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Automorphism Groups and Derivation Algebras
of Finitely Generated Vertex Operator Algebras

Chongying Dong & Robert L. Griess , Jr .

1. Introduction

In this paper we investigate the general structure of the automorphism group and
the Lie algebra of derivations of a finitely generated vertex operator algebra. We
prove two main results. The automorphism group is isomorphic to an algebraic
group. Under natural assumptions, the derivation algebra has an invariant bilinear
form and the ideal of inner derivations is nonsingular.

Definition 1.1. LetV be a vertex operator algebra. We say thata ∈GL(V ) is
anautomorphism ofV if and only if it leaves the vacuum element and the principal
Virasoro element fixed(a1 = 1 andaω = ω) and preserves allV-compositions;
that is, for allm ∈ Z andu, v ∈ V, we havea(umv) = a(u)ma(v). It follows that
an automorphism fixes all theVi since they are eigenspaces for an operator in the
series for the principal Virasoro element.

The set of all automorphisms is a group, denoted Aut(V ).

In the definition, it suffices to restrictu andv to homogeneous elements. Note
that, in some definitions of VOA automorphism, there is no requirement that the
principal Virasoro element be fixed.

So far, we know the automorphism groups explicitly for relatively few vertex
operator algebras, such asV \ [FLM], vertex operator algebraVL for a positive
definite even latticeL [DN], certain vertex operator algebras with central charge 1
[DG; DGR], vertex operator algebras associated to highest weight representations
for affine algebras (cf. [DLY]), vertex operator algebras associated to codes [M],
and a few special cases (see e.g. [G]).

The determination of each of these automorphism groups has its own story and
depends heavily on the specifics of the auxiliary object used to construct the VOA,
such as a lattice, Lie algebra, or code. Nevertheless, one can observe that all these
automorphism groups have similarities.

We denote by(V, k th) the algebra with underlying vector spaceV and product
akb for a, b ∈ V, whereak is the coefficient atz−k−1 in the vertex operator fora.
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The linear subspaceVm is closed under this product ifm− k = 1. This algebra is
denoted(Vm, (m−1)th). The casesm = 1 and 2 are especially interesting.

For simplicity of exposition, let us assume thatV is a simple vertex opera-
tor algebra of CFT type (see [DLMM], or Definition 2.8 of this paper). Then
(V1,0th) is a Lie algebra with bracket [u, v] = u0v for u, v ∈V1,whereY(u, z) =∑

n∈Z unz−n−1. The endomorphismu0 is a derivation ofV in the sense thatu01=
0, u0ω = 0, and

u0(Y(v, z)w) = Y(u0v, z)w + Y(u, z)u0w

for anyv,w ∈V (cf. [DN]). Moreover, the exponentialeu0 is an automorphism of
V (eu0 is a well-defined operator onV because eachVn is finite dimensional). De-
note by Aut1(V ) the subgroup of the automorphism group Aut(V ) of V generated
byeu0 foru∈V1. ThenAut1(V ) is a finite dimensional connected algebraic normal
subgroup of Aut(V ). In all the examples mentioned previously, Aut(V )/Aut1(V )

is a finite group. We think that this is probably a general phenomenon for rational
vertex operator algebras. There are counterexamples whenV is not rational (cf.
[DM1] and Examples 2.6 and 4.1 in this paper).

For some time it has been a feeling that any rational vertex operator algebra of
CFT type is finitely generated. IfV is regular in the sense that any weak mod-
ule is a direct sum of ordinary modules (see [DLM2]), then it is proved in [KL]
and [L3] (see also [GN]) thatV is finitely generated. It is also felt that ratio-
nal vertex operator algebras must be regular. Interest in the category of modules
is motivation to study automorphism groups of finitely generated vertex operator
algebras.

The main result of this paper is that the automorphism groupAut(V ) of a finitely
generated vertex operator algebra is isomorphic to a finite dimensional algebraic
group. It is well known that a finite dimensional algebraic groupG has only
finitely many connected components and soG/G0 is a finite group, whereG0 is
the connected component ofG containing the identity. We expect that the normal
subgroup Aut1(V ) of Aut(V ) is exactly Aut(V )0 for all rational vertex operator
algebrasV of CFT type. This property holds for all examples discussed so far.

