On Gaussian Periods That Are Rational Integers

F. Thaine

1. Preliminaries

Let $p \geq 3$ be a prime number, ζ_{p} a p th primitive root of 1 , and Δ the Galois group of $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$. Let $q \neq p$ be a prime number, ζ_{q} a q th primitive root of 1 , and n the order of q modulo p. Assume that $q \not \equiv 1 \bmod p$. Hence $n \geq 2, p(q-1) \mid q^{n}-1$, and $n \mid p-1$. Set $f=\left(q^{n}-1\right) / p$ and $e=(p-1) / n$. Let Q be a prime ideal of $\mathbb{Z}\left[\zeta_{p}\right]$ above q and let $\mathbb{F}=\mathbb{Z}\left[\zeta_{p}\right] / Q$. Thus $\mathbb{F} \simeq \mathbb{F}_{q^{n}}$, the finite field with q^{n} elements. Let $\alpha \in \mathbb{Z}\left[\zeta_{p}\right]$ be a generator of \mathbb{F}^{\times}such that $\alpha^{f} \equiv \zeta_{p} \bmod Q$, and let T be the trace from \mathbb{F} to \mathbb{F}_{q}. In this paper we study the Gaussian periods $\eta_{i}(0 \leq i \leq$ $p-1$) defined by

$$
\begin{equation*}
\eta_{i}=\sum_{j=0}^{f-1} \zeta_{q}^{T\left(\alpha^{i+p j}\right)} \tag{1}
\end{equation*}
$$

as well as the Gauss sum

$$
\begin{equation*}
G=\sum_{i=0}^{q^{n}-2} \zeta_{p}^{i} \zeta_{q}^{T\left(\alpha^{i}\right)}=\sum_{i=0}^{p-1} \eta_{i} \zeta_{p}^{i} \tag{2}
\end{equation*}
$$

Some basic definitions and results are given in this section. A short review of the cyclotomic numbers of order e corresponding to p is given in Section 2. Those numbers will play an important role in Section 4. In Section 3 we show applications of the periods η_{i} to the study of indices of cyclotomic units in $\mathbb{Z}\left[\zeta_{p}\right]$ (with respect to Q and α) and of the orders of certain components of the ideal class group of $\mathbb{Q}\left(\zeta_{p}\right)$. More precisely, let A be the p-part of the ideal class group of $\mathbb{Q}\left(\zeta_{p}\right), \mathbb{Z}_{p}$ the ring of p-adic integers, and $\omega: \Delta \rightarrow \mathbb{Z}_{p}^{\times}$the Teichmüller character; in Section 3 we study the $\omega^{p-l n}$-components of A for n and l odd, $1 \leq l \leq$ $e-1$ (see the definitions in Section 3). In Section 4 we show an efficient method to calculate the periods η_{i}, based on the Gross-Koblitz formula and on properties of the cyclotomic numbers of order e corresponding to p; in Section 5 we give a MAPLE program to perform such calculations. I am grateful to Hershy Kisilevsky and John McKay for some valuable comments.

We start with a simple proof of the known result (see [6, Thm. 4]) that, under the stated hypothesis, the η_{i} are rational integers and so $G \in \mathbb{Z}\left[\zeta_{p}\right]$. In fact, G belongs to the only subfield of degree e of $\mathbb{Q}\left(\zeta_{p}\right)$ and is divisible by a (sometimes large) power of q.

[^0]For $0 \leq i \leq p-1$ and $k \in \mathbb{Z}$, define $\eta_{i+k p}=\eta_{i}$. Let $s \in \mathbb{Z}$ be a primitive root modulo q such that $s \equiv \alpha^{\left(q^{n}-1\right) /(q-1)} \bmod Q$, and let τ be the automorphism of $\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}$ such that $\tau\left(\zeta_{q}\right)=\zeta_{q}^{s}$. For any i, we have

$$
\tau\left(\eta_{i}\right)=\sum_{j=0}^{f-1} \zeta_{q}^{s T\left(\alpha^{i+p j}\right)}=\sum_{j=0}^{f-1} \zeta_{q}^{T\left(s \alpha^{i+p j}\right)}=\sum_{j=0}^{f-1} \zeta_{q}^{T\left(\alpha^{p\left(q^{n}-1\right) /(p(q-1))+i+p j}\right)}=\eta_{i}
$$

Since τ generates $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}\right)$, this proves that $\eta_{i} \in \mathbb{Z}$. Note also that $\eta_{q i}=$ $\sum_{j=0}^{f-1} \zeta_{q}^{T\left(\alpha^{q i+p j}\right)}=\sum_{j=0}^{f-1} \zeta_{q}^{T\left(\alpha^{q i+p q j}\right)}$. So, for $i \in \mathbb{Z}$, we have

$$
\begin{equation*}
\eta_{q i}=\eta_{i} \tag{3}
\end{equation*}
$$

Set $G(x)=\sum_{i=0}^{q^{n}-2} x^{i} \zeta_{q}^{T\left(\alpha^{i}\right)}$, where x is an indeterminate. Hence

$$
\begin{equation*}
G(x) \equiv \sum_{i=0}^{p-1} \eta_{i} x^{i} \bmod \left(x^{p}-1\right) \tag{4}
\end{equation*}
$$

We have that $G=G\left(\zeta_{p}\right)$, and it is easy to see that

$$
\begin{equation*}
G(1)=\sum_{i=0}^{p-1} \eta_{i}=-1 \tag{5}
\end{equation*}
$$

For $1 \leq i \leq p-1$, we have

$$
\begin{equation*}
G\left(\zeta_{p}^{i}\right) G\left(\zeta_{p}^{-i}\right)=q^{n} \tag{6}
\end{equation*}
$$

(see [5, GS 2, p. 4] or [14, Lemma 6.1]).
If n is even then $G=q^{n / 2}$. In fact, in this case we have by (3) that $\eta_{-i}=$ $\eta_{q^{n / 2} i}=\eta_{i}$. Therefore $G\left(\zeta_{p}^{i}\right)=G\left(\zeta_{p}^{-i}\right)$ and, by (6), $G= \pm q^{n / 2}$. The result now follows from (5) (work modulo $\zeta_{p}-1$). We assume from now on that n is odd.

Let g be a primitive root modulo p and let $\sigma \in \Delta$ be the automorphism such that $\sigma\left(\zeta_{p}\right)=\zeta_{p}^{g}$. Thus σ is a generator of Δ. Note that $e=(p-1) / n$ is even. Define the numbers (also Gaussian periods) $\theta_{i}, 0 \leq i \leq e-1$, by

$$
\begin{equation*}
\theta_{i}=\sum_{l=0}^{n-1} \zeta_{p}^{g^{i+e l}} \tag{7}
\end{equation*}
$$

We have that $\left\{\theta_{0}, \theta_{1}, \ldots, \theta_{e-1}\right\}$ is a normal integral basis over \mathbb{Q} of $\mathbb{Q}\left(\theta_{0}\right)$, the subfield of $\mathbb{Q}\left(\zeta_{p}\right)$ of degree e. Clearly $\sum_{i=0}^{e-1} \theta_{i}=-1$. For $0 \leq i, j \leq e-1$, define the integers $c_{i, j}$ by

$$
\begin{equation*}
\theta_{0} \theta_{i}=\sum_{j=0}^{e-1} c_{i, j} \theta_{j} \tag{8}
\end{equation*}
$$

for i, j as before and $k, l \in \mathbb{Z}$, define $\theta_{i+k e}=\theta_{i}$ and $c_{i+k e, j+l e}=c_{i, j}$.
Since n is the order of q modulo p we have that $g^{e} \equiv q^{t} \bmod p$ for some integer t relatively prime to n. Hence, by (3),

$$
\begin{equation*}
\eta_{g i+e}=\eta_{g^{i}} \tag{9}
\end{equation*}
$$

for $i \geq 0$. We therefore have that

$$
G\left(\zeta_{p}\right)=\eta_{0}+\sum_{i=0}^{p-2} \eta_{g^{i}} \zeta_{p}^{g^{i}}=\eta_{0}+\sum_{i=0}^{e-1} \eta_{g^{i}} \sum_{j=0}^{n-1} \zeta_{p}^{g^{i+e j}}
$$

That is,

$$
\begin{equation*}
G\left(\zeta_{p}\right)=\eta_{0}+\sum_{i=0}^{e-1} \eta_{g^{i}} \theta_{i} \tag{10}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
G\left(\zeta_{p}^{g^{e}}\right)=\sigma^{e}\left(G\left(\zeta_{p}\right)\right)=G\left(\zeta_{p}\right) \tag{11}
\end{equation*}
$$

Given an integer a, denote by $|a|_{p}$ the smallest nonnegative residue of a modulo p. The prime ideal factorization of $\left(G\left(\zeta_{p}^{-1}\right)\right)$ in $\mathbb{Z}\left[\zeta_{p}\right]$ is

$$
\begin{equation*}
\left(G\left(\zeta_{p}^{-1}\right)\right)=\prod_{k=0}^{p-2} \sigma^{-k}(Q)^{\left|g^{k}\right|_{p} / p}=\prod_{k=0}^{e-1} \sigma^{-k}(Q)^{(1 / p) \sum_{l=0}^{n-1} \mid g^{k+e l_{\mid p}}} \tag{12}
\end{equation*}
$$

(see [5, FAC 1, p. 12). Note that σ^{e} generates the decomposition group of Q over \mathbb{Q}; in particular, $\sigma^{e}(Q)=Q$. The numbers $\frac{1}{p} \sum_{l=0}^{n-1}\left|g^{k+e l}\right|_{p}(0 \leq k \leq e-1)$ are positive integers, as is easy to check. Let q^{ν} be the largest power of q dividing $G\left(\zeta_{p}\right)$. It follows from (12) that

$$
\begin{equation*}
v=\min _{0 \leq k \leq e-1} \frac{1}{p} \sum_{l=0}^{n-1}\left|g^{k+e l}\right|_{p} \tag{13}
\end{equation*}
$$

Clearly $v \geq 1$.
By (10), $G\left(\zeta_{p}\right)=\sum_{i=0}^{e-1}\left(\eta_{g^{i}}-\eta_{0}\right) \theta_{i}$. Since $q^{\nu} \mid G\left(\zeta_{p}\right)$, it follows that $q^{\nu} \mid$ $\left(\eta_{g i}-\eta_{0}\right)$. Define

$$
\begin{equation*}
H=\frac{G\left(\zeta_{p}\right)}{q^{v}} \quad \text { and } \quad d_{i}=\frac{\eta_{g^{i}}-\eta_{0}}{q^{v}} \quad(0 \leq i \leq e-1) . \tag{14}
\end{equation*}
$$

Note that the d_{i} are integers. For $0 \leq i \leq e-1$ and $k \in \mathbb{Z}$, define $d_{i+k e}=d_{i}$. We have

$$
\begin{equation*}
H=\sum_{i=0}^{e-1} d_{i} \theta_{i} \quad \text { and } \quad H \bar{H}=q^{n-2 v} \tag{15}
\end{equation*}
$$

(by (6)), where the bar denotes complex conjugation. From (5) and (14) we obtain

$$
\begin{equation*}
\eta_{0}=-\frac{1}{p}\left(1+n q^{\nu} \sum_{j=0}^{e-1} d_{j}\right), \quad \eta_{g^{i}}=q^{\nu} d_{i}+\eta_{0} \quad \text { for } 0 \leq i \leq e-1 \tag{16}
\end{equation*}
$$

In Section 4 we describe an efficient algorithm to calculate the integers d_{i} and therefore the periods η_{i}. The formula in the following proposition can be used to calculate the η_{i} for small values of p and q. We use the following version of Kronecker's delta:

$$
\delta_{i, j}= \begin{cases}1 & \text { if } i \equiv j \bmod q \\ 0 & \text { if } i \not \equiv j \bmod q\end{cases}
$$

