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Automorphism Groups and Derivation Algebras
of Finitely Generated Vertex Operator Algebras

CHONGYING DoNG & ROBERT L. GRIESS, JR.

1. Introduction

In this paper we investigate the general structure of the automorphism group and
the Lie algebra of derivations of a finitely generated vertex operator algebra. We

prove two main results. The automorphism group is isomorphic to an algebraic

group. Under natural assumptions, the derivation algebra has an invariant bilinear
form and the ideal of inner derivations is nonsingular.

DeriniTION 1.1, LetV be a vertex operator algebra. We say thatGL (V) is
anautomorphism o¥ if and only if it leaves the vacuum element and the principal
Virasoro element fixedal = 1 andaw = w) and preserves all-compositions;
that is, for allm € Z andu, v € V, we havea(u,,v) = a(u),,a(v). It follows that
an automorphism fixes all thé since they are eigenspaces for an operator in the
series for the principal Virasoro element.

The set of all automorphisms is a group, denoted KXot

In the definition, it suffices to restrict andv to homogeneous elements. Note
that, in some definitions of VOA automorphism, there is no requirement that the
principal Virasoro element be fixed.

So far, we know the automorphism groups explicitly for relatively few vertex
operator algebras, such & [FLM], vertex operator algebr&; for a positive
definite even latticé. [DN], certain vertex operator algebras with central charge 1
[DG; DGRY], vertex operator algebras associated to highest weight representations
for affine algebras (cf. [DLY]), vertex operator algebras associated to codes [M],
and a few special cases (see e.g. [G]).

The determination of each of these automorphism groups has its own story and
depends heavily on the specifics of the auxiliary object used to construct the VOA,
such as a lattice, Lie algebra, or code. Nevertheless, one can observe that all these
automorphism groups have similarities.

We denote by V, k™) the algebra with underlying vector spaeand product
arb for a, b € V, wherea, is the coefficient at—*~* in the vertex operator far.
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The linear subspack, is closed under this productsit — k = 1. This algebra is
denotedV,,, (m —1)""). The cases: = 1 and 2 are especially interesting.

For simplicity of exposition, let us assume tHatis a simple vertex opera-
tor algebra of CFT type (see [DLMM], or Definition 2.8 of this paper). Then
(V1, 0" is a Lie algebra with bracket[ v] = uov for u, v € Vi, whereY (u, z) =
> ez Unz "L The endomorphismy is a derivation ofV’ in the sense thaty1 =
0, upw =0, and

uog(Y(v, 2)w) = Y(uov, 2)w + Y (u, 2)ugw

for anyv, w € V (cf. [DN]). Moreover, the exponential‘® is an automorphism of

V (e"0 is a well-defined operator dn because eachj, is finite dimensional). De-
note by Aut (V) the subgroup of the automorphism group Ay of V generated
bye"o foru € V1. Then Aut (V) is a finite dimensional connected algebraic normal
subgroup of AugV ). In all the examples mentioned previously, Auf)/Aut,(V)

is a finite group. We think that this is probably a general phenomenon for rational
vertex operator algebras. There are counterexamples Whgmot rational (cf.
[DM1] and Examples 2.6 and 4.1 in this paper).

For some time it has been a feeling that any rational vertex operator algebra of
CFT type is finitely generated. I is regular in the sense that any weak mod-
ule is a direct sum of ordinary modules (see [DLMZ2]), then it is proved in [KL]
and [L3] (see also [GN]) thaV is finitely generated. It is also felt that ratio-
nal vertex operator algebras must be regular. Interest in the category of modules
is motivation to study automorphism groups of finitely generated vertex operator
algebras.

The main result of this paper is that the automorphism groupauof a finitely
generated vertex operator algebra is isomorphic to a finite dimensional algebraic
group. It is well known that a finite dimensional algebraic gra@pas only
finitely many connected components and®6G© is a finite group, wher& ° is
the connected component@fcontaining the identity. We expect that the normal
subgroup Aut(V) of Aut(V) is exactly AutV)° for all rational vertex operator
algebrasV of CFT type. This property holds for all examples discussed so far.

