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Embeddings of SL(2,27) in Complex
Exceptional Algebraic Groups

Robert L. Griess , Jr . , & A. J. E . Ryba

1. Introduction

We classify embeddings of SL(2,27) in E8(C): there are twelve equivalence
classes, and all embeddings factor through a natural 2E7(C) subgroup. This result
contributes to the program, initiated in the early 1980s, to study embeddings of fi-
nite groups into an exceptional complex algebraic group—that is, one ofG2(C),
F4(C), E6(C), E7(C), E8(C). In fact, this result on SL(2,27) removes the final
obstruction to achievingthe classification of all QE-pairs,that is, pairs(S,G),
whereS is a finite quasisimple group andG is a complex exceptional algebraic
group such that there exists an embedding ofS inG. The classification of QE-pairs
is discussed in [GR4], which updates the survey [GR2].

The methods we use to construct and analyze embeddings represent some in-
novations. We mention (1) a new strategy in searching for invariant Lie algebras,
given a representation of a finite group, and (2) a computational problem of search-
ing for tensor squares of elements in a given linear subspace of a tensor square
of a vector space; this leads to the concept of relative eigenvalues and relative
eigenvectors.

Earlier computer constructions of a particular finite subgroup in an exceptional
group of Lie type have followed one of two strategies: either giving generating
elements of the finite group as words in explicit generators of the algebraic group,
or determining an invariant Lie algebra on a module for the finite group. The idea
of our new approach is to start with a natural invariant symplectic Lie algebra
for SL(2,27) and then find an invariant subalgebra of typeE7. Our search for
the invariant subalgebras is exhaustive; hence it determines conjugacy classes of
embeddings.

It is known that the simple group PSL(2,27) embeds intoF4(C) [CoW] and
hence into the algebraic groups 3E6(C), 2E7(C), andE8(C) (see [GR4, Table
QE] or [GR2, Table PE]). Our goal in this article is to exhibit and classify em-
beddings of the covering group SL(2,27) into E8(C). We first note that such an
embedding could arise only from a Lie primitive embedding of SL(2,27) into
2E7(C). (A finite subgroup of a connected algebraic group isLie primitiveif there
is no infinite intermediate Zariski closed subgroup; according to [CoW], there is
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no embedding intoE6 or 3E6 and there are no small representations that could
yield an embedding intoA8, D8, C7, orB7.)

We recall the definition of theAd-orderof an elementg in a connected algebraic
group: it is the smallest integern > 0 such thatgn is in the center.

We use the termEFO theory(“elements of finite order”) to indicate the stan-
dard theory of classification of finite order semisimple elements of a connected
quasisimple algebraic group, analysis of the spectra on highest weight modules,
and so on. This is a body of standard results that is surveyed in [G; GR2; GR4].
For a systematic search of elements of a given order in a connected algebraic group
of adjoint type, we mention the computationally useful procedure of labeling the
extended Dynkin diagram (see[K]).

Here is our main result.

Theorem 1.1. There are exactly twelve conjugacy classes of embeddings of
SL(2,27) into 2E7(C). If M is the133-dimensional adjoint module or the56-
dimensional irreducible module for2E7(C), then the embeddings are associated
to exactly six characters ofSL(2,27) for the representation onM. These char-
acters form a set of algebraic conjugates, and to each is associated two of the
twelve embeddings. Each embedding gives a faithful action ofSL(2,27) on the
56-dimensional irreducible module for2E7(C)and a faithful action ofPSL(2,27)
on the133-dimensional irreducible module for2E7(C).

2. The Story of SL(2,27) in 2E7(C)

We shall work extensively with irreducible characters of SL(2,27);we name each
character by its degree, with an alphabetic subscript to distinguish the different
characters of a given degree. We use lowercase subscripts to denote irreducible
characters of the simple group PSL(2,27) and uppercase subscripts to denote char-
acters offaithful irreducible representations of SL(2,27). The alphabetic position
of the subscript corresponds to the position of a character as displayed in theAtlas
of Finite Groups[CCNPW]. Thus, 28A denotes the first faithful 28-dimensional
character of SL(2,27) and 26c denotes the third 26-dimensional irreducible char-
acter of PSL(2,27) in Atlasorder. The unique 27-dimensional irreducible is there-
fore written 27a.

Lemma 2.1. Let χ133 andχ56 denote the irreducible characters of2E7(C) with
degrees133and 56, respectively. Then, associated to embeddings ofSL(2,27)
in 2E7(C) are exactly six pairs of restrictions ofχ133 andχ56 to SL(2,27). One
such pair is26a +26b+26c+27a +28a and28D +28E, and the other five pairs
are obtained from these by applying algebraic conjugacy to13th roots of unity.
(These irrationalities occur here in the degree-28 irreducibles.)