Proposition 1. For $0 \leq i \leq p-1$, let b_{i} be the number of elements of trace 0 in the set $\left\{\alpha^{i+p l}: 0 \leq l \leq \frac{q^{n}-1}{p(q-1)}-1\right\} \subseteq \mathbb{F}^{\times}$; then $\eta_{i}=-\frac{q^{n}-1}{p(q-1)}+q b_{i}$. Therefore, $G=q \sum_{i=0}^{p-1} b_{i} \zeta_{p}^{i}$.
Proof. Let $w=\frac{q^{n}-1}{p(q-1)}$. From (1) we have

$$
\begin{aligned}
\eta_{i} & =\sum_{l=0}^{w-1} \sum_{j=0}^{q-2} \zeta_{q}^{T\left(\alpha^{i+p(l+j w)}\right)}=\sum_{l=0}^{w-1} \sum_{j=0}^{q-2} \zeta_{q}^{T\left(s^{j} \alpha^{i+p l}\right)}=\sum_{l=0}^{w-1} \sum_{j=0}^{q-2} \zeta_{q}^{s^{j} T\left(\alpha^{i+p l}\right)} \\
& =\sum_{l=0}^{w-1} \sum_{j=0}^{q-2} \tau^{j}\left(\zeta_{q}^{T\left(\alpha^{i+p l}\right)}\right)=\sum_{l=0}^{w-1} T_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}\left(\zeta_{q}^{T\left(\alpha^{i+p l}\right)}\right)=\sum_{l=0}^{w-1}\left(-1+q \delta_{T\left(\alpha^{i+p l}\right), 0}\right) \\
& =-w+q \sum_{l=0}^{w-1} \delta_{T\left(\alpha^{i+p l}\right), 0}=-w+q b_{i}
\end{aligned}
$$

Note that, by the additive form of Hilbert Theorem 90,

$$
b_{i}=\left\{l: 0 \leq l \leq \frac{q^{n}-1}{p(q-1)}-1 \text { and } \alpha^{i+p l}=\alpha^{m}-\alpha^{q m} \text { for some } m \in \mathbb{Z}\right\} .
$$

Corollary. Suppose that q divides $p-1$. Let $w=\frac{q^{n}-1}{p(q-1)}$. Then, for $0 \leq i \leq$ $p-1, \eta_{i} \equiv-w-q \sum_{l=0}^{w-1} \sum_{k=1}^{p-1} k^{((p-1) / q) T\left(\alpha^{i+p l}\right)} \bmod \stackrel{p(q-}{p}$.

Proof. By Proposition 1 we have $\eta_{i}=-w+q \sum_{l=0}^{w-1} \delta_{T\left(\alpha^{i+p l), 0}\right.}$. On the other hand, we have $\sum_{k=1}^{p-1} k^{((p-1) / q) T\left(\alpha^{i+p l}\right)} \equiv-\delta_{T\left(\alpha^{i+p l}\right), 0} \bmod p$. The corollary follows.

Observation. In order to actually calculate the periods η_{i} using Proposition 1 , one needs to find traces (from \mathbb{F} to \mathbb{F}_{q}) of powers of α. To calculate such traces, one can proceed as follows. Find an irreducible factor $f(x)$ of the cyclotomic polynomial $\Phi_{q^{n}-1}(x)$ modulo q. Regard $f(x)$ as the irreducible polynomial of α over \mathbb{F}_{q}. The trace of α^{k} is the remainder, modulo q, of the division of $\sum_{j=0}^{n-1} x^{k q^{j}}$ by $f(x)$.

By taking conjugates in (8), we obtain

$$
\begin{equation*}
\theta_{i} \theta_{j}=\sum_{k=0}^{e-1} c_{j-i, k-i} \theta_{k} \tag{17}
\end{equation*}
$$

By (15) and (17) we have

$$
\begin{aligned}
q^{n-2 v} & =H \bar{H}=\sum_{i=0}^{e-1} d_{i} \theta_{i} \sum_{j=0}^{e-1} d_{j} \theta_{j+e / 2}=\sum_{i=0}^{e-1} \sum_{j=0}^{e-1} d_{i} d_{j+e / 2} \theta_{i} \theta_{j} \\
& =\sum_{i=0}^{e-1} \sum_{j=0}^{e-1} d_{i} d_{j+e / 2} \sum_{k=0}^{e-1} c_{j-i, k-i} \theta_{k}=\sum_{k=0}^{e-1}\left(\sum_{i=0}^{e-1} \sum_{j=0}^{e-1} c_{j-i, k-i} d_{i} d_{j+e / 2}\right) \theta_{k}
\end{aligned}
$$

Hence, for $0 \leq k \leq e-1$,

$$
\begin{equation*}
q^{n-2 v}=-\sum_{i=0}^{e-1} \sum_{j=0}^{e-1} c_{j+e / 2-i, k-i} d_{i} d_{j} \tag{18}
\end{equation*}
$$

By (4) we have that, for $a \in \mathbb{Z}, \sum_{k=0}^{p-1} \zeta_{p}^{a k} G\left(\zeta_{p}^{-k}\right)=\sum_{i=0}^{p-1} \eta_{i} \sum_{k=0}^{p-1} \zeta_{p}^{(a-i) k}=$ $p \eta_{a}$. Thus

$$
\begin{equation*}
\eta_{a}=\frac{1}{p} \sum_{k=0}^{p-1} \zeta_{p}^{a k} G\left(\zeta_{p}^{-k}\right) \tag{19}
\end{equation*}
$$

By (6), (19), and the triangle inequality, if $p \nmid a$ then we have

$$
\begin{aligned}
\left|\eta_{a}-\eta_{0}\right| & \leq \frac{1}{p} \sum_{k=1}^{p-1}\left|\zeta_{p}^{a k}-1\right|\left|G\left(\zeta_{p}^{-k}\right)\right|=\frac{q^{n / 2}}{p} \sum_{k=1}^{p-1}\left|\zeta_{p}^{k}-1\right| \\
& =\frac{q^{n / 2} 2 \sqrt{2}}{p} \sum_{k=1}^{(p-1) / 2} \sqrt{1-\cos (2 k \pi / p)} \\
& <q^{n / 2}\left(\frac{2}{p}+2 \sqrt{2} \int_{0}^{1 / 2} \sqrt{1-\cos (2 \pi x)} d x\right)=q^{n / 2}\left(\frac{2}{p}+\frac{4}{\pi}\right)
\end{aligned}
$$

We conclude that, for example,

$$
\left|\eta_{a}-\eta_{0}\right|<1.32 q^{n / 2}
$$

(true for $p>50$ by the preceding formula and true for $p<50$ by direct calculation of $\left.\frac{1}{p} \sum_{k=1}^{(p-1) / 2} \sqrt{1-\cos (2 k \pi / p)}\right)$. Consequently, for $0 \leq i \leq e-1$,

$$
\begin{align*}
\left|d_{i}\right| & =\frac{\left|\eta_{g^{i}}-\eta_{0}\right|}{q^{v}}<1.32 q^{n / 2-v} \\
& < \begin{cases}\frac{1}{2} q^{(n+1) / 2+1-v} & \text { if } q=2 \text { or } q=3 \text { or } q=5, \\
\frac{1}{2} q^{(n+1) / 2-v} & \text { if } q \geq 7 .\end{cases} \tag{20}
\end{align*}
$$

Observation. It is a simple calculus exercise to prove that, in fact,

$$
\frac{1}{p} \sum_{k=1}^{(p-1) / 2} \sqrt{1-\cos (2 k \pi / p)}<\frac{\sqrt{2}}{\pi}
$$

but we do not need this result.
Clearly, by (19) we also have that, for $a \in \mathbb{Z}$,

$$
\left|\eta_{a}\right| \leq \frac{1}{p}\left(1+(p-1) q^{n / 2}\right)<q^{n / 2}
$$

By (5), (11), and (19) we have

$$
\begin{aligned}
\eta_{a} & =\frac{1}{p}\left(-1+\sum_{j=0}^{p-2} \zeta_{p}^{a g^{j}} G\left(\zeta_{p}^{-g^{j}}\right)\right) \\
& =\frac{1}{p}\left(-1+\sum_{j=0}^{e-1} \sum_{k=0}^{n-1} \zeta_{p}^{a g^{j+e k}} G\left(\zeta_{p}^{-g^{j}}\right)\right)
\end{aligned}
$$

As a result,

$$
\eta_{0}=\frac{1}{p}\left(-1+\sum_{j=0}^{e-1} n G\left(\zeta_{p}^{-g^{j}}\right)\right)
$$

and, for $i \geq 0$,

$$
\eta_{g^{i}}=\frac{1}{p}\left(-1+\sum_{j=0}^{e-1} \sum_{k=0}^{n-1} \zeta_{p}^{g^{i+j+e k}} G\left(\zeta_{p}^{-g^{j}}\right)\right)=\frac{1}{p}\left(-1+\sum_{j=0}^{e-1} \theta_{i+j} G\left(\zeta_{p}^{-g^{j}}\right)\right)
$$

Hence, for $0 \leq i \leq e-1$,

$$
\begin{equation*}
d_{i}=\frac{\eta_{g^{i}}-\eta_{0}}{q^{v}}=\frac{1}{p} \sum_{k=0}^{e-1}\left(\theta_{i+k}-n\right) \frac{G\left(\zeta_{p}^{-g^{k}}\right)}{q^{v}}=\frac{1}{p} \sum_{k=0}^{e-1}\left(\theta_{i+k}-n\right) \sigma^{k}(\bar{H}) \tag{21}
\end{equation*}
$$

Finally, by (16) we have

$$
\begin{equation*}
\sum_{i=0}^{e-1} d_{i}=-\frac{1+p \eta_{0}}{n q^{v}} \equiv e q^{n-v} \bmod p \tag{22}
\end{equation*}
$$

2. Cyclotomic Numbers of Order \boldsymbol{e} Corresponding to \boldsymbol{p}

In this section p is an odd prime number, n is an odd divisor of $p-1$ (here we allow $n=1), e=(p-1) / n, g$ is a primitive root modulo p, and θ_{i} and $c_{i, j}$ are as in (7) and (8). We shall study the cyclotomic numbers (i, j) of order e corresponding to p and their relation with the numbers $c_{i, j}$. (A similar study for the cyclotomic numbers corresponding to the case n even can be found in [13, Sec. 2], though the notation in that article is different: we call there q, n, f, s, and η_{i} what we call here p, e, n, g, and θ_{i}, respectively. Note that in this article, where we are working with more objects, the symbols q, n, f, s, and η_{i} already have a meaning.) Let

$$
\begin{equation*}
C=\left[c_{i, j}\right]_{0 \leq i, j \leq e-1} . \tag{23}
\end{equation*}
$$

We will give a simple characterization of C that is, in fact, a variation of [11, Thm. 1], and we will show how to calculate C in an efficient way. This complements results in [13, Sec. 2].

For $0 \leq i, j \leq e-1$ we denote by (i, j) the cyclotomic number of order e, which is defined as the number of ordered pairs of integers $\langle k, l\rangle(0 \leq k, l \leq n-1)$
such that $1+g^{k e+i} \equiv g^{l e+j} \bmod p$. (See e.g. [1, Chap. 2, Sec. 2], [2], or [8].) Define $\theta_{i+k e}=\theta_{i}, c_{i+k e, j+l e}=c_{i, j}$, and $(i+k e, j+l e)=(i, j)$ for $0 \leq i, j \leq$ $e-1$ and $k, l \in \mathbb{Z}$. We have $(i, j)=(j+e / 2, i+e / 2)$ and $(i, j)=(-i, j-i)$ (see [2, formula (15)]).