There is a close relation between the automorphism group and the Lie algebra
of derivations of a vertex operator algebradlis a derivation of a vertex opera-
tor algebraV, thene? is an automorphism of (see Section 3). I/ is a finitely
generated rational vertex operator algebra of CFT type, then equality gfiAut
and Aut(V)? is equivalent to all the derivations &f being given byug for u € ;.

The paper is organized as follows. In Section 2 we prove that the automorphism
group of a finitely generated vertex operator algebra is a finite dimensional alge-
braic group. We also give an example of a non—finitely generated vertex operator
algebra whose automorphism group is not isomorphic to an algebraic group. In
Section 3 we study derivations of vertex operator algebrasv Edr we define a
linear operatoo(v) by the conditions that(v) = vyt,_1 if vis homogeneous. We
show in Section 3 that(v) is a derivation oV if and only if v € V;. We also show
that the Lie algebrd/; is an ideal of the Lie algebra of the derivations and has
an orthogonal complement with respect to a suitable invariant symmetric bilinear
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form. In Section 4 we discuss an example of a nonsimple finitely generated vertex
operator algebra and its automorphism group.

2. Automorphism Groups

We suppose that the VOK is finitely generated (cf. [FHL]). This is equivalent
to assuming the existence of ar Z such thal/ = &, _, V., generated’ in the
sense that

V:Spaﬂuill---ufxu lu/,uel, se{0,1,2, ...}, ijeZ).

Forasubset of V, setA’ ™ := Ax---x A (r+1times)andi>™ = J,. o
An element ofA* is a finite length vectok = (xo, ..., x,), and we callr + 1
the lengthof x. For every nonempty finite sequenge:= (maq, ..., m,) of in-
tegers, we define the function (callédcompositiof p = w;: V't — V by
w(xo, ooy X)) 1= (X0)my(X2)my + -+ (Xp—1)m, x». Callr + 1 thelengthof . Thus,
w(x) is defined if and only ifu andx have the same lengths, in which case we
say that(u, X) is anadmissible pair.If the entries of suclx are restricted to a
subsetA of V, then we call the pair ali-admissible pair.If the coordinates of
X = (xo, ..., x,) are homogeneous, ther(x) is homogeneous and we define the
weightof (u, X) to be}"!_owt(x;) — > i_,(m; + 1). This is just the weight of
w(X) if w(X) is nonzero.

Such a function, for som&, is called aV-composition.For a subsefi of V,
the restriction ofu to tuples of elements id is denotedu 4.

m<n

Ar+l

REMARK 2.1. The property thal/ generated/ means that, for each integer,

there exists a finite set of V-compositions such thaf, = Zues IMm(py) NV,

We choose a basi8 of U consisting of homogeneous elements, includinget
Q be the set oB-admissible pairs. Defin@,, to be the set of pairs i@ of weight
m. ThenV,, is spanned by a finite set of “monomials” Bof weightm, that is,
elements of certain ).

There is a finite seR,, of pairs(u, X) € Q,, such that the sdf,, := {u(¥) |
(u, x) € R,,} forms a basis foV,,. ChooseR o = {(i10, 1)} (Whereu is the triv-
ial length-1 composition) and s& := | J,,.; Rm-

We write “res” for the restriction homomorphism Awt) — GL(U). SinceU
generated, it follows that res is injective. We consider the question of when
GL(U) is in the image of res.

We shall define a setfunctien GL(U) — End(V) asfollows. Fog € GL(U),
definee(g) € End(V) by its action on the basis elementx), (i, X) € R:

e(8)(u(xX)) 1= p(g(x)). (2.1)
This endomorphism will turn out to be invertible in cases of interest to us.
Now consider the following set of conditions etg) € End(V):

e(9) (@) = n(g)), (2.2)

e(g)e(g ™M () = n(i) = e(g He(g) (1)) (2.3)
for all U-admissible pairgu, i).
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We may assume that the components afe homogeneous elements and even
that(u, u) € Q,,. Both sides of (2.2) are expanded in the bdjs Equating the
coefficients of both sides givgmlynomial condition®n the entries ofg;;), the
matrix representing with respect td3. A similar discussion applies to (2.3).