There is a close relation between the automorphism group and the Lie algebra
of derivations of a vertex operator algebra. Ifd is a derivation of a vertex opera-
tor algebraV, thened is an automorphism ofV (see Section 3). IfV is a finitely
generated rational vertex operator algebra of CFT type, then equality of Aut1(V )

and Aut(V )0 is equivalent to all the derivations ofV being given byu0 for u∈V1.

The paper is organized as follows. In Section 2 we prove that the automorphism
group of a finitely generated vertex operator algebra is a finite dimensional alge-
braic group. We also give an example of a non–finitely generated vertex operator
algebra whose automorphism group is not isomorphic to an algebraic group. In
Section 3 we study derivations of vertex operator algebras. Forv ∈V we define a
linear operatoro(v) by the conditions thato(v) = vwtv−1 if v is homogeneous. We
show in Section 3 thato(v) is a derivation ofV if and only if v ∈V1. We also show
that the Lie algebraV1 is an ideal of the Lie algebra of the derivations and has
an orthogonal complement with respect to a suitable invariant symmetric bilinear
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form. In Section 4 we discuss an example of a nonsimple finitely generated vertex
operator algebra and its automorphism group.

2. Automorphism Groups

We suppose that the VOAV is finitely generated (cf. [FHL]). This is equivalent
to assuming the existence of ann∈Z such thatU =⊕m≤nVm generatesV in the
sense that

V = span〈u1
i1
· · · usisu | uj, u∈U, s ∈ {0,1,2, . . .}, ij ∈Z〉.

For a subsetAofV, setAr+1 := A×· · ·×A(r+1times) andA∞ :=⋃r≥0A
r+1.

An element ofA∞ is a finite length vectorEx = (x0, . . . , xr), and we callr + 1
the lengthof Ex. For every nonempty finite sequenceEm := (m1, . . . , mr) of in-
tegers, we define the function (calledEm-composition) µ := µ Em : V r+1→ V by
µ(x0, . . . , xr) := (x0)m1(x2)m2 · · · (xr−1)mr xr . Call r + 1 thelengthof µ. Thus,
µ( Ex) is defined if and only ifµ and Ex have the same lengths, in which case we
say that(µ, Ex) is anadmissible pair.If the entries of suchEx are restricted to a
subsetA of V, then we call the pair anA-admissible pair.If the coordinates of
Ex = (x0, . . . , xr) are homogeneous, thenµ( Ex) is homogeneous and we define the
weightof (µ, Ex) to be

∑r
i=0 wt(xi) −∑r

i=1(mi + 1). This is just the weight of
µ( Ex) if µ( Ex) is nonzero.

Such a function, for someEm, is called aV-composition.For a subsetA of V,
the restriction ofµ to tuples of elements inA is denotedµA.

Remark 2.1. The property thatU generatesV means that, for each integerm,
there exists a finite setS of V-compositions such thatVm =∑µ∈S Im(µU) ∩Vm.
We choose a basisB of U consisting of homogeneous elements, including1. Let
Q be the set ofB-admissible pairs. DefineQm to be the set of pairs inQ of weight
m. ThenVm is spanned by a finite set of “monomials” inB of weightm, that is,
elements of certain Im(µB).

There is a finite setRm of pairs(µ, Ex) ∈Qm such that the setBm := {µ( Ex) |
(µ, Ex)∈Rm} forms a basis forVm. ChooseR0 = {(µ0,1)} (whereµ0 is the triv-
ial length-1 composition) and setR :=⋃m∈ZRm.

We write “res” for the restriction homomorphism Aut(V )→ GL(U). SinceU
generatesV, it follows that res is injective. We consider the question of wheng ∈
GL(U) is in the image of res.

We shall define a set functione : GL(U)→ End(V )as follows. Forg ∈GL(U),
definee(g)∈End(V ) by its action on the basis elementsµ( Ex), (µ, Ex)∈R:

e(g)(µ( Ex)) := µ(g( Ex)). (2.1)

This endomorphism will turn out to be invertible in cases of interest to us.
Now consider the following set of conditions one(g)∈End(V ):

e(g)(µ(Eu)) = µ(g(Eu)), (2.2)

e(g)e(g−1)(µ(Eu)) = µ(Eu) = e(g−1)e(g)(µ(Eu)) (2.3)

for all U-admissible pairs(µ, Eu).
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We may assume that the components ofEx are homogeneous elements and even
that(µ, Eu)∈Qm. Both sides of (2.2) are expanded in the basisBm. Equating the
coefficients of both sides givespolynomial conditionson the entries of(gij ), the
matrix representingg with respect toB. A similar discussion applies to (2.3).