In this section we use the following version of Kronecker's delta:

$$
\delta_{i, j}= \begin{cases}1 & \text { if } i \equiv j \bmod e \\ 0 & \text { if } i \not \equiv j \bmod e\end{cases}
$$

By (8) and [2, formula (6)] we have, for $i, j \in \mathbb{Z}$,

$$
\begin{equation*}
c_{i, j}=(i, j)-n \delta_{e / 2, i} . \tag{24}
\end{equation*}
$$

Since $\theta_{i} \theta_{j}=\theta_{j} \theta_{i}$, it follows from (17) that $\theta_{i} \theta_{j}=\sum_{k=0}^{e-1} c_{j-i, k-i} \theta_{k}=$ $\sum_{k=0}^{e-1} c_{i-j, k-j} \theta_{k}$. This proves that $c_{i, j}=c_{-i, j-i}$. Also from (17) we have

$$
C\left[\begin{array}{c}
\theta_{j} \tag{25}\\
\theta_{j+1} \\
\vdots \\
\theta_{j+e-1}
\end{array}\right]=\theta_{j}\left[\begin{array}{c}
\theta_{j} \\
\theta_{j+1} \\
\vdots \\
\theta_{j+e-1}
\end{array}\right]
$$

Therefore the Gaussian periods $\theta_{0}, \ldots, \theta_{e-1}$ are exactly the eigenvalues of C, and $\operatorname{det}(x I-C)$ is the minimal polynomial of the periods (see also [2, formula (9)]). We have a field isomorphism

$$
\mathbb{Q}\left(\theta_{0}\right) \simeq \mathbb{Q}(C), \quad \theta_{0} \mapsto C
$$

Let

$$
R=\left[\begin{array}{cccc}
\theta_{0} & \theta_{e-1} & \ldots & \theta_{1} \tag{26}\\
\theta_{1} & \theta_{0} & \ldots & \theta_{2} \\
\vdots & \vdots & \ddots & \vdots \\
\theta_{e-1} & \theta_{e-2} & \ldots & \theta_{0}
\end{array}\right]
$$

(a circulant matrix), and let K be the $e \times e$ matrix $\left[\delta_{i+1, j}\right]_{i, j}$; that is,

$$
K=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \tag{27}\\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

It follows from (25) that

$$
\begin{equation*}
R^{-1} C R=\operatorname{diag}\left[\theta_{0}, \theta_{e-1}, \theta_{e-2}, \ldots, \theta_{1}\right] . \tag{28}
\end{equation*}
$$

(We have that $R^{-1}=(1 / p)\left(R^{t}-n E\right) K^{e / 2}$, where E is the $e \times e$ matrix with all entries equal to 1.) Since circulant matrices commute with one another, we can conclude from (28) that $R^{-1}\left(K^{-i} C K^{i}\right) R=\operatorname{diag}\left[\theta_{i}, \theta_{i-1}, \ldots, \theta_{i-(e-1)}\right]$. Therefore, the matrices $K^{-i} C K^{i}(0 \leq i \leq e-1)$ are simultaneously diagonalizable, and if we identify θ_{0} with C as before then we must identify θ_{i} with $K^{-i} C K^{i}$. In particular, for all integers i we have

$$
\begin{equation*}
\left(K^{-i} C K^{i}\right) C=C\left(K^{-i} C K^{i}\right) \tag{29}
\end{equation*}
$$

Observe that the entry i, j of $K^{-l} C K^{l}$ is $c_{i-l, j-l}$.
In [11, Thm. 1] we give a list of properties that characterize the matrix C, which are equivalent to the following (see the observation at the end of [11]). Let K be as in (27). Denote by $[B]_{i}$ the i th row of a matrix B (starting from $i=0$). Then C is a matrix with entries in \mathbb{Z} such that:
(a) the sum of the elements of the i th row of C is $n-p \delta_{e / 2, i}$;
(b) the sum of the elements of the j th column of C is $-\delta_{0, j}$;
(c) $\left[K^{-k} C K^{k}\right]_{l}=\left[K^{-l} C K^{l}\right]_{k}$ for $0 \leq k, l \leq e-1$;
(d) $\left[C K^{-k} C K^{k}\right]_{l}=\left[C K^{-l} C K^{l}\right]_{k}$ for $0 \leq k, l \leq e-1$; and
(e) $\operatorname{det}(x I-C)$ is irreducible over \mathbb{Q}.

These properties characterize C (up to some relabeling of the periods in formula (7), due to the choice of g), and property (c) together with formula (29) imply property (d) (since (c) implies that $\left.\left[\left(K^{-k} C K^{k}\right) C\right]_{l}=\left[\left(K^{-l} C K^{l}\right) C\right]_{k}\right)$. Also, (c) is equivalent to the equalities $c_{i, j}=c_{-i, j-i}$. We therefore have the following result.

Proposition 2. Let K be as in (27). The matrix $C=\left[c_{i, j}\right]_{0 \leq i, j \leq e-1}$ is characterized (up to some relabeling of the periods in formula (7), due to the choice of g) by the following properties: it is a matrix with entries in \mathbb{Z} such that, for all $0 \leq i, j \leq e-1$,
(i) the sum of the elements of its i th row is $n-p \delta_{e / 2, i}$,
(ii) the sum of the elements of its j th column is $-\delta_{0, j}$,
(iii) $c_{i, j}=c_{-i, j-i}$ (indices modulo e),
(iv) $C\left(K^{-i} C K^{i}\right)=\left(K^{-i} C K^{i}\right) C$, and
(v) the polynomial $\operatorname{det}(x I-C)$ is irreducible over \mathbb{Q}.

The following proposition shows a congruence modulo p for the cyclotomic numbers (i, j)-which is a variation of a congruence first found by Lebesgue-and an inequality that together allow the efficient calculation of those numbers. The proof uses standard properties of Jacobi sums and a formula relating them to cyclotomic numbers, and it is similar to the proof of the corollary of Proposition 3 in [13, Sec. 2] (which corresponds to the case n even).

Proposition 3. For $0 \leq i, j \leq e-1$,

$$
(i, j) \equiv-\frac{1}{e^{2}} \sum_{k=0}^{e} \sum_{m=0}^{e-1}\binom{n k}{n m} g^{n(m i-k j)} \bmod p
$$

Also,

$$
\left|(i, j)-(p-1) / e^{2}\right|<\sqrt{p}
$$

and so

$$
0 \leq(i, j)<\sqrt{p}+(p-1) / e^{2}<p
$$

Proof. Let ζ_{e} be a primitive root modulo e. Let \mathcal{P} be the prime in $\mathbb{Z}\left[\zeta_{e}\right]$ above p such that $g^{n} \equiv \zeta_{e} \bmod \mathcal{P}$. For $a, b \in \mathbb{Z}$, define the Jacobi sum $J(a, b)$ by

$$
J(a, b)=-\sum_{k=2}^{p-1} \zeta_{e}^{a \operatorname{ind}_{g}(k)+b \operatorname{ind}_{g}(1-k)}
$$

where $\operatorname{ind}_{g}(k)$ is the least nonnegative integer such that $g^{\operatorname{ind}_{g}(k)} \equiv k \bmod p$. We have $J(a, b)=(-1)^{n b} J_{-a-b, b}=(-1)^{b} J_{-a-b, b}$ for $a, b \in \mathbb{Z}$ (to prove this, use the change of variable $k \mapsto \bar{k}$, where \bar{k} is the inverse of k modulo p in $\{1,2, \ldots, p-1\}$). Also, $J(a, b)=J(b, a)$ for $a, b \in \mathbb{Z} ; J(a, b)=1$ if $e \mid a$ and $e \nmid b ; J(a, b)=$ $(-1)^{a}$ if $e \mid(a+b)$ and $e \nmid a$; and $J(0,0)=-(p-2)$.

By [1, Thm. 2.5.1], since n is odd we have

$$
(i, j)=-\frac{1}{e^{2}} \sum_{a=0}^{e-1} \sum_{b=0}^{e-1}(-1)^{a} \zeta_{e}^{i a+j b} \overline{J(a, b)},
$$

where the bar denotes complex conjugation. By [13, formula (27)] (which holds regardless of the parity of n), if $a+b \not \equiv 0 \bmod e$ then

$$
\overline{J(a, b)} \equiv\binom{n|a+b|_{e}}{n a} \bmod \mathcal{P}
$$

where $|k|_{e}$ denotes the least nonnegative residue of an integer k modulo e. Hence, for $0 \leq i, j \leq e-1$,

$$
\begin{aligned}
(i, j) \equiv & -\left(\frac{1}{e^{2}}\right) \sum_{\substack{0 \leq a, b \leq e-1 \\
a+b \neq 0 \bmod e}}(-1)^{a} g^{n(i a+j b)}\binom{n|a+b|_{e}}{n a} \\
& -\left(\frac{1}{e^{2}}\right)\left(-(p-2)+\sum_{a=1}^{e-1} \zeta_{e}^{(i-j) a}\right) \\
\equiv & -\left(\frac{1}{e^{2}}\right)\left(e \delta_{i, j}+\sum_{a=0}^{e-1} \sum_{b=0}^{e-1}(-1)^{a} g^{n(i a+j b)}\binom{n|a+b|_{e}}{n a}\right) \bmod \mathcal{P} .
\end{aligned}
$$

By [2, formula (15)], we thus have

$$
\begin{aligned}
(i, j) & =(j+e / 2, i+e / 2)=(-j-e / 2, i-j)=(i+e / 2-j,-j) \\
& \equiv-\left(\frac{1}{e^{2}}\right)\left(e \delta_{e / 2, i}+\sum_{a=0}^{n-1} \sum_{b=0}^{n-1}(-1)^{a} g^{n((i+e / 2-j) a-j b)}\binom{n|a+b|_{e}}{n a}\right) \\
& \equiv-\left(\frac{1}{e^{2}}\right)\left(e \delta_{e / 2, i}+\sum_{a=0}^{e-1} \sum_{b=0}^{e-1} g^{n(i a-j b)}\binom{n b}{n a}\right) \\
& \equiv-\left(\frac{1}{e^{2}}\right) \sum_{b=0}^{e} \sum_{a=0}^{e-1} g^{n(i a-j b)}\binom{n b}{n a} \bmod p .
\end{aligned}
$$

(Note that $\left.\binom{p-1}{n a} \equiv(-1)^{n a}=(-1)^{a} \bmod p.\right)$
The inequality $\left|(i, j)-(p-1) / e^{2}\right|<\sqrt{p}$ follows from the triangle inequality and the preceding expression for (i, j) in terms of Jacobi sums, since $\left|J_{a, b}\right|=$ \sqrt{p} if $1 \leq a, b \leq n-1$ and $a+b \neq 0$. This ends the proof of Proposition 3.

The numbers $\binom{n k}{n m}$ are studied in [12, Lemma 1] and its subsequent example. Proposition 3 will be an important tool in Sections 3 and 4.

3. Indices of Cyclotomic Units and Orders of the $\omega^{p-l n}$-Components of the \boldsymbol{p}-Part of the Ideal Class Group of $\mathbb{Q}\left(\zeta_{p}\right)$ Modulo \boldsymbol{p}

Let A be the p-Sylow subgroup of the ideal class group of $\mathbb{Q}\left(\zeta_{p}\right), \mathbb{Z}_{p}$ the ring of p-adic integers, $\omega: \Delta \simeq(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \mathbb{Z}_{p}^{\times}$the Teichmüller character defined by $\omega(k) \equiv k \bmod p$, and $e_{r}(0 \leq r \leq p-2)$ the idempotents $\frac{1}{p-1} \sum_{\lambda \in \Delta} \omega^{r}(\lambda) \lambda^{-1} \in$ $\mathbb{Z}_{p}[\Delta]$. We have that $A=\bigoplus_{r=1}^{p-2} e_{r}(A)$. In this section we give a formula (modulo p) for the indices of the cyclotomic units of $\mathbb{Z}\left[\zeta_{p}\right]$, with respect to Q and α, in terms of the periods η_{i}; we use that formula to study the components $e_{p-l n}(A)$ of A for l odd, $1 \leq l \leq e-1$.