There is an ideal(, 5 in the ringC[x;;, det™ | i, j =1, ..., dim(U)] of poly-
nomial functions on GI/) associated to conditions (2.2) and (2.3).

Finally, for u € U, define the ideall, by the conditiongu = u. Setl =
> uieo lwn + i+ 1, and set

Gy :={geGLU) | p(g) =0forall per}.
ThenGy is a variety contained in GI). Clearly, resAut(V)) < Gy.

LEmMA 2.2. Gy is a subgroup ofGL(U); that is, Gy is an algebraic group.
Also,e is a homomorphism.

Proof. First, 1€ Gy. Observe that, fog € Gy, e(g) ande(g™) are invertible
because their restrictions to eathare invertible. Moreover, they form an in-
verse pair, whence(g™) = e(g)~% We now show thag* satisfies (2.2). Let
(i, y) be aU-admissible pair of length + 1. Sinceg € G we have, for ally,

e(e)u(g™(3) = n(¥) and sou(g™(¥)) = e(g) () = e(g7Hu(y). Since
gt satisfies (2.2), we havey = G,

To prove closure under products, we(dgt #) be aU-admissible pair and, 4 €
Gy. We must show that(gh) (i) = u(gh(in)). Write

pli) =Y awsv(y)
,5)ER
for unique scalars, ;) almost all zero. Then,
e(ghu(@ = Y awpe(ghv() = Y aw;v(gh(P),
0, 7)eR v, y)eR
by definition ofe(gh). Sinceg € Gy, this equals
Y. awse@vh( = Y awne(®)e(hv(y) = e(g)e(h)u).
w,MeR v, y)eR

Also w(gh@)) = e(g)u(h(@)) = e(g)e(h)u(u) becauses, h € Gy. We con-
clude thatgh € Gy and soGy is a group.

Since thew(it) spanV, we also deduce tha{gh) = e(g)e(h), whencee is a
homomorphism. O

Lemma 2.3. Forall u, v eV andn € Z, we have
e(g)(u,v) = (e(g)u)n(e(g)v).
Thatis,Im(e) C Aut(V).

Proof. We may assume thatis “monomial” (i.e., has the formu(x)) for a U-
admissible pain(u, ¥). We argue by induction on the length of, X). First,
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we assume that the length is 1. We may also assumevtigimonomial, so
v = v(y) for a U-admissible pair(v, y). Sayv is anm-composition,m =

(p,....q)andy = (y1, ..., y). Thenu,v = u,(y1)p - - - 4(y;) ande(g) (u,v) =

(8u)n(gy1)p -+ - q(gy:), by Lemma 2.2. By Lemma 2.2 applied to, y), we de-
ducee(g)(u,v) = (gu),(e(g)v(y)) = (gu)u(e(g)v). Finally, sincee(g)x = gx

for x e U, thisis(e(g)u),(e(g)v).

Suppose next that the lengthris> 2 and thatu is anm-composition,n =
(my, ..., m,). Setk = mq, b = x1, anda = v(y), wherey = (x», ..., x,) andv
is theV-composition associated to tike— 1)-tuple (mo, ..., m,). Thenu = bia.

We now perform a residue calculation to verify that

e(g)(Y(u, 2)v) = Y(e(g)u, z)(e(g)v).

Extracting the coefficient at~* will give the lemma.
Sinceu = b;a, we have from the Jacobi identity for vertex operators (see the
formula before (3.3) of [D]) that

Y(u, 2)v = Res, {(w — 2) Y (b, w)Y (a, 2)v — (—z + w) Y (a, w)Y (b, 2)v}.
Write & for e(g). Then
hlY (u, z)v]
=Res, {(w — ) n[Y (b, w)Y(a, 2)v] — (—z + w)*A[Y (a, w)Y (b, z)v]}.