There is an idealI(µ, Ex) in the ringC[xij,det−1 | i, j = 1, . . . ,dim(U)] of poly-
nomial functions on GL(U) associated to conditions (2.2) and (2.3).

Finally, for u ∈ U, define the idealIu by the conditiongu = u. Set I :=∑
(µ, Ex)∈Q I(µ, Ex) + I1+ Iω and set

GU := {g ∈GL(U) | p(g) = 0 for all p ∈ I }.
ThenGU is a variety contained in GL(U). Clearly, res(Aut(V )) ≤ GU.
Lemma 2.2. GU is a subgroup ofGL(U); that is,GU is an algebraic group.
Also,e is a homomorphism.

Proof. First, 1∈ GU. Observe that, forg ∈ GU, e(g) ande(g−1) are invertible
because their restrictions to eachVi are invertible. Moreover, they form an in-
verse pair, whencee(g−1) = e(g)−1. We now show thatg−1 satisfies (2.2). Let
(µ, Ey) be aU-admissible pair of lengthr + 1. Sinceg ∈ G we have, for allEy,
e(g)µ(g−1( Ey)) = µ( Ey) and soµ(g−1( Ey)) = e(g)−1µ( Ey) = e(g−1)µ( Ey). Since
g−1 satisfies (2.2), we haveGU = G−1

U .

To prove closure under products, we let(µ, Eu) be aU-admissible pair andg, h∈
GU. We must show thate(gh)µ(Eu) = µ(gh(Eu)). Write

µ(Eu) =
∑

(ν, Ey)∈R
a(ν, Ey)ν( Ey)

for unique scalarsa(ν, Ey) almost all zero. Then,

e(gh)µ(Eu) =
∑

(ν, Ey)∈R
a(ν, Ey)e(gh)ν( Ey) =

∑
(ν, Ey)∈R

a(ν, Ey)ν(gh( Ey)),

by definition ofe(gh). Sinceg ∈GU, this equals∑
(ν, Ey)∈R

a(ν, Ey)e(g)ν(h( Ey)) =
∑

(ν, Ey)∈R
a(ν, Ey)e(g)e(h)ν( Ey) = e(g)e(h)µ(Eu).

Also µ(gh(Eu)) = e(g)µ(h(Eu)) = e(g)e(h)µ(Eu) becauseg, h ∈ GU. We con-
clude thatgh∈GU and soGU is a group.

Since theµ(Eu) spanV, we also deduce thate(gh) = e(g)e(h), whencee is a
homomorphism.

Lemma 2.3. For all u, v ∈V andn∈Z, we have

e(g)(unv) = (e(g)u)n(e(g)v).
That is,Im(e) ⊆ Aut(V ).

Proof. We may assume thatu is “monomial” (i.e., has the formµ( Ex)) for aU-
admissible pair(µ, Ex). We argue by induction on the length of(µ, Ex). First,
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we assume that the length is 1. We may also assume thatv is monomial, so
v = ν( Ey) for a U-admissible pair(ν, Ey). Say ν is an Em-composition, Em =
(p, . . . , q) and Ey = (y1, . . . , yt ). Thenunv = un(y1)p · · · q(yt ) ande(g)(unv) =
(gu)n(gy1)p · · · q(gyt ), by Lemma 2.2. By Lemma 2.2 applied to(ν, Ey), we de-
ducee(g)(unv) = (gu)n(e(g)ν( Ey)) = (gu)n(e(g)v). Finally, sincee(g)x = gx
for x ∈U, this is(e(g)u)n(e(g)v).

Suppose next that the length isr ≥ 2 and thatµ is an Em-composition,Em =
(m1, . . . , mr). Setk = m1, b = x1, anda = ν( Ey), wherey = (x2, . . . , xr) andν
is theV-composition associated to the(r −1)-tuple(m2, . . . , mr). Thenu = bka.

We now perform a residue calculation to verify that

e(g)(Y(u, z)v) = Y(e(g)u, z)(e(g)v).
Extracting the coefficient atz−n−1 will give the lemma.