For $i \in \mathbb{Z}$ such that $i \not \equiv 0 \bmod q^{n}-1$, define $\Phi(i)$ as the least positive integer such that

$$
\begin{equation*}
1-\alpha^{i}=\alpha^{\Phi(i)} \tag{30}
\end{equation*}
$$

in \mathbb{F}. Since $\alpha^{f} \equiv \zeta_{p} \bmod Q$, this implies that, for $1 \leq i \leq p-1$,

$$
\begin{equation*}
1-\zeta_{p}^{i} \equiv \alpha^{\Phi(f i)} \bmod Q \tag{31}
\end{equation*}
$$

Hence the numbers $\Phi(f i)$ are important in the calculation of indices of cyclotomic units modulo prime ideals in $\mathbb{Q}\left(\zeta_{p}\right)$. The following proposition, which can be regarded as one of Kummer's complementary reciprocity laws (see [4]), gives us the numbers $\Phi(f i)$ modulo p in terms of the Gaussian periods η_{i} (cf. [12, formulas (14) and (24)]). Note that this gives a formula, modulo p, for the indices of the cyclotomic units of $\mathbb{Z}\left[\zeta_{p}\right]$ (i.e., the units generated by $\pm \zeta_{p}$ and $1-\zeta_{p}^{i}$ for $1 \leq$ $i \leq p-1)$, since $\zeta_{p}^{k} \prod_{i=1}^{p-1}\left(1-\zeta_{p}^{i}\right)^{r_{i}} \equiv \alpha^{f k+\sum_{i=1}^{p-1} r_{i} \Phi(f i)} \bmod Q$.

Proposition 4. For $1 \leq i \leq p-1$,

$$
\Phi(f i) \equiv \sum_{j=1}^{p-1} j \eta_{j} \eta_{j+i} \bmod p
$$

Proof. We have that

$$
\zeta_{p} \frac{G^{\prime}\left(\zeta_{p}\right)}{G\left(\zeta_{p}\right)} \equiv-\sum_{k=1}^{q^{n}-2} k \zeta_{q}^{T\left(\alpha^{k}\right)}+\sum_{l=1}^{f-1} \Phi(l p)+\sum_{i=1}^{p-1} \Phi(-i f) \zeta_{p}^{i} \bmod p
$$

(see [9, formula (1)]). On the other hand, by taking logarithmic derivatives of both members of (4) and using (6), we obtain

$$
\zeta_{p} \frac{G^{\prime}\left(\zeta_{p}\right)}{G\left(\zeta_{p}\right)} \equiv \sum_{i=0}^{p-1}\left(\sum_{j=1}^{p-1} j \eta_{j} \eta_{j-i}\right) \zeta_{p}^{i} \bmod p
$$

This shows that, for some integer c, we have $\Phi(f i) \equiv c+\sum_{j=1}^{p-1} j \eta_{j} \eta_{j+i} \bmod p$ for $1 \leq i \leq p-1$. Therefore, by (5),

$$
\begin{aligned}
c & \equiv-(p-1) c \equiv-\sum_{i=1}^{p-1} \Phi(f i)+\sum_{j=1}^{p-1} j \eta_{j} \sum_{i=1}^{p-1} \eta_{j+i} \\
& =-\sum_{i=1}^{p-1} \Phi(f i)+\sum_{j=1}^{p-1} j \eta_{j}\left(-\eta_{j}-1\right) \\
& =-\sum_{i=1}^{p-1} \Phi(f i)-\sum_{j=1}^{p-1} j \eta_{j}^{2}-\sum_{j=1}^{p-1} j \eta_{j} \bmod p .
\end{aligned}
$$

But

$$
\sum_{i=1}^{p-1} \Phi(f i) \equiv 0 \bmod p
$$

since $\alpha^{\sum_{i=1}^{p-1} \Phi(f i)} \equiv \prod_{i=1}^{p-1}\left(1-\zeta_{p}^{i}\right)=p \bmod Q$ and since p (in fact, any rational integer) is a p th power modulo Q (recall that $\left.p(q-1) \mid\left(q^{n}-1\right)\right)$. Also, if $u \not \equiv 0 \bmod n$ and $v \in \mathbb{Z}$ then, by (9), $\sum_{i=1}^{p-1} i^{u} \eta_{i}^{v} \equiv \sum_{j=0}^{p-2} g^{j u} \eta_{g j}^{v}=$ $\sum_{j=0}^{e-1}\left(\sum_{k=0}^{n-1} g^{e k u}\right) g^{j u} \eta_{g j}^{v} \equiv 0 \bmod p$. In particular, $\sum_{j=1}^{p-1} j \eta_{j} \equiv 0 \bmod p$ and $\sum_{j=1}^{p-1} j \eta_{j}^{2} \equiv 0 \bmod p$. Therefore $c \equiv 0 \bmod p$. This ends the proof of Proposition 4.

For r even, $2 \leq r \leq p-3$, let

$$
\begin{equation*}
\beta_{r}=\prod_{i=1}^{p-1}\left(1-\zeta_{p}^{i}\right)^{i p-1-r} \tag{32}
\end{equation*}
$$

and let $i_{r}(Q)$ be the least nonnegative integer such that

$$
\begin{equation*}
\beta_{r} \equiv \alpha^{i_{r}(Q)} \bmod Q \tag{33}
\end{equation*}
$$

It is a well-known fact that $e_{r}(A)$ is trivial if and only if β_{r} is not the p th power of an element of $\mathbb{Z}\left[\zeta_{p}\right]$ (see e.g. [14, Thm. 15.7 and the discussion preceding Thm. 8.14]). In particular, we have the following.

Proposition 5. For r even, $2 \leq r \leq p-3$, if $i_{r}(Q) \not \equiv 0 \bmod p$ then $e_{r}(A)$ is trivial.

The following numbers will prove useful in our study of the indices $i_{r}(Q)$ modulo p. For $k \in \mathbb{Z}$, we define

$$
\begin{equation*}
a_{k}=n q^{\nu} \sum_{i=0}^{e-1} g^{n k i} d_{i} \tag{34}
\end{equation*}
$$

Note that $a_{k+e} \equiv a_{k} \bmod p$. Also, by (22), $a_{0} \equiv-1 \bmod p$ and, by (9), for $1 \leq$ $k \leq e-1$ we have $a_{k}=n \sum_{i=0}^{e-1} g^{n k i}\left(\eta_{g^{i}}-\eta_{0}\right) \equiv \sum_{i=0}^{p-2} g^{n k i} \eta_{g^{i}} \equiv \sum_{i=1}^{p-1} i^{n k} \eta_{i}$ $\bmod p$.

Proposition 6. Let r be an even integer, $2 \leq r \leq p-3$. Then

$$
i_{r}(Q) \equiv \sum_{i=1}^{p-1} \sum_{j=1}^{p-1} i^{p-1-r} j \eta_{j} \eta_{j+i} \bmod p
$$

If $n \nmid r-1$, then $i_{r}(Q) \equiv 0 \bmod p$. If $n \mid r-1$, then

$$
i_{r}(Q) \equiv-\sum_{l=1}^{(p-r) / n}(-1)^{l}\binom{p-1-r}{l n-1} a_{(p-r) / n-l} a_{l} \bmod p
$$

In particular,

$$
i_{p-n}(Q) \equiv-a_{1}=-n q^{v} \sum_{j=0}^{e-1} g^{n j} d_{j} \bmod p
$$

Proof. The first congruence follows directly from (31)-(33) and Proposition 4. Hence

$$
\begin{aligned}
& i_{r}(Q) \\
& \equiv \sum_{i=0}^{p-1} \sum_{j=1}^{p-1}(i-j)^{p-1-r} j \eta_{i} \eta_{j} \\
&= \eta_{0} \sum_{j=1}^{p-1} j^{p-r} \eta_{j}+\sum_{i=1}^{p-1} \sum_{j=1}^{p-1} \sum_{l=0}^{p-1-r}(-1)^{l}\binom{p-1-r}{l} i^{p-1-r-l} j^{l+1} \eta_{i} \eta_{j} \\
&= \eta_{0} \sum_{j=1}^{p-1} j^{p-r} \eta_{j}+\sum_{l=0}^{p-1-r}(-1)^{l}\binom{p-1-r}{l} \sum_{i=1}^{p-1} i^{p-1-r-l} \eta_{i} \sum_{j=1}^{p-1} j^{l+1} \eta_{j} \\
& \equiv \eta_{0} \sum_{j=0}^{p-2} g^{j(p-r)} \eta_{g^{j}} \\
&+\sum_{l=0}^{p-1-r}(-1)^{l}\binom{p-1-r}{l} \sum_{i=0}^{p-2} g^{i(p-1-r-l)} \eta_{g^{i}} \sum_{j=0}^{p-2} g^{j(l+1)} \eta_{g^{j}} \\
&= \eta_{0} \sum_{j=0}^{p-2} g^{j(p-r)}\left(q^{v} d_{j}+\eta_{0}\right) \\
&+\sum_{l=0}^{p-1-r}(-1)^{l}\binom{p-1-r}{l} \sum_{i=0}^{p-2} g^{i(p-1-r-l)}\left(q^{v} d_{i}+\eta_{0}\right) \sum_{j=0}^{p-2} g^{j(l+1)}\left(q^{v} d_{j}+\eta_{0}\right) \\
& \equiv q^{v} \eta_{0} \sum_{j=0}^{p-2} g^{j(p-r)} d_{j} \\
&+q^{2 v} \sum_{l=0}^{p-1-r}(-1)^{l}\binom{p-1-r}{l} \sum_{i=0}^{p-2} g^{i(p-1-r-l)} d_{i} \sum_{j=0}^{p-2} g^{j(l+1)} d_{j} \\
&-q^{v} \eta_{0} \sum_{j=0}^{p-2} g^{j(p-r)} d_{j}
\end{aligned}
$$

$$
\begin{aligned}
= & q^{2 v} \sum_{l=0}^{p-1-r}(-1)^{l}\binom{p-1-r}{l} \sum_{i=0}^{p-2} g^{i(p-1-r-l)} d_{i} \sum_{j=0}^{p-2} g^{j(l+1)} d_{j} \\
= & q^{2 v} \sum_{l=0}^{p-1-r}(-1)^{l}\binom{p-1-r}{l} \sum_{i=0}^{e-1} \sum_{u=0}^{n-1} g^{(i+e u)(p-1-r-l)} d_{i} \sum_{j=0}^{e-1} \sum_{v=0}^{n-1} g^{(j+e v)(l+1)} d_{j} \\
= & q^{2 v} \sum_{l=0}^{p-1-r}(-1)^{l}\binom{p-1-r}{l} \\
& \times \sum_{i=0}^{e-1} g^{i(p-1-r-l)} d_{i} \sum_{u=0}^{n-1} g^{e u(p-1-r-l)} \sum_{j=0}^{e-1} g^{j(l+1)} d_{j} \sum_{v=0}^{n-1} g^{e v(l+1)} \bmod p .
\end{aligned}
$$

If $n \nmid r-1$ then either $n \nmid p-1-r-l$ or $n \nmid l+1$; so, by the preceding congruence, $i_{r}(Q) \equiv 0 \bmod p$. If $n \mid r-1$ we obtain

$$
\begin{aligned}
i_{r}(Q) & \equiv-n^{2} q^{2 v} \sum_{l=1}^{(p-r) / n}(-1)^{l}\binom{p-1-r}{l n-1} \sum_{i=0}^{e-1} g^{i(p-r-l n)} d_{i} \sum_{j=0}^{e-1} g^{j l n} d_{j} \\
& =-\sum_{l=1}^{(p-r) / n}(-1)^{l}\binom{p-1-r}{l n-1} a_{(p-r) / n-l} a_{l} \bmod p .
\end{aligned}
$$

This proves the second congruence of the proposition. The last congruence follows from the second one and from the fact that $a_{0} \equiv-1 \bmod p$.