Using repeated induction on length (appliedbtanda) together with the fore-
going consequence of the Jacobi identity, we deduce that this equals

Res,{(w — 2)*Y(hb, w)h[Y(a, 2)v] — (—z + w)*Y (ha, w)h[Y (b, 2)v]}
= Res,{(w — 2)X[Y(hb, w)Y (ha, 2)](hv)
— (—z + W) [Y (ha, w)Y(hb, z)(hv)]}
= Y((hb)(ha), 2)(hv)
= Y(h(bia), z)(hv)
= Y(hu, z7)(hv),
as desired. 0

THEOREM 2.4. The two maps
res: AutV) - Gy and e: Gy — Aut(V)

form a pair of inverse isomorphisms. Therefokeit(V) is isomorphic to the al-
gebraic groupGy .

Proof. SinceU generated, res is a monomorphism. Because(#nis contained

in Aut(V) and res> e = Idg,,, it follows that res is an epimorphism and hence
an isomorphism. Since the set majs a one-sided inverse of an isomorphism
(hence a two-sided inverse), it is an isomorphism of groups. (We proved before
thate is a homomorphism, but we do not need to quote that result here.) O
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REMARK 2.5. The most well-known vertex operator algebras are finitely gener-
ated. For examples, Heisenberg vertex operator algebras [FLM] and affine vertex
operator algebras (cf. [DL; FZ; L2]) are generated by their weight-1 subspaces;
Virasoro vertex operator algebras (cf. [FZ; L2]) and the moonshine vertex op-
erator algebra (see [B; FLM]) are generated by weight-2 subspaces. The lattice
vertex operator algebré, (see [B; FLM]) is generated b§D,, _,(VL)., Wheren

is any positive integer such thathas a direct sum decompositian= P;"_, Z«;
satisfying(«a;, o;)/2 < n. In fact, V; is generated by** fori =1,...,n.

ExampLE 2.6. If G is not finitely generated then, in general, Av} is not an
algebraic group. Here is an example. (Bt Y, 1, w) be a vertex operator alge-
bra with infinitely many irreducible moduldg’ = (U?,Y%) (i = 1,2,...) not
isomorphic toU such that/’ = @, U; ., with U] #0andi; <1 <---.
SetV = U & @,., Ui- ThenV has a vertex operator algebra structure with ver-
tex operatofY’ defined in the following way (see [L1]). Sindéis aU-module,
Y'(u, z)v (foru € U andv € V) is defined in an obvious way. Using the idea of
skew symmetry, fov € U’ andu € U we defineY’(v, 2)u = ey’ (u, —z)v.
Finally, we defineY’(v, z)w := 0 for all v, w € €, U'. We refer the reader to
[L1] for the proof that(V, Y, 1, w) is indeed a vertex operator algebra.

Fork, » € C, let L(k, 1) be the irreducible highest weight module for the Vira-
soro algebra with central chargeand highest weight. ThenL (1, 0) is a vertex
operator algebra and(l, A) is an irreduciblel (1, 0)-module for any (cf. [FZ]).
Now we takeU = L(1,0) andU! = L(1,i)fori =1,2,.... Letu’ be a nonzero
highest weight vector o/’ (which is unique up to a scalar). Th&nis generated
by w andu’ for i > 0. Clearly, V is not finitely generated since a finite set of gen-
erators would lie in the sum d@f and finitely manyU’. Note also that the sum of
any set of thd/' is an ideal.

PropOSITION 2.7.  The automorphism group of the V@B~ , L(1, n) is isomor-
phic to the infinite direct produdf];-, C;, whereC} is a copy of multiplicative
groupC* acting faithfully onU’, trivially on U/ for j # i, and trivially onU. In
particular, Aut(V) is not an algebraic group.