Sinceu = bka, we have from the Jacobi identity for vertex operators (see the
formula before (3.3) of [D]) that

Y(u, z)v = Resw{(w − z)kY(b,w)Y(a, z)v − (−z+ w)kY(a,w)Y(b, z)v}.
Write h for e(g). Then

h[Y(u, z)v]

= Resw{(w − z)kh[Y(b,w)Y(a, z)v] − (−z+ w)kh[Y(a,w)Y(b, z)v]}.
Using repeated induction on length (applied tob anda) together with the fore-
going consequence of the Jacobi identity, we deduce that this equals

Resw
{
(w − z)kY(hb,w)h[Y(a, z)v] − (−z+ w)kY(ha,w)h[Y(b, z)v]

}
= Resw{(w − z)k[Y(hb,w)Y(ha, z)](hv)

− (−z+ w)k[Y(ha,w)Y(hb, z)(hv)]}
= Y((hb)k(ha), z)(hv)
= Y(h(bka), z)(hv)
= Y(hu, z)(hv),

as desired.

Theorem 2.4. The two maps

res: Aut(V )→ GU and e : GU → Aut(V )

form a pair of inverse isomorphisms. Therefore,Aut(V ) is isomorphic to the al-
gebraic groupGU.

Proof. SinceU generatesV, res is a monomorphism. Because Im(e) is contained
in Aut(V ) and resB e = IdGU , it follows that res is an epimorphism and hence
an isomorphism. Since the set mape is a one-sided inverse of an isomorphism
(hence a two-sided inverse), it is an isomorphism of groups. (We proved before
thate is a homomorphism, but we do not need to quote that result here.)
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Remark 2.5. The most well-known vertex operator algebras are finitely gener-
ated. For examples, Heisenberg vertex operator algebras [FLM] and affine vertex
operator algebras (cf. [DL; FZ; L2]) are generated by their weight-1 subspaces;
Virasoro vertex operator algebras (cf. [FZ; L2]) and the moonshine vertex op-
erator algebra (see [B; FLM]) are generated by weight-2 subspaces. The lattice
vertex operator algebraVL (see [B; FLM]) is generated by

⊕
m≤n(VL)m, wheren

is any positive integer such thatL has a direct sum decompositionL =⊕n
i=1Zαi

satisfying〈αi, αi〉/2 ≤ n. In fact,VL is generated bye±αi for i = 1, . . . , n.

Example 2.6. If G is not finitely generated then, in general, Aut(V ) is not an
algebraic group. Here is an example. Let(U, Y, 1, ω) be a vertex operator alge-
bra with infinitely many irreducible modulesU i = (U i, Y i) (i = 1,2, . . . ) not
isomorphic toU such thatU i =⊕n≥0U

i
λi+n with U i

λi
6= 0 andλ1 < λ2 < · · · .

SetV = U ⊕⊕i>0Ui. ThenV has a vertex operator algebra structure with ver-
tex operatorY ′ defined in the following way (see [L1]). SinceV is aU-module,
Y ′(u, z)v (for u ∈ U andv ∈ V ) is defined in an obvious way. Using the idea of
skew symmetry, forv ∈U i andu∈U we defineY ′(v, z)u := ezL(−1)Y ′(u,−z)v.
Finally, we defineY ′(v, z)w := 0 for all v,w ∈⊕i U

i. We refer the reader to
[L1] for the proof that(V, Y ′,1, ω) is indeed a vertex operator algebra.

Fork, λ∈C, letL(k, λ) be the irreducible highest weight module for the Vira-
soro algebra with central chargek and highest weightλ. ThenL(1,0) is a vertex
operator algebra andL(1, λ) is an irreducibleL(1,0)-module for anyλ (cf. [FZ]).
Now we takeU = L(1,0) andU i = L(1, i) for i = 1,2, . . . . Let ui be a nonzero
highest weight vector ofU i (which is unique up to a scalar). ThenV is generated
byω andui for i > 0. Clearly,V is not finitely generated since a finite set of gen-
erators would lie in the sum ofU and finitely manyU i. Note also that the sum of
any set of theU i is an ideal.

Proposition 2.7. The automorphism group of the VOA
⊕∞

n=0 L(1, n) is isomor-
phic to the infinite direct product

∏∞
i=1C

×
i , whereC×i is a copy of multiplicative

groupC× acting faithfully onU i, trivially on Uj for j 6= i, and trivially onU. In
particular,Aut(V ) is not an algebraic group.

