry) such thati(zg) = 1, but by our previous discussion
this is impossible. S¢;| < 1 and, for the same reason as befddg, < 1 This
ends the proof. O
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PROPOSITION 2. LetH';V(w, w) be the Bergman metric @& ,. Then

1 1
% 2 2 2
Hy,,,(w, w) = N(|w1| + a 4r2)2|w2| + 12,2 kzzglwkl ),

where0 <r <1, e, =(0,1,0,...,0), andw € CV.

Proof. Let e; = (1,0,...,0). By the definition ofy it is clear that, ifz =
r(e1+ies) € Ry, then Ze, = Y(r(er+ien)) eRy and

rrl1 i
L] e
JY(z) = 1 —i ,
. O V2IN-2
-1 1 _
2 2 0
W= | > -
- 2i 2i
1
0 —_JN-2
L V2 _
Letu = Jy tw. Sincez = r(e1 + iex) = r(1,4,0, ..., 0), a simple calculation
shows that
22'=0, 1+|zz/P-21z2=1-4r2 (46)
If we write u = (u1, uo, ..., uy), then
w1+ wa w1 — W 1
= —, = , = — 3<k<N); 47
us > Uy T U ﬂwk ( ), (47)

)2 50

uy _ _jJu

z 77’ -1)\z

_ Lo 1-42 0 2\ _,
—M(z,z)< 0 _1>(Z>u

1 1 —,

. . up

1 —1 =/

_ ) 0 0 1-4r2 0 1 —i 0 0 Uz

=ru, uz,...,uny . . 0 1 1 ; 0 0

0O O ity
. . 1-42 0 U+ iug
=r(uy+iup, uy — iuz) "\ ————
0 -1 Uy — iuo

= r?(Jus + iugl® — |uy — iuz)?® — 4r®lus + iuz)?). (48)

Using (46), (47), and (48), formula (5) gives
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HlZ\}{ez(w’ w)
= Hy W (extien))(Ws W)
H'(mm)uw @w, Ty w) = H(u, u)
=ac 4 A=y ((1 4r )Zw
— 2r%(luy + iuzl® — |uy — iuzl® — 4r?uy + iu2|2>)
2N 2 4 2 2
= m((l—m’ + 8rM)(Ju|® + |u2|?)
N
+8r2(1— 2r?) Im(ituz) + (1 — 4r?) Z|uk|2)
k=3
2N a 42+84) w1+w22 wl—w22
= —F = |d-4r r —_—
(1— 4r2)2 2 2i
+8r2(1—2r?) |m< Wit wz W _.w2>
2 2i
2
Wi
1)
1 R
- N 2 2 2)
<|w1| UL R v gwu )
This completes the proof. O

Using Lemma 2, it is not hard to prove the following proposition. We omit the
details.

ProOPOSITION 3. Cy4 is compact orB(R)y) if and only ifCo = C,. 4.1 iS COM-
pact onRy = ¥ (Ry), where® = ¢ o o %

ProposITION 4. Letu € CV, w = JY(Qu, z € Ry, ¢ = ¥(2), and & =
Yogo 10_1. Then
Hy((JO(Ow, JO(Ow)  Hyl \(Jo()u, Jp(2)u)
H'gv(w, w) N HN(u, u) '

Proof. It is clear that
HY o (JOQw, JO()w)
=H) 4y 1@ od ey HOW, JW ooy H(Ow)
= HY\ (o (JU (@ (2) J¢ () TP O w, TP (p(2)) I () TP ()w)
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= HY (Jo () Iy Ow, J¢(2)Jy 5)w)

= Hy,(J¢(2)u, J$(2)u),
and

HY (w, w) = Hy, (w, w) = HYIY 7 Qw, Ty w) = HVu, u).
The desired result follows. O

SinceR)y is equivalent holomorphically t& v = ¥ (R)v) (by Propositions 3 and
4), we may discuss the domadRyy (N) instead ofR, (N). As with 8(R)), we
need only prove that condition (6) is necessary.

Assume for now that condition (6) fails. By Proposition 4, there would then
exist a sequencg’} € Ry with ®(¢/) — dRy asj — oo, aw’ e CN — {0},

and angsg such that
HQ/@/)(JQ(CI)W Jo(cHw')

HY (w/, w)

> €0 (49)

forall j =1,2,....

Using (49), we will construct a sequence of functidifs} satisfying the fol-
lowing three conditions:

(i) {f;}is a bounded sequencepiR,y);
(i) {f;}tends to O uniformly on compact subsetsigy ;
(III) “Cqﬁf}'”ﬁ(]RN) 7L> 0 asj — OQ.
This sequence will contradict the compactnes€ gf by Lemma 2.

To construct the sequence{gf;}, we first assume that

D) =2re j=12,..., (50)

wheree, = (0, ...,1, ..., 0), thekth coordinate is 1, and the other coordinates are
0 (for some fixedk, 1 < k < N).
Itis clear that O< r; < § andr; — 1 asj — oo. DenoteJ® (¢)w’ = v/.
Proposition 2 shows that

Hy i) (J® @ w?, JO (¢ Hyw!)
= H'Z\ﬁez(vj, vj)

i 1
:N<|l):“2+m|v2| + 4 ZZ|vk|2)

Denote

1 L
712
—z )il

1-4r pet
BIV |v1|

1 .

C; = w3l

1—4r2)?
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then
\Y j N \Y v \Y
Hq)({‘,-)(v/, v/) = N(A;" + B, +C;7). (51)

We construct the functions according to three different cases.
Case 1.If, for somej,

maxB}",C}¥) < AY, (52)

then set
£i(©) = log(L — e 27 ¢5) —log(l — ¢2), (53)

where¢ € Ry, anda is any positive number.
Case 2.If, for some},

max(AY,c¥) < B, (54)
then set

1 1
(&) =0/1— ( - ) 55
i©=2a &2 N = (55)
where¢ € Ry anda is any positive number.
Case 3.If, for somej,

maxA;’, B)Y) < ¢}, (56)

then set
N

P — 49,{&)( 1 1 ) 57
fi© <;e Vi\ ey, vi-&) &7)

wherea is any positive number angf = argW; for k > 2. If W} = 0 for some
k, then replace the corresponding tesn’ ¢ by 0.

The proofs that the functions defined by (53), (55), and (57) satisfy conditions
(i)—(iii) are similar to the proof fol8(R,); we omit the details.

A simple exercise shows that, for anye Ry, there exists aw x N unitary
matrix U such that

{=0,un,0,...,0U,

where 0< A < u < 1 So, using the same methods as in Parts B and D of Sec-
tion 3 for B(R)), it is not hard to complete the proof f@(R,) or B(Ryv). We
omit the detalils.
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