Proof. Let L = (A1, Ap,...) € ]_[fil(cx. We define a/-module homomorphism

g e[l ClonV = @2, LAn) suchthatg;1 = Landgu’ = ru'. Itis

easy to see from the definition Bfthatg; is an automorphism df. On the other
hand, any automorphisgis the identity onlU becauséd/ is generated by the Vi-
rasoro element. Sgpreserves the space of highest weight vectors that is spanned
by 1 andu’ for i > 0. Since the weights of any two highest weight vectors are
different, we immediately have that’ = A;u’ for some nonzero constaip for

alli. Setir = (A1, A2,...) € [[2;C*. Theng = g,. Clearly, A > g; is an
isomorphism. O

Next we discuss the automorphism groupvofor a “nice” vertex operator alge-
bra. We need more definitions.
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DEFINITION 2.8. A vertex operator algebia hasCFT typeif V,, =0forn <0
and dimVp) =1 (soVy = C1).

In the following definition we use the notion of admissible modules as introduced
in [Z] and [DLMZ2]. We refer the reader to [DLM2] for details.

DEFINITION 2.9. A vertex operator algeb#ais rational if any admissible mod-
ule is a direct sum of irreducible admissible modules.

DeriniTION 2.10. A vertex operator algebkais Cy-cofiniteif dim (V/Cy(V)) is
finite, whereC, (V) is the subspace df spanned by:_,v foru,ve V.

TheC,-cofinite condition has been called, in the literature @hdinite condition
or C»-condition (as inZ]). In the case of vertex operator algebras associated to
highest weight modules for affine Lie algebras and the Virasoro algelt@s(V )
are the spaces of coinvariants (cf. [FF; FKLMM]). This should explain why we
are changing the terminology. In this paper only €hecofinite condition is used.

As we have already mentioned lifis of CFT type ther(Vy, 0") is a Lie alge-
bra underg, v] = ugv. Part (1) of the following theorem can be found in [DM2];
the rest follows from the general structure of algebraic groups.

THEOREM 2.11. LetV be a simple(»-cofinite rational vertex operator algebra
of CFT type withL (1)V; = 0. Then the following statements hold.

(1) V1 is a reductive Lie algebrawrite V; = s @ t, where the first summand is
semisimple and the second is toral.

(2) G := Aut(V) contains the connected componéxttof the identity with finite
index and satisfie6® = G1C; (central produc}, whereG; := (exp(xo) |
x € Vi) andCy := Cg(V1)°. We haveG, = §1T1, whereS; := (exp(xo) |
x e€s)andTy ;= (exp(xo) | x € t). Also,T; = (C1N G1)°, and there is a con-
nected groupk; that is normal inG and has the following propertie<"; =
T1K1, [Tl, K1] =1, and T:N Ky is finite.

We remark that the conditioh(1)V; = 0 is not a strong assumption. It seems that
all rational vertex operator algebras of CFT type satisfy this condition. For exam-
ple, it is satisfied by well-known rational vertex operator algebras associated to
highest weight integral modules for affine algebras (cf. [L2]), to minimal series
for the Virasoro algebras (the weight-1 space is zero in this case), and to positive
definite even lattices (cf. [FLM]). It is proved in [L1] that, for a simple vertex op-
erator algebra of CFT type, the conditiduil)V; = 0 is equivalent to there being

a nondegenerate symmetric invariant bilinear fornioim the sense of [FHL].

3. Derivations

There is a close relation between automorphisms and derivations for a vertex op-
erator algebra. In this section we discuss the Lie algebra of the derivations of a
vertex operator algebra.
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Define a linear majp onV by settingo(v) = vwt)-1 for homogeneous ele-
mentsv. Theno(v)V, C V, forall n.

A derivationof the vertex operator algebkais an endomorphisni of V that
satisfiesddl = 0, dw = 0, and [, Y (u, z)] = Y(du, z). Sincedw = 0, it follows
thatd preserves all th&, (which are the eigenspaces of an operatdr o, z)),
whenced is locally finite. The derivatiow is aninner derivationif there is av €
V such thab(v) = d (see Lemma 3.1). Since thg are finite dimensional, any
endomorphism preserving the graded pieces is locally finite.