Proof. Let λ = (λ1, λ2, . . . ) ∈∏∞i=1C×. We define aU-module homomorphism
gλ ∈∏∞i=1C

×
i onV := ⊕∞

n=0 L(1, n) such thatgλ1 = 1 andgλui = λiui. It is
easy to see from the definition ofY thatgλ is an automorphism ofV. On the other
hand, any automorphismg is the identity onU becauseU is generated by the Vi-
rasoro element. Sog preserves the space of highest weight vectors that is spanned
by 1 andui for i > 0. Since the weights of any two highest weight vectors are
different, we immediately have thatgui = λiui for some nonzero constantλi for
all i. Setλ = (λ1, λ2, . . . ) ∈ ∏∞i=1C×. Theng = gλ. Clearly, λ 7→ gλ is an
isomorphism.

Next we discuss the automorphism group ofV for a “nice” vertex operator alge-
bra. We need more definitions.



Automorphism Groups and Derivation Algebras 233

Definition 2.8. A vertex operator algebraV hasCFT typeif Vn = 0 for n < 0
and dim(V0) = 1 (soV0 = C1).

In the following definition we use the notion of admissible modules as introduced
in [Z] and [DLM2]. We refer the reader to [DLM2] for details.

Definition 2.9. A vertex operator algebraV is rational if any admissible mod-
ule is a direct sum of irreducible admissible modules.

Definition 2.10. A vertex operator algebraV isCk-cofiniteif dim(V/Ck(V )) is
finite, whereCk(V ) is the subspace ofV spanned byu−kv for u, v ∈V.
TheC2-cofinite condition has been called, in the literature, theC2-finite condition
or C2-condition (as in[Z]). In the case of vertex operator algebras associated to
highest weight modules for affine Lie algebras and theVirasoro algebras,V/Ck(V )

are the spaces of coinvariants (cf. [FF; FKLMM]). This should explain why we
are changing the terminology. In this paper only theC2-cofinite condition is used.

As we have already mentioned, ifV is of CFT type then(V1,0th) is a Lie alge-
bra under [u, v] = u0v. Part (1) of the following theorem can be found in [DM2];
the rest follows from the general structure of algebraic groups.

Theorem 2.11. LetV be a simple,C2-cofinite rational vertex operator algebra
of CFT type withL(1)V1= 0. Then the following statements hold.

(1) V1 is a reductive Lie algebra; write V1 = s ⊕ t, where the first summand is
semisimple and the second is toral.

(2) G := Aut(V ) contains the connected componentG0 of the identity with finite
index and satisfiesG0 = G1C1 (central product), whereG1 := 〈exp(x0) |
x ∈ V1〉 andC1 := CG(V1)

0. We haveG1 = S1T1, whereS1 := 〈exp(x0) |
x ∈ s〉 andT1 := 〈exp(x0) | x ∈ t〉. Also,T1= (C1∩G1)

0, and there is a con-
nected groupK1 that is normal inG and has the following properties: C1 =
T1K1, [T1,K1] = 1, andT1∩K1 is finite.

We remark that the conditionL(1)V1= 0 is not a strong assumption. It seems that
all rational vertex operator algebras of CFT type satisfy this condition. For exam-
ple, it is satisfied by well-known rational vertex operator algebras associated to
highest weight integral modules for affine algebras (cf. [L2]), to minimal series
for the Virasoro algebras (the weight-1 space is zero in this case), and to positive
definite even lattices (cf. [FLM]). It is proved in [L1] that, for a simple vertex op-
erator algebra of CFT type, the conditionL(1)V1 = 0 is equivalent to there being
a nondegenerate symmetric invariant bilinear form onV in the sense of [FHL].

3. Derivations

There is a close relation between automorphisms and derivations for a vertex op-
erator algebra. In this section we discuss the Lie algebra of the derivations of a
vertex operator algebra.
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Define a linear mapo onV by settingo(v) = vwt(v)−1 for homogeneous ele-
mentsv. Theno(v)Vn ⊂ Vn for all n.

A derivationof the vertex operator algebraV is an endomorphismd of V that
satisfiesd1 = 0, dω = 0, and [d, Y(u, z)] = Y(du, z). Sincedω = 0, it follows
thatd preserves all theVn (which are the eigenspaces of an operator inY(ω, z)),

whenced is locally finite. The derivationd is aninner derivationif there is av ∈
V such thato(v) = d (see Lemma 3.1). Since theVk are finite dimensional, any
endomorphism preserving the graded pieces is locally finite.