In the following theorem we summarize some properties of the numbers d_{i} and a_{i} that are useful in the study of certain components of the ideal class group of $\mathbb{Q}\left(\zeta_{p}\right)$. We believe that the theorem can be used to show that, with l odd $(1 \leq l \leq$ $e-1$), some of the components $e_{p-\ln }(A)$ of A are trivial. The idea is to show that if $e_{p-l n}(A)$ is nontrivial then all prime numbers q of order n modulo p must have a certain form; we hope this will contradict some version of Dirichlet's theorem on primes in arithmetic progressions.

Theorem 1. (i) We have

$$
e^{2} q^{n-2 v}=\left(\sum_{i=0}^{e-1} d_{i}\right)^{2}+p\left(e \sum_{i=0}^{e-1} d_{i}^{2}-\left(\sum_{i=0}^{e-1} d_{i}\right)^{2}\right)
$$

and

$$
\left(\sum_{i=0}^{e-1} d_{i}\right)^{2}=\left(\frac{1+p \eta_{0}}{n q^{v}}\right)^{2}<e^{2} q^{n-2 v}
$$

Also, for $0 \leq k \leq e-1$,

$$
q^{n-2 v}=-\sum_{i=0}^{e-1} \sum_{j=0}^{e-1} c_{j+e / 2-i, k-i} d_{i} d_{j}
$$

where the integers $c_{i, j}=(i, j)-n \delta_{e / 2, i}$ are as in (8) and (24).
(ii) The numbers $a_{k}=n q^{v} \sum_{i=0}^{e-1} g^{n k i} d_{i}$ satisfy the following congruences: $a_{0} \equiv-1 \bmod p$ and, for $1 \leq l \leq e-1$,

$$
\sum_{m=0}^{l}(-1)^{m}\binom{l n}{m n} a_{l-m} a_{m} \equiv 0 \bmod p
$$

Also,

$$
\sum_{m=0}^{e-1} a_{e-m} a_{m} \equiv-n q^{2 v} \sum_{i=0}^{e-1} d_{i}^{2} \bmod p
$$

and, for l odd $(1 \leq l \leq e-1)$,

$$
\sum_{m=1}^{l}(-1)^{m} m\binom{l n}{m n} a_{l-m} a_{m} \equiv-l i_{p-l n}(Q) \bmod p
$$

(iii) If, for l odd $(1 \leq l \leq e-1)$, the component $e_{p-l n}(A)$ of the p-part of the ideal class group of $\mathbb{Q}\left(\zeta_{p}\right)$ is nontrivial, then

$$
\sum_{m=1}^{l}(-1)^{m} m\binom{l n}{m n} a_{l-m} a_{m} \equiv 0 \bmod p
$$

Proof. (i) Equation (18) and Proposition 2(i) yield

$$
\begin{aligned}
e q^{n-2 v} & =-\sum_{i=0}^{e-1} \sum_{j=0}^{e-1}\left(\sum_{k=0}^{e-1} c_{j+e / 2-i, k-i}\right) d_{i} d_{j} \\
& =-\sum_{i=0}^{e-1} \sum_{j=0}^{e-1}\left(n-p \delta_{i, j}\right) d_{i} d_{j} \\
& =-n\left(\sum_{i=0}^{e-1} d_{i}\right)^{2}+p \sum_{i=0}^{e-1} d_{i}^{2}
\end{aligned}
$$

Therefore, $e^{2} q^{n-2 v}=\left(\sum_{i=0}^{e-1} d_{i}\right)^{2}+p\left(e \sum_{i=0}^{e-1} d_{i}^{2}-\left(\sum_{i=0}^{e-1} d_{i}\right)^{2}\right)$. By (22) we have that $\left(\sum_{i=0}^{e-1} d_{i}\right)^{2}=\left(\frac{1+p \eta_{0}}{n q^{\nu}}\right)^{2}$, and from (21) we obtain

$$
\sum_{i=0}^{e-1} d_{i}=\frac{1}{p q^{v}} \sum_{k=0}^{e-1}(-1-e n) G\left(\zeta_{p}^{-g^{k}}\right)=-\frac{1}{q^{v}} \sum_{k=0}^{e-1} G\left(\zeta_{p}^{-g^{k}}\right)
$$

So, by (6) and the triangle inequality, $\left|\sum_{i=0}^{e-1} d_{i}\right| \leq \frac{1}{q^{v}} \sum_{k=0}^{e-1} q^{n / 2}=e q^{n / 2-\nu}$. Since n is odd, this implies that $\left(\sum_{i=0}^{e-1} d_{i}\right)^{2}<e^{2} q^{n-2 v}$. The last equality is just formula (18).
(ii) The congruence $a_{0} \equiv-1 \bmod p$ follows from (22). By (18), (24), and Proposition 3 we have, for $0 \leq k \leq e-1$,

$$
\begin{aligned}
1 & \equiv q^{n}=-q^{2 v} \sum_{i=0}^{e-1} \sum_{j=0}^{e-1}\left((j+e / 2-i, k-i)-n \delta_{i, j}\right) d_{i} d_{j} \\
& =-q^{2 v} \sum_{i=0}^{e-1} \sum_{j=0}^{e-1}(j+e / 2-i, k-i) d_{i} d_{j}+n q^{2 v} \sum_{i=0}^{e-1} d_{i}^{2} \\
& \equiv q^{2 v} \sum_{i=0}^{e-1} \sum_{j=0}^{e-1} \frac{1}{e^{2}} \sum_{l=0}^{e} \sum_{m=0}^{e-1}\binom{n l}{n m} g^{n(m(j+e / 2-i)-l(k-i))} d_{i} d_{j}+n q^{2 v} \sum_{i=0}^{e-1} d_{i}^{2} \\
& \equiv n^{2} q^{2 v} \sum_{l=0}^{e-1} \sum_{m=0}^{e-1} \sum_{i=0}^{e-1} \sum_{j=0}^{e-1}(-1)^{m}\binom{n l}{n m} g^{n(m(j-i)-l(k-i))} d_{i} d_{j} ;
\end{aligned}
$$

this follows because

$$
\begin{aligned}
n^{2} q^{2 \nu} \sum_{m=0}^{e-1} \sum_{i=0}^{e-1} \sum_{j=0}^{e-1}(-1)^{m}\binom{p-1}{n m} g^{n m(j-i)} d_{i} d_{j} & \equiv n^{2} q^{2 \nu} \sum_{i=0}^{e-1} \sum_{j=0}^{e-1} e \delta_{i, j} d_{i} d_{j} \\
& \equiv-n q^{2 \nu} \sum_{i=0}^{e-1} d_{i}^{2} \bmod p
\end{aligned}
$$

As a result, $1 \equiv \sum_{l=0}^{e-1} g^{-n k l} \sum_{m=0}^{e-1}(-1)^{m}\binom{n l}{n m} a_{l-m} a_{m} \bmod p$ and hence, for $0 \leq$ $t \leq e-1$,

$$
\begin{aligned}
e \delta_{0, t} \equiv \sum_{k=0}^{e-1} g^{n k t} & \equiv \sum_{l=0}^{e-1} \sum_{k=0}^{e-1} g^{n k(t-l)} \sum_{m=0}^{e-1}(-1)^{m}\binom{n l}{n m} a_{l-m} a_{m} \\
& \equiv e \sum_{m=0}^{t}(-1)^{m}\binom{n t}{n m} a_{t-m} a_{m} \bmod p
\end{aligned}
$$

That is, $a_{0}^{2} \equiv 1 \bmod p$, which we already know, and $\sum_{m=0}^{l}(-1)^{m}\binom{n l}{n m} a_{l-m} a_{m} \equiv$ $0 \bmod p$ for $1 \leq l \leq e-1$. The congruence $\sum_{m=0}^{e-1} a_{e-m} a_{m} \equiv-n q^{2 \nu} \sum_{i=0}^{e-1} d_{i}^{2}$ $\bmod p$ can easily be obtained from (34), and the congruences

$$
\sum_{m=1}^{l}(-1)^{m} m\binom{l n}{m n} a_{l-m} a_{m} \equiv-l i_{p-l n}(Q) \bmod p
$$

for l odd $(1 \leq l \leq e-1)$ follow immediately from Proposition 6.
(iii) Follows from (ii) and Proposition 5. This ends the proof of the theorem.

The following examples show how to use Theorem 1 to gain information about the components $e_{p-\ln }(A)$ of the ideal class group of $\mathbb{Q}\left(\zeta_{p}\right)$ when e is small.

If $e=2$, then $n=(p-1) / 2$. Since we want n odd, we must have $p \equiv 3 \bmod$ 4. Suppose $i_{p-n}(Q)=i_{(p+1) / 2}(Q) \equiv 0 \bmod p$. Then, by Theorem 1(ii), we have that $a_{1} \equiv 0 \bmod p$ and so $d_{1} \equiv d_{0} \bmod p$. On the other hand, by Theorem 1(i),

$$
\begin{aligned}
4 q^{(p-1) / 2-2 v} & =\left(d_{0}+d_{1}\right)^{2}+p\left(2\left(d_{0}^{2}+d_{1}^{2}\right)-\left(d_{0}+d_{1}\right)^{2}\right) \\
& =\left(d_{0}+d_{1}\right)^{2}+p\left(d_{0}-d_{1}\right)^{2}
\end{aligned}
$$

Therefore, $4 q^{(p-1) / 2-2 v} \equiv\left(d_{0}+d_{1}\right)^{2} \bmod p^{2}$.
Observation. It is well known that, when $p \equiv 3 \bmod 4$, the component $e_{p-(p-1) / 2}(A)=e_{(p+1) / 2}(A)$ is trivial. This follows from the reflexion theorem (see [14, Thm. 10.9]) and from the class number formula for the imaginary quadratic field $\mathbb{Q}(\sqrt{-p})$: If $e_{(p+1) / 2}(A)$ is nontrivial then $e_{(p-1) / 2}(A)$ is nontrivial and so $p \mid n-2 v$; but $n-2 v<p$, a contradiction. The preceding result, together with Proposition 5, could lead to an alternative proof of this fact. If $e_{(p+1) / 2}(A)$ were nontrivial then, for each prime q of order $(p-1) / 2 \bmod p$, if a and b are the integers such that $4 q^{(p-1) / 2-2 v}=a^{2}+p b^{2}$ then we would have that $p \mid b$.