Sinced is a locally finite derivation o/, the exponentiat? is an automorphism
of V. On the other hand, Agv)° (whenV is finitely generated) is a connected
Lie group, and its Lie algebra acts ®nas derivations.

Set IDe(V) := o(V) N Der(V), the space oinner derivations.

LetV be of CFT type such thdt(1)V; = 0. ThenV is adirect sum of irreducible
modules for spafi.(—1), L(0), L(1)} = sl(2, C), theprincipal sl, [DLinM]. For
homogeneous, sinceo(L(—1v) = —(Wt(v) — Dvww)—1, We have equality of
{o(v) | ve V}and{o(v) | veKer(LQ))}.

Let QV := Ker(L(1)), the space ofjuasi-primary vectors.

LemmA 3.1. We havev(v) € Der(V) for v € V;.

Proof. Since p(v), Y(u, z)] = [vo, Y(u, 2)] = Y(vou, z) = Y(o(v)u, z) forv e
V1 andu € V, the result is clear. OJ

Lemma 3.2. Assume thaV has CFT type. b = Y, , v’ withv' € V; N QV
ando(v) € Der(V), thenv = 0.

Proof. Sinceo(v) = )", ,v/_;, we have

[o(v), Y(u, )] = ) [v]_y, Y(u, 2)]

i>2
i—1 . o
SE (7o
i>2 j>0 J
=> Y _qu.2).
i>2
It follows that
i—1\ =2 L
( . ) Y(v;u,z)z’_l_/ =0
i>2 J j=0
and
i—1\ =2 L
Iim{ ( . ) Y(vj’-u, z)z’lfll} =0.
z—0| 4 J é
i>2 j=0
This implies
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for all u. Thus

.
Z(:’—2>”5—2=O

i>2

onV. Since thev’ are quasi-primary vectorsL[1), vi_,] = iv!_;. As a result,

@i —Divi_,=0.
Z i-1

i=2

By Theorem 2.2 of [DLMM], we now hav@”,_, i(i — v’ € V1, whencev’ =
O foralli and sov = 0. O

The following corollary is immediate.
CoroLLARY 3.3. For V of CFT typelDer(V) = o(V1) = {o(v) | v € V1}.

Recall from [DLMM] that the radical/ (V') of V consists of those vectotse V
such thab(v) = 0. We shall need a result from [DM2].

LemmMma 3.4. LetV be aC,-cofinite rational vertex operator algebra of CFT type.
ThenJ(V) = (L(-1) + L(0))V.

From now on we assume th#tis a C,-cofinite rational vertex operator algebra
of CFT type. Thery = (V4, 0") is a reductive Lie algebra, and eathis a fi-
nite dimensionag-module viav — o(v). Define the invariant symmetric bilinear
form (-, -)» ong for anyg-module(u, v)y = try (uv) foru, v e g.

Recall thatg = s @ t, wheres is semisimple andlis abelian. Then each finite
dimensional module fog is a direct sum of indecomposable modules, which are
tensor products of irreducible modules foand indecomposable modules for

LemMma 3.5. Let M be a finite dimensiongl-module such tha¥/ containss as
ans-module. Let = s'@ - - - @ s” be the decomposition into simple ideals. Write
s®:=t. Then(s’,s/), = 0if i # j and, ifi > 0, the restriction of the form to
eachs’ is nondegenerate.

Proof. First we prove that the restriction of the form to eachis nondegener-
ate. Note that, as ari-module,M is completely reducible and is an irreducible
submodule.