Sinced is a locally finite derivation ofV, the exponentialed is an automorphism
of V. On the other hand, Aut(V )0 (whenV is finitely generated) is a connected
Lie group, and its Lie algebra acts onV as derivations.

Set IDer(V ) := o(V ) ∩ Der(V ), the space ofinner derivations.
LetV be of CFT type such thatL(1)V1= 0. ThenV is a direct sum of irreducible

modules for span{L(−1), L(0), L(1)} ∼= sl(2,C), theprincipal sl2 [DLinM]. For
homogeneousv, sinceo(L(−1)v) = −(wt(v) − 1)vwt(v)−1, we have equality of
{o(v) | v ∈V } and{o(v) | v ∈Ker(L(1))}.

LetQV := Ker(L(1)), the space ofquasi-primary vectors.

Lemma 3.1. We haveo(v)∈Der(V ) for v ∈V1.

Proof. Since [o(v), Y(u, z)] = [v0, Y(u, z)] = Y(v0u, z) = Y(o(v)u, z) for v ∈
V1 andu∈V, the result is clear.

Lemma 3.2. Assume thatV has CFT type. Ifv = ∑ i≥2 v
i with vi ∈ Vi ∩QV

ando(v)∈Der(V ), thenv = 0.

Proof. Sinceo(v) =∑ i≥2 v
i
i−1, we have

[o(v), Y(u, z)] =
∑
i≥2

[vii−1, Y(u, z)]

=
∑
i≥2

∑
j≥0

(
i −1
j

)
Y(vij u, z)z

i−1−j

=
∑
i≥2

Y(vii−1u, z).

It follows that ∑
i≥2

(
i −1
j

) i−2∑
j=0

Y(vij u, z)z
i−1−j = 0

and

lim
z→0

{∑
i≥2

(
i −1
j

) i−2∑
j=0

Y(vij u, z)z
i−1−j−11

}
= 0.

This implies ∑
i≥2

(
i −1
i − 2

)
vii−2u = 0
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for all u. Thus ∑
i≥2

(
i −1
i − 2

)
vii−2 = 0

onV. Since thevi are quasi-primary vectors, [L(1), vii−2] = ivii−1. As a result,∑
i≥2

(i −1)ivii−1= 0.

By Theorem 2.2 of [DLMM], we now have
∑

i≥2 i(i−1)vi ∈V1,whencevi =
0 for all i and sov = 0.

The following corollary is immediate.

Corollary 3.3. For V of CFT type,IDer(V ) = o(V1) = {o(v) | v ∈V1}.
Recall from [DLMM] that the radicalJ(V ) of V consists of those vectorsv ∈ V
such thato(v) = 0. We shall need a result from [DM2].

Lemma 3.4. LetV be aC2-cofinite rational vertex operator algebra of CFT type.
ThenJ(V ) = (L(−1)+ L(0))V.
From now on we assume thatV is aC2-cofinite rational vertex operator algebra
of CFT type. Theng = (V1,0th) is a reductive Lie algebra, and eachVn is a fi-
nite dimensionalg-module viav 7→ o(v). Define the invariant symmetric bilinear
form (·, ·)M ong for anyg-module(u, v)M = trM(uv) for u, v ∈ g.

Recall thatg = s⊕ t, wheres is semisimple andt is abelian. Then each finite
dimensional module forg is a direct sum of indecomposable modules, which are
tensor products of irreducible modules fors and indecomposable modules fort .

Lemma 3.5. LetM be a finite dimensionalg-module such thatM containss as
ans-module. Lets = s1⊕· · ·⊕sp be the decomposition into simple ideals. Write
s0 := t . Then(si , sj )M = 0 if i 6= j and, if i > 0, the restriction of the form to
eachsi is nondegenerate.

Proof. First we prove that the restriction of the form to eachsi is nondegener-
ate. Note that, as ansi-module,M is completely reducible andsi is an irreducible
submodule.

Let i > 0. It is well known that, for each irreduciblesi-moduleW, the cor-
responding invariant symmetric bilinear form(·, ·)W is a nonnegative multiple of
(·, ·)si , the Killing form onsi ,which is nondegenerate (cf.[H]).As aresult,(·, ·)M
is nondegenerate when restricted tosi .

In order to prove that(si , sj )M = 0 if i 6= j, we may assume thatM is ir-
reducible. Thent acts as scalars onM, andM|s = M 0 ⊗ · · · ⊗Mp is a tensor
product of irreducible modulesMi for si .