If $e=4$, then $n=(p-1) / 4$. Since we want n odd, we must have $p \equiv 5 \bmod 8$. By Theorem 1(ii) we have $a_{2} \equiv-\frac{1}{2}\binom{2 n}{n} a_{1}^{2} \bmod p$, and $16 q^{-2 v}\left(1+2 a_{1} a_{3}+a_{2}^{2}\right) \equiv$ $4\left(d_{0}^{2}+d_{1}^{2}+d_{2}^{2}+d_{3}^{2}\right) \bmod p$. By Theorem 1(i),

$$
\begin{aligned}
16 q^{(p-1) / 4-2 v}= & \left(d_{0}+d_{1}+d_{2}+d_{3}\right)^{2} \\
& +p\left(4\left(d_{0}^{2}+d_{1}^{2}+d_{2}^{2}+d_{3}^{2}\right)-\left(d_{0}+d_{1}+d_{2}+d_{3}\right)^{2}\right)
\end{aligned}
$$

In particular, $\left(d_{0}+d_{1}+d_{2}+d_{3}\right)^{2} \equiv 16 q^{-2 v} \bmod p$. Suppose first that $e_{p-n}(A)=$ $e_{(3 p+1) / 4}(A)$ is nontrivial. Then, by Theorem 1(iii), $a_{1} \equiv 0 \bmod p$, and so also $a_{2} \equiv 0 \bmod p$. Hence $16 q^{(p-1) / 4-2 v} \equiv\left(d_{0}+d_{1}+d_{2}+d_{3}\right)^{2} \bmod p^{2}$. Suppose now that $e_{p-3 n}(A)=e_{(p+3) / 4}(A)$ is nontrivial. Then, by Theorem 1 (iii), $a_{3} \equiv$ $-\frac{1}{3}\binom{3 n}{n} a_{1} a_{2} \bmod p$. Since $a_{2} \equiv-\frac{1}{2}\binom{2 n}{n} a_{1}^{2} \bmod p$, we have $a_{3} \equiv \frac{1}{6}\binom{2 n}{n}\binom{3 n}{n} a_{1}^{3}=$ $\frac{1}{6} \frac{(3 n)!}{(n!)^{3}} a_{1}^{3} \bmod p$. Therefore,

$$
\begin{aligned}
16 q^{(p-1) / 4-2 v}= & \left(d_{0}+d_{1}+d_{2}+d_{3}\right)^{2} \\
& +p\left(4\left(d_{0}^{2}+d_{1}^{2}+d_{2}^{2}+d_{3}^{2}\right)-\left(d_{0}+d_{1}+d_{2}+d_{3}\right)^{2}\right) \\
\equiv & \left(d_{0}+d_{1}+d_{2}+d_{3}\right)^{2}+p\left(16 q^{-2 v}\left(1+2 a_{1} a_{3}+a_{2}^{2}\right)-16 q^{-2 v}\right) \\
\equiv & \left(d_{0}+d_{1}+d_{2}+d_{3}\right)^{2}+16 p q^{-2 v}\left(\frac{1}{3} \frac{(3 n)!}{(n!)^{3}}+\frac{1}{4} \frac{((2 n)!)^{2}}{(n!)^{4}}\right) a_{1}^{4} \\
\equiv & \left(d_{0}+d_{1}+d_{2}+d_{3}\right)^{2}+\frac{4}{3} p\left(\left(\frac{p-1}{4}\right)!\right)^{-4} q^{-2 v} a_{1}^{4} \bmod p^{2}
\end{aligned}
$$

If $e=6$, then $n=(p-1) / 6$. Since we want n odd, we must have $p \equiv 7 \bmod 12$. By Theorem 1(ii) we have $a_{2} \equiv-\frac{1}{2}\binom{2 n}{n} a_{1}^{2} \bmod p$ and $a_{4} \equiv-\binom{4 n}{n} a_{1} a_{3}+\frac{1}{2}\binom{4 n}{2 n} a_{2}^{2}$ $\bmod p$, so $a_{4} \equiv-\binom{4 n}{n} a_{1} a_{3}+\frac{1}{8} \frac{(4 n)!}{(n!)^{4}} a_{1}^{4} \bmod p$. Also $1+2 a_{1} a_{5}+2 a_{2} a_{4}+a_{3}^{2} \equiv$ $-n q^{2 v} \sum_{i=0}^{5} d_{i}^{2} \bmod p$ and $\left(\sum_{i=0}^{5} d_{i}\right)^{2} \equiv 36 q^{-2 v} \bmod p$. Therefore,

$$
6 \sum_{i=0}^{5} d_{i}^{2}-\left(\sum_{i=0}^{5} d_{i}\right)^{2} \equiv 36 q^{-2 v}\left(2 a_{1} a_{5}+2 a_{2} a_{4}+a_{3}^{2}\right) \bmod p
$$

By Theorem 1(i), $36 q^{(p-1) / 6-2 v}=\left(\sum_{i=0}^{5} d_{i}\right)^{2}+p\left(6 \sum_{i=0}^{5} d_{i}^{2}-\left(\sum_{i=0}^{5} d_{i}\right)^{2}\right)$. Suppose that $e_{p-n}(A)=e_{(5 p+1) / 6}(A)$ is nontrivial. Then, by Theorem 1(iii), $a_{1} \equiv$ $0 \bmod p$ and so also $a_{2} \equiv 0 \bmod p$ and $a_{4} \equiv 0 \bmod p$. Hence, $36 q^{(p-1) / 6-2 v} \equiv$ $\left(\sum_{i=0}^{5} d_{i}\right)^{2}+36 p q^{-2 v} a_{3}^{2} \bmod p^{2}$.

4. Calculation of the Gaussian Periods $\boldsymbol{\eta}_{\boldsymbol{i}}$

We preserve the notation of Sections 1 and 2. As in Section 1, we assume that n, the order of q modulo p, is an odd integer ≥ 3. We have that $q \equiv g^{e t} \bmod p$ for some integer t relatively prime to n. If $a \in \mathbb{Z}$, we denote by $|a|_{p}$ the smallest nonnegative residue of a modulo p. We denote by g_{k} the number $\left|g^{k}\right|_{p}$. Our calculation of the Gaussian periods η_{i} is based on the Gross-Koblitz formula, inequality (20), and Proposition 3, which gives us an easy way to find the cyclotomic numbers (i, j) of order e corresponding to p. Note that, by (9) and (16), in order to find the numbers η_{i} it is enough to calculate the numbers d_{i}.

By formulas (20) and (21) we have, for $0 \leq i \leq e-1$,

$$
\begin{align*}
d_{i} & =\frac{1}{p} \sum_{j=0}^{e-1}\left(\theta_{i+j}-n\right) \frac{G\left(\zeta_{p}^{-g^{j}}\right)}{q^{v}} \tag{35}\\
\left|d_{i}\right| & < \begin{cases}\frac{1}{2} q^{(n+1) / 2+1-v} & \text { if } q=2 \text { or } 3 \text { or } 5, \\
\frac{1}{2} q^{(n+1) / 2-v} & \text { if } q \geq 7\end{cases}
\end{align*}
$$

Set

$$
m=m(q)= \begin{cases}\max \left\{3, \frac{n+1}{2}+1-v\right\} & \text { if } q=2 \tag{36}\\ \frac{n+1}{2}+1-v & \text { if } q=3 \text { or } q=5 \\ \frac{n+1}{2}-v & \text { if } q \geq 7\end{cases}
$$

Let $\mathcal{R}=\mathbb{Z}\left[\theta_{0}, \ldots, \theta_{e-1}\right]$ be the ring of integers of $\mathbb{Q}\left(\theta_{0}\right)$ and let $Q^{\prime}=Q \cap \mathcal{R}$ be the prime ideal of \mathcal{R} below Q. Note that $\mathbb{Q}\left(\theta_{0}\right)$ is the decomposition field of q. We can identify \mathcal{R} / Q^{\prime} with $\mathbb{Z} / q \mathbb{Z}$ and more generally $\mathcal{R} / Q^{\prime l}$ with $\mathbb{Z} / q^{l} \mathbb{Z}$ for $l \geq 1$. In particular, the periods θ_{i} are congruent to rational integers modulo $Q^{\prime l}$. In order to find the numbers d_{i} it is enough, by (35), to find their congruence classes modulo q^{m}, and for that it is enough to find the congruence classes modulo q^{m} of the numbers $G\left(\zeta_{p}^{-g^{j}}\right) / q^{\nu}$ and the congruence classes modulo $Q^{\prime m}$ of the periods θ_{i}.

Recall the Gross-Koblitz formula (see [3], [5, Chap. 15, Thm. 4.3], or [1, (11.2.12)], where one finds other references including one for Coleman's proof, which is valid also for $q=2$). In our particular situation, and with our notation, it reads as follows. For $1 \leq k \leq p-1$, write $f k=\sum_{i=0}^{n-1} u_{k, i} q^{i}$, where $u_{k, i} \in \mathbb{Z}$ and $0 \leq u_{k, i} \leq q-1$. Since $f \equiv 0 \bmod q-1$, we have that $\sum_{i=0}^{n-1} u_{k, i} \equiv 0 \bmod$ $q-1$. Define $v(k)=\frac{1}{q-1} \sum_{i=0}^{n-1} u_{k, i}$. Let \mathbb{Z}_{q} be the ring of q-adic integers, let Γ_{q} be the q-adic Gamma function (see [5, Chap. 14]), and for $x \in \mathbb{Q}$ let $\langle x\rangle$ be the
fractional part of x (i.e., $\langle x\rangle=x-[x]$, where $[x]$ is the integral part of x). Then, in \mathbb{Z}_{q} we have that, for $1 \leq a \leq p-1$,

$$
\begin{equation*}
G\left(\zeta_{p}^{a}\right)=q^{n}(-q)^{-v(a)} \prod_{i=0}^{n-1} \Gamma_{q}\left(1-\left\langle\frac{q^{i} f a}{q^{n}-1}\right\rangle\right) \tag{37}
\end{equation*}
$$

By [5, Chap. 1, Sec. 2, Lemma 1] it follows that

$$
v\left(g_{k}\right)=\sum_{i=0}^{n-1}\left\langle\frac{q^{i} f g_{k}}{q^{n}-1}\right\rangle=\sum_{i=0}^{n-1}\left\langle\frac{q^{i} g_{k}}{p}\right\rangle=\frac{1}{p} \sum_{i=0}^{n-1}\left|g_{k} g^{e t i}\right|_{p}=\frac{1}{p} \sum_{i=0}^{n-1} g_{k+e i}
$$

For $0 \leq k \leq p-2$, define

$$
\begin{equation*}
w(k)=\frac{1}{p} \sum_{i=0}^{n-1} g_{k+e i} \tag{38}
\end{equation*}
$$

Note that $v=\min _{0 \leq k \leq e-1} w(k)$ (see (13)). By (6), (37), and (38), for $0 \leq k \leq$ $e-1$ we have

$$
\frac{G\left(\zeta_{p}^{-g^{k}}\right)}{q^{v}}=\frac{(-1)^{w(k)} q^{w(k)-v}}{\prod_{i=0}^{n-1} \Gamma_{q}\left(1-\left\langle\frac{q^{i} g_{k}}{p}\right\rangle\right)}
$$

$\operatorname{But}\left\langle\frac{q^{i} g_{k}}{p}\right\rangle=\frac{1}{p}\left|q^{i} g_{k}\right|_{p} \equiv-f\left|g^{e t i} g_{k}\right|_{p}=-f g_{k+e t i} \bmod q^{n}$. Also, if $q^{l} \neq 4$ and if $\rho_{1} \equiv \rho_{2} \bmod q^{l}$ in \mathbb{Z}_{q}, then $\Gamma_{q}\left(\rho_{1}\right) \equiv \Gamma_{q}\left(\rho_{2}\right) \bmod q^{l}$. Thus, for $0 \leq k \leq e-1$,

$$
\begin{equation*}
\frac{G\left(\zeta_{p}^{-g^{k}}\right)}{q^{v}} \equiv \frac{(-1)^{w(k)} q^{w(k)-v}}{\prod_{i=0}^{n-1} \Gamma_{q}\left(1+f g_{k+e i}\right)} \bmod q^{n} \tag{39}
\end{equation*}
$$

We have $\Gamma_{q}(0)=1$ and $\Gamma_{q}(1)=-1$; and if $a \in \mathbb{Z}$ and $a \geq 2$ then

$$
\begin{equation*}
\Gamma_{q}(a)=(-1)^{a} \prod_{\substack{j=1 \\(j, q)=1}}^{a-1} j \tag{40}
\end{equation*}
$$