Leti > 0. It is well known that, for each irreducible -module W, the cor-
responding invariant symmetric bilinear for@ -)y is a nonnegative multiple of
(-, )i, the Killing form ons’, which is nondegenerate (§H]). As aresult,(-, -)
is nondegenerate when restricted to

In order to prove thats’,s/)y = 0if i # j, we may assume tha is ir-
reducible. Thert acts as scalars oW, andM|, = M°® --- ® MP" is a tensor
product of irreducible module®’ for s'.

Leti > 0 be any index and let € s'. ThenM' is a direct sum of generalized
eigenspaces under We can therefore choose a basis for M* consisting of
generalized eigenvectors for the actioncafin M’ . Letm* € By, associated to the
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generalized eigenvalue,. Let A := Zk#j Ak. Now fix j > O and assumg #
i. Lety e s/. Think of a matrix for the action of that is written in a basis taken
from the subspaces of the fomf @ m'® - - @m' @ M/ @m/*1® .- @ m”.
Observe that can be written as a direct sum of such subspaces. These spaces
are not invariant by, but the action ofy has block-triangular form with respect
to this direct sum.

The contribution to the trace,i(xy) from the subspace® @ m' ® --- ®
mit@ M @mitt® ... @ mP is equal tor try,; (y) for y € s/. Sinces/ is sim-
ple and /, s/] = s/, we see that t§;(y) = 0. Thus(s’, s/),; = 0, sinceM is a
direct sum as described previously. O

For convenience we denote the bilinear form)y, ong by (-, -),, forn > 0.
We need the following result from [DM2].

ProrosiTiON 3.6. Let V be a rational, C,-cofinite vertex operator algebra of
CFT type, and leL (1)V, = 0. Then, for any: € V3, there exisi > 0andv e V;
such that(u, v),, # 0.

The next result sharpens Proposition 3.6.

THEOREM 3.7. LetV be as in Proposition 3.6. Then there existsrasuch that
(-, -)» is nondegenerate.

Proof. Taken large enough so that'! _,V,, generated’. We claim that(-, -), is
nondegenerate.

Recall thatCL (—1) + CL(0) + CL(1) is isomorphic to the Lie algebra(@, C).
Let M (1) be the irreducible highest weight module fosIC) with highest weight
A. Then

M) =P Miim,
m=>0
so thatM (1), is spanned by a highest weight vectgrand M (1), is spanned
by L(—1)™v,. If A = 0 thenM(}) is trivial. If A > 0, eachM (1) is a Verma
module andV (1);. .., #~ 0 for all m.

First we prove that the representationgadn V,, is faithful. Assume thatg =
0 onV,. SinceV is of CFT type and.(1)V; = 0O, it follows from Corollary 3.2
of [DLinM] that (i) V is a direct sum of copies a¥/ (1) for m > 0 and (ii) the
multiplicity of M (0) in the decomposition is 1. Note that (i), ug] = 0 fori =
—1,0,1andu € g. Let M() occur in the decomposition &f such that 04 m <
n; thenug = 0 on M (1). Also note thatoVo = 0. Thus,up = 0 on@@, _, Vi
Sinceu, is a derivation orV and sinceV is generated b@D;, _, V.,, we immedi-
ately see thaty, = 0 onV. This contradicts Proposition 3.6.

We can therefore identify with its imageo(g), = {uoly,}. If the form (., -),
is degenerate then, by Lemma 3.5, there exists arn such that(x, y), = 0 for
all y e g. By Lemma 4.3 of [H],xo is nilpotent onV,. In particular, all the eigen-
values ofxg onV, are zero. A similar argument as before then shows:thats
only zero eigenvalues o), _, V... Becaus&p, _,V,, generated, we see im-
mediately thato has only zero eigenvalues &) for all m, since
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k
uov}nl. .. vr];kv = Zvi‘”. . (Movj)m, e Uk v+ vi];u. .. v’l;kuov
for v/, v eV andm; € Z.