Let i ≥ 0 be any index and letx ∈ si . ThenMi is a direct sum of generalized
eigenspaces underx. We can therefore choose a basisBk for Mk consisting of
generalized eigenvectors for the action ofx onMi. Letmk ∈Bk, associated to the
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generalized eigenvalueλk. Let λ := ∑k 6=j λk. Now fix j > 0 and assumej 6=
i. Let y ∈ sj . Think of a matrix for the action ofy that is written in a basis taken
from the subspaces of the formm0⊗m1⊗ · · · ⊗mj−1⊗Mj ⊗mj+1⊗ · · · ⊗mp.
Observe thatM can be written as a direct sum of such subspaces. These spaces
are not invariant byx, but the action ofxy has block-triangular form with respect
to this direct sum.

The contribution to the trace trM(xy) from the subspacem0 ⊗ m1 ⊗ · · · ⊗
mj−1⊗Mj ⊗mj+1⊗ · · · ⊗mp is equal toλ trMj (y) for y ∈ sj . Sincesj is sim-
ple and [sj, sj ] = sj, we see that trMj (y) = 0. Thus(si , sj )M = 0, sinceM is a
direct sum as described previously.

For convenience we denote the bilinear form(·, ·)Vn ong by (·, ·)n for n ≥ 0.
We need the following result from [DM2].

Proposition 3.6. Let V be a rational,C2-cofinite vertex operator algebra of
CFT type, and letL(1)V1= 0. Then, for anyu∈V1, there existn ≥ 0 andv ∈V1

such that(u, v)n 6= 0.

The next result sharpens Proposition 3.6.

Theorem 3.7. LetV be as in Proposition 3.6. Then there exists ann such that
(·, ·)n is nondegenerate.

Proof. Taken large enough so that
∑n

m=0Vm generatesV. We claim that(·, ·)n is
nondegenerate.

Recall thatCL(−1)+CL(0)+CL(1) is isomorphic to the Lie algebra sl(2,C).
LetM(λ)be the irreducible highest weight module for sl(2,C)with highest weight
λ. Then

M(λ) =
⊕
m≥0

M(λ)λ+m,

so thatM(λ)λ is spanned by a highest weight vectorvλ andM(λ)λ+m is spanned
by L(−1)mvλ. If λ = 0 thenM(λ) is trivial. If λ > 0, eachM(λ) is a Verma
module andM(λ)λ+m 6= 0 for allm.

First we prove that the representation ofg onVn is faithful. Assume thatu0 =
0 onVn. SinceV is of CFT type andL(1)V1 = 0, it follows from Corollary 3.2
of [DLinM] that (i) V is a direct sum of copies ofM(λ) for m ≥ 0 and (ii) the
multiplicity of M(0) in the decomposition is 1. Note that [L(i), u0] = 0 for i =
−1,0,1 andu∈ g. LetM(λ) occur in the decomposition ofV such that 06= m ≤
n; thenu0 = 0 onM(λ). Also note thatu0V0 = 0. Thus,u0 = 0 on

⊕n
m=0Vm.

Sinceu0 is a derivation onV and sinceV is generated by
⊕n

m=0Vm, we immedi-
ately see thatu0 = 0 onV. This contradicts Proposition 3.6.

We can therefore identifyg with its imageo(g)n = {u0|Vn}. If the form (·, ·)n
is degenerate then, by Lemma 3.5, there exists anx ∈ t such that(x, y)n = 0 for
all y ∈ g. By Lemma 4.3 of [H],x0 is nilpotent onVn. In particular, all the eigen-
values ofx0 onVn are zero. A similar argument as before then shows thatx0 has
only zero eigenvalues on

⊕n
m=0Vm. Because

⊕n
m=0Vm generatesV, we see im-

mediately thatx0 has only zero eigenvalues onVm for all m, since



Automorphism Groups and Derivation Algebras 237

u0v
1
m1
· · · vkmkv =

k∑
j=1

v1
m1
· · · (u0v

j )mj · · · vkmkv + v1
m1
· · · vkmku0v

for vj, v ∈V andmj ∈Z.
Note thatt is an abelian Lie algebra and that all irreducible modules are 1-

dimensional. Hence trVm(x0y0) = 0 for all y ∈ g andm ∈ Z. But again, by
Proposition 3.6, this is impossible.