Since we only need an expression modulo q^{m} for $G\left(\zeta_{p}^{-g^{k}}\right) / q^{\nu}$ and since m is often much smaller than n, we can improve congruence (39) as follows. For $a \in \mathbb{Z}$ let $|a|_{q^{m}}$ be the smallest nonnegative residue of a modulo q^{m}. For $1 \leq a \leq p-1$, $0 \leq i \leq n-1$, and $j \in \mathbb{Z}$, define $u_{a, i+n j}=u_{a, i}$. We have

$$
\left\langle\frac{q^{n-i} a}{p}\right\rangle=\left\langle\frac{q^{n-i} f a}{q^{n}-1}\right\rangle=\frac{q^{n-i} f a-\left(q^{n}-1\right)\left[\frac{q^{n-i} f a}{q^{n}-1}\right]}{q^{n}-1}
$$

The numerator of this expression is less than $q^{n}-1$ and congruent to $q^{n-i} f a \equiv$ $\sum_{l=0}^{n-1} u_{a, l+i} q^{l} \bmod q^{n}-1$. Hence

$$
\left\langle\frac{q^{n-i} a}{p}\right\rangle=\frac{\sum_{l=0}^{n-1} u_{a, l+i} q^{l}}{q^{n}-1} \equiv-\sum_{l=0}^{n-1} u_{a, l+i} q^{l} \bmod q^{n}
$$

Therefore, since $f g_{k-e t i} \equiv-\left\langle q^{n-i} g_{k} / p\right\rangle \bmod q^{n}$, we have

$$
\left|f g_{k-e t i}\right|_{q^{m}}=\sum_{l=0}^{m-1} u_{g_{k}, l+i} q^{l}
$$

and

$$
\sum_{i=0}^{n-1}\left|f g_{k+e i}\right|_{q^{m}}=\sum_{i=0}^{n-1} \sum_{l=0}^{m-1} u_{g_{k}, l+i} q^{l}=\sum_{i=0}^{n-1} u_{g_{k}, i} \sum_{l=0}^{m-1} q^{l}=v\left(g_{k}\right)\left(q^{m}-1\right)
$$

In particular, $\sum_{i=0}^{n-1}\left|f g_{k+e i}\right|_{q^{m}} \equiv(q-1) \omega(k) \bmod 2$. Thus, by (39) and (40), for $0 \leq k \leq e-1$ we have

$$
\begin{equation*}
\frac{G\left(\zeta_{p}^{-g^{k}}\right)}{q^{v}} \equiv \frac{(-1)^{q w(k)-1} q^{w(k)-v}}{\prod_{i=0}^{n-1} \prod_{\substack{j=1 \\(j, q)=1}}^{\mid f g_{k+e i l_{q} m}} j} \bmod q^{m} \tag{41}
\end{equation*}
$$

As before (see (23) and (24)), let

$$
C=\left[c_{i, j}\right]_{0 \leq i, j \leq e-1}=\left[(i, j)-n \delta_{e / 2, i}\right]_{0 \leq i, j \leq e-1}
$$

We can calculate C using Proposition 3. Let $F(x)$ be the characteristic polynomial of C. We showed in Section 2 that $F(x)$ is the minimal polynomial of the periods θ_{i}, so in $\mathcal{R}[x]$ it follows that

$$
\begin{equation*}
F(x)=\operatorname{det}(x I-C)=\prod_{i=0}^{e-1}\left(x-\theta_{i}\right) \tag{42}
\end{equation*}
$$

Let $C_{0}=\left[c_{i, j}\right]_{1 \leq i, j \leq e-1}$ and $F_{0}(x)=\operatorname{det}\left(x I-C_{0}\right)$ and let I_{0} be the identity matrix of order $e-1$. By (25) with $j=0$, we have

$$
\begin{array}{cccccc}
\left(c_{1,1}-\theta_{0}\right) \theta_{1}+c c_{1,2} \theta_{2}+\cdots+c & c_{1, e-1} \theta_{e-1} & = & -c_{1,0} \theta_{0} \\
c_{2,1} \theta_{1} & +\left(c_{2,2}-\theta_{0}\right) \theta_{2}+\cdots+ & c_{2, e-1} \theta_{e-1} & = & -c_{2,0} \theta_{0} \\
\vdots & & \vdots & \ddots & \vdots & \vdots \\
c_{e-1,1} \theta_{1} & + & c_{e-1,2} \theta_{2} & +\cdots+\left(c_{e-1, e-1}-\theta_{0}\right) \theta_{e-1} & -c_{e-1,0} \theta_{0}
\end{array}
$$

Regard this as a system of $e-1$ equations with unknowns $\theta_{1}, \theta_{2}, \ldots, \theta_{e-1}$. The matrix of coefficients of this system is $M=C_{0}-\theta_{0} I_{0}$. We have that $\operatorname{det}(M) \neq$ 0 ; otherwise, the degree of θ_{0} would be smaller than e. Therefore

$$
\left[\begin{array}{c}
\theta_{1} \tag{43}\\
\theta_{2} \\
\vdots \\
\theta_{e-1}
\end{array}\right]=-\theta_{0} M^{-1}\left[\begin{array}{c}
c_{1,0} \\
c_{2,0} \\
\vdots \\
c_{e-1,0}
\end{array}\right] .
$$

In order to use (35) and (41) to calculate the numbers d_{i}, we must find integers $t_{0}, t_{1}, \ldots, t_{e-1}$, modulo q^{m}, such that $t_{i} \equiv \theta_{i} \bmod Q^{\prime m}$. Using the identification $\mathcal{R} / Q^{\prime} \simeq \mathbb{Z} / q \mathbb{Z}$, we see that $F(x)$ splits in linear factors in $\mathbb{Z} / q \mathbb{Z}$. Moreover, every period θ_{i} can be identified with a q-adic integer. Recall what the q-adic expansion $\sum_{j=0}^{\infty} a_{j} q^{j}$ of θ_{i} is: a_{0} is the integer $0 \leq a_{0} \leq q-1$ such that $\theta_{i} \equiv a_{0} \bmod Q^{\prime}$. Since q is unramified in $\mathbb{Q}\left(\theta_{0}\right)$, we have that $\left(\theta_{i}-a_{0}\right) / q \in \mathcal{R}_{Q^{\prime}}$, the localization of \mathcal{R} in Q^{\prime}. Then a_{1} is the integer $0 \leq a_{1} \leq q-1$ such that $\left(\theta_{i}-a_{0}\right) / q \equiv a_{1} \bmod$ Q^{\prime}. We have that $\theta_{i} \equiv a_{0}+a_{1} q \bmod Q^{\prime 2}$, so $\left(\theta_{i}-a_{0}-a_{1} q\right) / q^{2} \in \mathcal{R}_{Q^{\prime}}$, and so forth. This shows in particular that $F(x)$ has e roots in \mathbb{Z}_{q}. Of course these roots are distinct, but it can happen that two roots are congruent modulo a large power of q. It can also happen that some roots modulo a certain power of q do not lift to a q-adic root. Furthermore, even if we find the set of all t_{i} (as the set of roots of $F(x)$ modulo q^{m} that can be lifted to q-adic roots), there remains the problem of labeling its elements to make t_{i} correspond to θ_{i}. This shows that we must be careful in our search for the t_{i}. Let D be the discriminant of $F(x), D_{0}$ the discriminant of $F_{0}(x), R$ the resultant of $F(x)$ and $F_{0}(x)$, and $q^{\delta}, q^{\delta_{0}}, q^{\rho}$ the largest powers of q that divide D, D_{0}, R (respectively). Note that $R \neq 0$ because $F(x)$, which is irreducible over \mathbb{Q} of degree e, and $F_{0}(x)$, which is of degree $e-1$, cannot have a common root.

One way to proceed is as follows. Let $\mu^{\prime}=\max \left\{\delta, \delta_{0}\right\}+m$. By [7, Thm. 2.24 and Thm. A.5], every root of $F(x)$ modulo $q^{\mu^{\prime}}$ (actually every root of $F(x)$ modulo q^{k} with $k \geq \delta$) lifts to a unique root of $F(x)$ in \mathbb{Z}_{q}. So $F(x)$ has e distinct roots modulo $q^{\mu^{\prime}}$. Among these roots there is (at least) one, which we call t_{0}, such that $F_{0}\left(t_{0}\right) \not \equiv 0 \bmod q^{\max \left\{\delta, \delta_{0}\right\}+1}$; otherwise (again by [7, Thm. 2.24 and Thm. A.5]), $F_{0}(x)$ would have e distinct roots in \mathbb{Z}_{q}, which is absurd since it is a polynomial of degree $e-1$. Let $M_{0}=C_{0}-t_{0} I_{0}$ and define the integers $t_{1}, t_{2}, \ldots, t_{e-1}$ by

$$
\left[\begin{array}{c}
t_{1} \tag{44}\\
t_{2} \\
\vdots \\
t_{e-1}
\end{array}\right]=-t_{0} M_{0}^{-1}\left[\begin{array}{c}
c_{1,0} \\
c_{2,0} \\
\vdots \\
c_{e-1,0}
\end{array}\right]
$$

(we are only interested in the classes modulo q^{m} of these numbers). For $0 \leq i \leq$ $e-1$ and $j \in \mathbb{Z}$ define $t_{i+e j}=t_{i}$. Since $\operatorname{det}\left(M_{0}\right)=-F_{0}\left(t_{0}\right) \not \equiv 0 \bmod q^{\max \left\{\delta, \delta_{0}\right\}+1}$ it follows, by (43), that $t_{i} \equiv \theta_{i} \bmod Q^{\prime m}$ for $i \in \mathbb{Z}$ if we choose $Q=\left(t_{0}-\theta_{0}, q\right)$ as the prime ideal of $\mathbb{Z}\left[\zeta_{p}\right]$ over q in the definition of the η_{i} (formula (1)).

Another way to find the integers t_{i} is the following. Let $\mu=\max \{\delta, \rho\}+m$ and let t_{0} be any root of $F(x)$ modulo q^{μ}. By [7, Thm. 2.24 and Thm. A.5], t_{0} can be lifted in a unique way to a root of $F(x)$ in \mathbb{Z}_{q}. We have that $F_{0}\left(t_{0}\right) \not \equiv 0 \bmod$ $q^{\max \{\delta, \rho\}+1}$; otherwise, since $R=\Phi(x) F(x)+\Psi(x) F_{0}(x)$ for some $\Phi(x)$ and $\Psi(x) \in \mathbb{Z}[x]$, we would have $R=\Phi\left(t_{0}\right) F\left(t_{0}\right)+\Psi\left(t_{0}\right) F_{0}\left(t_{0}\right) \equiv 0 \bmod q^{\rho+1}$, an absurdity. Let $M_{0}=C_{0}-t_{0} I_{0}$, define the integers $t_{1}, t_{2}, \ldots, t_{e-1}$ as in (44), and define $t_{i+e j}=t_{i}$ for $0 \leq i \leq e-1$ and $j \in \mathbb{Z}$. Since $\operatorname{det}\left(M_{0}\right)=-F_{0}\left(t_{0}\right) \not \equiv 0 \bmod$ $q^{\max \{\delta, \rho\}+1}$, we have by (43) that $t_{i} \equiv \theta_{i} \bmod Q^{\prime m}$ for $i \in \mathbb{Z}$ if $Q=\left(t_{0}-\theta_{0}, q\right)$.

This is the method we shall use in the program described in Section 5. But consider also using the first method when μ happens to be too large-and larger than μ^{\prime}.