Note thatt is an abelian Lie algebra and that all irreducible modules are 1-
dimensional. Hence {f(xoyo) = O for all y € g andm € Z. But again, by
Proposition 3.6, this is impossible. O

THEOREM 3.8. LetV be aC,-cofinite rational vertex operator algebra of CFT
type such thal.(1)V; = 0. Letn > 0 be such tha) ") _,V,, generates/. Then
Der(V) is a direct sum of ideals(g) and g+, whereg' consists of/ € D such
thattry, o(u)d = O for all u € V3.

Proof. Let V be as in Lemma 3.5 and Theorem 3.7, andulet O be as in the
proof of Theorem 3.7. Then the actionbf:= Der(V) is also faithful onV,, and
(d,d"), = try,(dd") defines a symmetric invariant bilinear form @ Hence,
by Theorem 3.7, the restriction of the formd¢g) is nondegenerate. Lgt- be
the orthogonal complement ofg). Then the intersection gf- ando(g) must be
zero. On the other hand{ [uo] = (du)o tells us thab(g) is an ideal ofD and so
isgt. Thus [, uo] = (du)o = 0 ford € g+ andu € V;. Since the action oD is
faithful onV,,, we havedu = 0. O

4. Example

In this section we show by example that a finitely generated VOA with an infinite
descending chain of ideals can still have a reductive group of automorphisms. Our
example isV,?, for which we find all ideals and find that they form a countable
descending chain.

ExampLE 4.1. We consider the vertex operator algebra V; = L(Ag), where
L = Za such tha{e, o) = 2 and wherd.(Ap) is the fundamental representation
for the affine algebra&(ll). Then the automorphism group ®f is isomorphic to
PSL(2, C) (see [DLY] and [DN]).

Let L(c, h) be the highest weight module for the Virasoro algebra with central
chargec and highest weight. Let W,, for m > 1 be the irreducible module for
sl(2, C) of dimensiorm. Then

Ve = P LA M) ® Wania

m=>0

(cf. [DG]) and SL(2, C) acts onV, by acting onW,,, 1. Moreover, W5, re-
garded as a S2, C)-submodule ofV, is generated by the highest weight vec-
tor e™«.

Consider the subgroug = {(34) | t € C} of SL(2, C). ClearlyG is not com-
pact. Hence the space Gf—invariantst(an is spanned by™“. As a result, we
have a direct sum decomposition of the fixed point setfamto irreducible mod-
ules for the Virasoro algebra:
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vei=PLam’,

m>0

where the highest weight modulg1, m?) for the Virasoro algebra is generated
by e™“. For distinctm, these modules are pairwise nonisomorphic. It is not hard
to see that, for any > 1 Y, ., L(1, m?) is an ideal ofV’, becauseyv €

LA, (s +1)? foranyu e L(1,s?), ve L, t?), andk € Z.

We now prove that all the ideals & are given in this way. Lef be a nonzero
ideal of V¢. Thenl is amodule for the Virasoro algebra and thus is a sum of a fam-
ily of the L(1, n?). Letn > 1 be the smallest positive integer such thét, n?) is
asubspace df. Thene®, , ., _1¢" = ¢ € I (see [FLM]) andL (1, (n +1)%)
is contained inf. Continuing in this way, we see that= )", . L(1, m?). Itwas
proved in [DLM1] that, ifH is a compact Lie group acting continuously on a sim-
ple vertex operator algebiia thenV# is also a simple vertex operator algebra.
Since ourG is not compacty,© is permitted to be nonsimple, and it is.

We now show that the automorphism groupWff is isomorphic toC*. Note
thatV,“ is generated by ande®. In fact, we have already proved thét b can
be generated fro® ande”*. Hence all the highest weight vectors can be gener-
ated frome; usingw then generates the whole space. ForamyC*, we define
a linear isomorphisn; of VLG such that, acts onL (1, m?) asA™. From the pre-
vious discussion it is clear thaf is an automorphism df’LG. On the other hand,
any automorphisna of V% mapse® to re® for some nonzero constaht since
e® is the only highest weight vector with highest weight 1 (up to a constant) for
the Virasoro algebra. AgC is generated by ande®, we immediately see that
O = 0,.
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