Theorem 3.8. LetV be aC2-cofinite rational vertex operator algebra of CFT
type such thatL(1)V1 = 0. Let n ≥ 0 be such that

∑n
m=0Vm generatesV. Then

Der(V ) is a direct sum of idealso(g) and g⊥, whereg⊥ consists ofd ∈ D such
that trVn o(u)d = 0 for all u∈V1.

Proof. Let V be as in Lemma 3.5 and Theorem 3.7, and letn > 0 be as in the
proof of Theorem 3.7. Then the action ofD := Der(V ) is also faithful onVn, and
(d, d ′)n = trVn(dd

′) defines a symmetric invariant bilinear form onD. Hence,
by Theorem 3.7, the restriction of the form too(g) is nondegenerate. Letg⊥ be
the orthogonal complement ofo(g). Then the intersection ofg⊥ ando(g)must be
zero. On the other hand, [d, u0] = (du)0 tells us thato(g) is an ideal ofD and so
is g⊥. Thus [d, u0] = (du)0 = 0 for d ∈ g⊥ andu ∈ V1. Since the action ofD is
faithful onVn, we havedu = 0.

4. Example

In this section we show by example that a finitely generated VOA with an infinite
descending chain of ideals can still have a reductive group of automorphisms. Our
example isV GL , for which we find all ideals and find that they form a countable
descending chain.

Example 4.1. We consider the vertex operator algebraV = VL = L(30),where
L = Zα such that(α, α) = 2 and whereL(30) is the fundamental representation
for the affine algebraA(1)1 . Then the automorphism group ofVL is isomorphic to
PSL(2,C) (see [DLY] and [DN]).

LetL(c, h) be the highest weight module for the Virasoro algebra with central
chargec and highest weighth. LetWm for m ≥ 1 be the irreducible module for
sl(2,C) of dimensionm. Then

VL =
⊕
m≥0

L(1, m2)⊗W2m+1

(cf. [DG]) and SL(2,C) acts onVL by acting onW2m+1. Moreover,W2m+1 re-
garded as a SL(2,C)-submodule ofVL is generated by the highest weight vec-
tor emα.

Consider the subgroupG = {( 1 t
0 1

) | t ∈C} of SL(2,C). ClearlyG is not com-
pact. Hence the space ofG-invariantsWG

2m+1 is spanned byemα. As a result, we
have a direct sum decomposition of the fixed point set forG into irreducible mod-
ules for the Virasoro algebra:
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V GL =
⊕
m≥0

L(1, m2),

where the highest weight moduleL(1, m2) for the Virasoro algebra is generated
by emα. For distinctm, these modules are pairwise nonisomorphic. It is not hard
to see that, for anyn ≥ 1,

∑
m≥n L(1, m2) is an ideal ofV GL , becauseukv ∈

L(1, (s + t)2) for anyu∈L(1, s2), v ∈L(1, t 2), andk ∈Z.
We now prove that all the ideals ofV GL are given in this way. LetI be a nonzero

ideal ofV GL . ThenI is a module for theVirasoro algebra and thus is a sum of a fam-
ily of theL(1, n2). Let n ≥ 1 be the smallest positive integer such thatL(1, n2) is
a subspace ofI. Theneα−n(α,α)−1e

nα = e(n+1)α ∈ I (see [FLM]) andL(1, (n+1)2)
is contained inI. Continuing in this way, we see thatI =∑m≥n L(1, m2). It was
proved in [DLM1] that, ifH is a compact Lie group acting continuously on a sim-
ple vertex operator algebraV, thenV H is also a simple vertex operator algebra.
Since ourG is not compact,V GL is permitted to be nonsimple, and it is.

We now show that the automorphism group ofV GL is isomorphic toC×. Note
thatV GL is generated byω andeα. In fact, we have already proved thate(n+1)α can
be generated fromeα andenα. Hence all the highest weight vectors can be gener-
ated fromeα; usingω then generates the whole space. For anyλ∈C×, we define
a linear isomorphismσλ of V GL such thatσλ acts onL(1, m2) asλm. From the pre-
vious discussion it is clear thatσλ is an automorphism ofV GL . On the other hand,
any automorphismσ of V GL mapseα to λeα for some nonzero constantλ, since
eα is the only highest weight vector with highest weight 1 (up to a constant) for
the Virasoro algebra. AsV GL is generated byω andeα, we immediately see that
σ = σλ.
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