Note that

$$
t_{i} \equiv \theta_{i}=\sum_{j=0}^{n-1} \zeta_{p}^{g^{i+e j}} \equiv \sum_{j=0}^{n-1} \alpha^{f g^{i+e j}} \equiv \sum_{j=0}^{n-1} \alpha^{f g^{i} q^{j}} \equiv T\left(\alpha^{f g^{i}}\right) \bmod Q
$$

Hence

$$
t_{i} \equiv T\left(\alpha^{f g^{i}}\right) \bmod q
$$

Observation. The exponent δ is seldom the smallest possible l that guarantees a unique lifting of a root modulo q^{l} of $F(x)$ to a q-adic root. It can be improved, by [7, Thm. 2.24], if we are able to choose a suitable root t_{0}.

We can now write our formula to calculate the coefficients d_{i}. In order to derive the Gaussian periods η_{i} from the numbers d_{i}, we use (16) and (9). By (35) and (41), we have

$$
\begin{equation*}
d_{i} \equiv \frac{1}{p} \sum_{k=0}^{e-1}\left(t_{i+k}-n\right) \frac{(-1)^{q w(k)-1} q^{w(k)-v}}{\prod_{l=0}^{n-1} \prod_{\substack{j=1 \\(j, q)=1}}^{\mid f g_{k+l e} q^{m}} j} \bmod q^{m} \quad \text { and } \quad\left|d_{i}\right|<\frac{1}{2} q^{m} \tag{45}
\end{equation*}
$$

where m and $w(k)$ are as in (36) and (38).

5. A MAPLE Program to Calculate the Periods η_{i}

The following program calculates first the numbers d_{i} and $H=\sum_{i=0}^{e-1} d_{i} \theta_{i}$, using (45), and then the Gaussian periods η_{i} using (16) and (9). Notation is close to that used in the previous formula. Enter the numbers p an odd prime, q a prime distinct from p, and g a primitive root modulo p (the command g :=primroot (p); will assign to g the smallest positive primitive root modulo p). Check if the value of n (the order of q modulo p), calculated at the beginning, is odd and greater than 1.

There are a few pairs of primes (p, q), in a given range, for which the value of μ is too large (of course, the meaning of "too large" varies with time). This complicates the calculation and the labeling of the integers t_{i}, the roots of $F(x)$ modulo q^{μ}, using (44). In order to shorten such calculations one can try assigning smaller values to μ (take $\mu \geq m$). This is likely to work, because our estimate for a convenient value for this number (based on the largest powers of p dividing the discriminant D and the resultant R), though theoretically correct, is far from optimal. Recall that all we want to find are e roots modulo q^{m} of $F(x)$ which can be lifted to distinct q-adic roots and which are correctly labeled. Whether or not a value assigned to μ is good for calculations may depend on the choice of the root of $F(x)$ modulo q^{μ}, which we call t_{0}. We can change MAPLE's choice of
such a root by giving another value to the variable a (change, in the first line of the program, the command $\mathrm{a}:=1$: to $\mathrm{a}:=\mathrm{k}$: where k is a number between 1 and $e)$. Choosing a different root modulo p^{μ} of $F(x)$ as a value for t_{0} corresponds to changing H for one of its conjugates in $\mathbb{Q}\left(\theta_{0}\right)$, which corresponds to making a cyclic permutation of the values of the coefficients d_{i}.

For $p, q<100$, most of the calculations (using a $400-\mathrm{MHz} \mathrm{PC}$ with 384 MB of RAM) take a few seconds; but for some values of p and q, they take much longer. This is the case, for example, when $p=61$ and $q=13$, where we have $n=3$, $g=2, e=20, v=1, m=1, \delta=26, \rho:=32, \mu=33$ and

$$
\begin{aligned}
t_{0}= & 3+913+713^{2}+1113^{3}+213^{4}+1113^{5}+1113^{6}+813^{7}+1213^{8}+12 \\
& 13^{9}+1113^{10}+13^{11}+413^{13}+313^{14}+813^{15}+1013^{17}+213^{18}+6 \\
& 13^{19}+213^{20}+13^{21}+513^{22}+1113^{23}+313^{24}+1113^{25}+913^{26}+8 \\
& 13^{27}+13^{28}+413^{29}+313^{30}+513^{31} ;
\end{aligned}
$$

we obtain

$$
\begin{aligned}
H= & -2 \theta_{0}-2 \theta_{1}-2 \theta_{2}-2 \theta_{3}-2 \theta_{4}-2 \theta_{5}-2 \theta_{6}-2 \theta_{7}-\theta_{8}-2 \theta_{9}-\theta_{10} \\
& -2 \theta_{11}-2 \theta_{12}-\theta_{13}-2 \theta_{14}-2 \theta_{15}-2 \theta_{16}-\theta_{17}-2 \theta_{18}-2 \theta_{19} .
\end{aligned}
$$

Other hard cases are $(p, q)=(71,5)$ and $(p, q)=(97,61)$. They all can be calculated by using smaller values of μ and by changing the values of a, as indicated in the previous paragraph.

Recall that, to see a given value that has been calculated by MAPLE, one ends the command with a semicolon; otherwise, one ends the command with a colon. For example, to see the matrix C, change the command

```
    C:=evalm(C):
```

to

$$
\mathrm{C}:=\mathrm{evalm}(\mathrm{C}) ;
$$

To see the (often large) values of the periods η_{i}, replace the command

```
eta[gexp[i16]]:=q^nu*d[i16]+eta[0]; od:
```

with

```
eta[gexp[i16]]:=q^nu*d[i16]+eta[0]; od;
```

The last part of the program is used to check that $G(1)=\sum_{i=0}^{e-1} \eta_{i}=-1$ and that $H \bar{H}=q^{n-2 v}$.

I am grateful to Javier Thaine for an idea that improved the program by saving much computer memory.

```
with(numtheory): with(linalg): with(padic):
p:=89; q:=67; n:=order(q,p); g:=primroot(p); a:=1:
e:=(p-1)/n; f:=(q^n-1)/p:
for i1 from 0 to p-2 do
gexp[i1]:=modp(g&^i1,p); od:
for i2 from 0 to e-1 do
```

```
w[i2]:=(1/p)*sum(gexp[i2+e*j2],j2=0..n-1); od:
L1:=[seq(w[i3-1],i3=1..e)]:
L2:=sort(L1):
nu:=L2[1];
r:=floor(5/q):
m:=(n+1)/2+r-nu;
stored:=1: qm:=q^m:
indexes:=[seq(modp(f*i4,qm),i4=0..p-1)]:
for i5 from 0 to qm do
if modp(i5,q)<>0 then stored:=modp(stored*i5,qm); fi;
if member(i5,indexes) then Q[i5]:=stored; fi; od:
for i6 from 0 to p-2 do;
fgexp[i6]:=modp(f*gexp[i6],q^m); od:
for i7 from 0 to e-1 do
for j7 from 0 to n-1 do
Qf[i7,j7]:=Q[fgexp[i7+e*j7]]; od: od:
for i8 from 0 to e-1 do;
Hmod[i8]:=modp((-1)^(q*w[i8]-1)*q^(w[i8]-nu)/
    product(Qf[i8,j8],j8=0..n-1),q^m); od:
h:=gexp[n]:
Z:=(i9,j9)->modp((-1/(e^2))*sum(sum(binomial (n*k9,n*19)
    *h\wedge(19*i9-k9*j9),19=0..e-1),k9=0..e),p):
Id:=array(identity,1..e,1..e):
C:=array(1..e,1..e,[]):
for i10 from 1 to e do
for j10 from 1 to e do
C[i10,j10]:=Z(i10-1,j10-1)-n*Id[e/2+1,i10]: od: od:
C:=evalm(C):
F:=x->charpoly(C,x):
Dis:=discrim(F(x),x):
delta:=ordp(Dis,q);
C00:=delrows(C,1..1):
C0:=delcols(C00,1..1):
F0:=x - charpoly (C0,x):
R:=resultant(F(x),FO(x),x):
rho:=ordp(R,q);
mu:=max(delta,rho)+m;
L3:=rootp(F(x),q,mu):
100:=L3[a]:
q_adic_t0:=100;
10:=ratvaluep(100,mu):
E0:=delcols(C00,2..e):
Id0:=array(identity,1..e-1,1..e-1):
MO:=C0-10*IdO:
T0:=evalm(-10*MO^(-1)&*EO) :
```

```
T1:=array(1..1,1..e):
T1[1,1]:=10 mod q^m:
for i11 from 2 to e do
T1[1,i11]:=modp(T0[i11-1,1],q^m); od:
T:=evalm(concat(T1,T1)):
for i12 from O to e-1 do;
d[i12]:=mods((1/p)*sum((T[1,i12+j12+1]-n)*Hmod[j12],
    j12=0..e-1),q^m); od;
H:=sum(d[i13]*theta[i13],i13=0..e-1);
for i14 from 0 to e-1 do
for j14 from 0 to n-1 do
d[i14+e*j14]:=d[i14]; od: od:
eta[0]:=-(1/p)*(1+n*q^nu*sum(d[i15],i15=0..e-1));
for i16 from 0 to p-2 do
eta[gexp[i16]]:=q^nu*d[i16]+eta[0]; od:
# check:
sum_of_eta_i:=sum(eta[i17],i17=0..p-1);
S:=normal((x^p-1)/(x-1)):
H0:=x->sum(d[i18]*sum(x^gexp[i18+e*j18],j18=0..n-1),
    i18=0..e-1):
H1:=sort(HO(x)):
H2:=y->sum(coeff(H1,x,i19)*y^i19,i19=0..p-1):
Hconj:=normal (x^p*H2(x^(-1))):
# check:
H_times_Hconj:=ifactor(rem((H2(x)*Hconj,S,x)));
ifactor(q^(n-2*nu));
```


References

[1] B. Berndt, R. Evans, and K. Williams, Gauss and Jacobi sums, Wiley, New York, 1998.
[2] L. E. Dickson, Cyclotomy, higher congruences and Waring's problem, Amer. J. Math. 57 (1935), 391-424.
[3] B. H. Gross and N. Koblitz, Gauss sums and the p-adic Γ-function, Ann. of Math. (2) 109 (1979), 569-581.
[4] E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetsen, J. Reine Angew. Math. 44 (1852), 93-146.
[5] S. Lang, Cyclotomic fields I and II (with an appendix by K. Rubin), combined 2nd ed., Grad. Texts in Math., 121, Springer-Verlag, New York, 1990.
[6] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith. 39 (1981) 251-264.
[7] I. Niven, H. Zuckerman, and H. Montgomery, An introduction to the theory of numbers, 5th ed., Wiley, New York, 1991.
[8] T. Storer, Cyclotomy and difference sets, Markham, Chicago, 1967.
[9] F. Thaine, On the relation between units and Jacobi sums in prime cyclotomic fields, Manuscripta Math. 73 (1991), 127-151.
[10] ——, On the p-part of the ideal class group of $\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ and Vandiver's conjecture, Michigan Math. J. 42 (1995), 311-343.
[11] ——, Properties that characterize Gaussian periods and cyclotomic numbers, Proc. Amer. Math. Soc. 124 (1996), 35-45.
[12] ——, On the coefficients of Jacobi sums in prime cyclotomic fields, Trans. Amer. Math. Soc. 351 (1999), 4769-4790.
[13] ——, Families of irreducible polynomials of Gaussian periods and matrices of cyclotomic numbers, Math. Comp. 69 (2000), 1653-1666.
[14] L. C. Washington, Introduction to cyclotomic fields, 2nd ed., Grad. Texts in Math., 83, Springer-Verlag, New York, 1997.

Department of Mathematics and Statistics - CICMA
Concordia University
1455 de Maisonneuve Blvd. W.
Montreal, Quebec H3G 1M8
Canada

ftha@vax2.concordia.ca

[^0]: Received March 15, 2001. Revision received December 17, 2001.
 This work was supported in part by grants from NSERC and FCAR.