Proof. By algebraic conjugacy, it suffices to assume that there is an embedding
and then show that it has a pair of restrictions equal to one of the six pairs.
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An element of order 4 (say,f ) in SL(2,27) must correspond to an element of
2E7(C) that maps to an involution ofE7(C) (i.e., hasAd-order 2). From [CoG] we
deduce thatχ133(f ) ∈ {−7,25}. However,χ133 contains no copies of the trivial
character (since SL(2,27) is Lie primitive in E7(C)) and thereforeχ133(f ) ≤
deg(χ133)/13 < 25 (sinceψ(f )/deg(ψ) ≤ 1/13 for all nontrivial ordinary irre-
duciblesψ).We deduce thatχ133(f ) = −7. Now, deg(χ133) = 133 andχ133(f ) =
−7 imply thatχ133 decomposes either as (a) a sum of three characters from the
collection 26a,26b,26c together with 27a and a 28-dimensional character or (b) as
a sum of three copies of 27a and two characters from the set 26a,26b,26c. If the
decomposition involves a 28-dimensional character, we can apply an algebraic
conjugacy to ensure that it is 28a.

The characterχ56 restricts to a sum of irreducible representations of SL(2,27)of
degrees 14 and 28. (The only other faithful irreducibles of SL(2,27) have degree
26, and we cannot decompose 56 as 26 plus a nonnegative integer linear combina-
tion of 14, 26, and 28.) It follows that, in the eigenvalue spectrum of the action of
an element of order 28 in SL(2,27) on the 56-dimensional module for 2E7(C),
each primitive 28th root of unity has multiplicity 4. The EFO theory gives us the
conjugacy classes of elements of order 28 in 2E7(C). A search of these classes
shows that there are just two classes of elements of order 14 inE7(C) that lift
to elements of order 28 in 2E7(C) with this spectrum, and both possibilities are
rational on the adjoint module. It follows that the three characters 26a,26b,26c
appear with equal multiplicity in the restriction ofχ133 to SL(2,27). Henceχ133

restricts to the sum of 26a,26b,26c, 27a, and 28a.
The multiplicity of any eigenvalue of an SL(2,27)-element of order 13 on the

56-dimensional module for 2E7(C) must be between 4 and 8. This is because
the multiplicity of any given eigenvalue of such an element on an irreducible rep-
resentation is either 2 or 3 (for a 28-dimensional representation) or 1 or 2 (for a
14-dimensional representation). From EFO theory, such an element is either ra-
tional on the adjoint module or has a powert with χ133(t) = 1+ y13 andχ56(t) =
y13∗ 5+ y13∗ 6. (We useAtlasnotation for irrational character values, so that
y13 is the sum of an inverse pair of primitive 13th roots of unity.) Our earlier de-
scription of the restriction ofχ133 shows that the first of these possibilities does
not occur, and the lemma follows.

We remark that the same character-theoretic analysis applies to an embedding of
SL(2,27) into a group 2E7(k) wheneverk is a field whose characteristic is co-
prime to the order of SL(2,27) (this is an obvious application of Larsen’s(0,p)
correspondence [GR1]). Indeed, in our computer work, where we work over a
finite field to have exact arithmetic, we choose to perform calculations in char-
acteristic 1093. We note that 1093 does not divide|SL(2,27)|, so the character
analysis of Lemma 2.1 applies. Furthermore, the character irrationalitiesy13 and
y7 that can arise in the characters 26a, 26b, 26c, 27a, 28a, 28D, and 28E belong
to the prime fieldF1093, so that there are matrix representations of SL(2,27) over
F1093 with these characters.
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We writek for the fieldF1093, k
∗ for the multiplicative group ofk,and̂k for the al-

gebraic closure ofk. LetW be a 56-dimensionalkSL(2,27)-module with charac-
ter 28D + 28E.Write Ŵ for the module obtained fromW by extending scalars tôk.

We can readily construct an explicit matrix representation of SL(2,27) onW (or
Ŵ ). In general, all irreducible(q+1)-dimensional representations of SL(2, q) are
induced from 1-dimensional representations of the Borel subgroup. Hence, they
can be written down as cases of the following recipe.

Recipe 2.2. Letq be a prime power andl the field of orderq. Write l+ for the
projective line overl (with q + 1 points),l∗ for the set of nonzero elements ofl,
andα for a multiplicative generator ofl∗. LetK be a field (in most applications,
K is different froml ) and letζ be a(q −1)th root of unity inK.

Let V be a(q + 1)-dimensional vector space overK with basisv0, v1, . . . ,

vq−1, v∞ parameterized byl+. Then we can define the GL(V )-elementsfx
(x ∈ l ), g, andh that generate an image of SL(2, q) by the following formulas:

vifx = vi+x;
vig = 1

ζ
vi/α2 (i 6= ∞), v∞g = ζv∞;

vαr h = ζ−rv−1/αr , v0h = ζ (q−1)/2v∞, v∞h = v0.

We can think of the matricesfx, g, andh as images of the SL(2, q)-elements rep-
resented by the respective 2× 2 matrices

(
1 x
0 1

)
,
(
α 0
0 α−1

)
, and

(
0 −1
1 0

)
.

If q is odd, then the bilinear form(·, ·) defined by

(v∞, v∞) = (vi, vi) = 0, (v∞, vi) = 1,

(vi, v∞) = ζ (q−1)/2, (vi, vi−αr ) = ζ−r
is invariant under our representation of SL(2, q).

The 2× 2 matrix
(

1 0
0 α

)
in GL(2, q) acts as a diagonal outer automorphism of

SL(2, q). If the elementζ has a square root
√
ζ in K, then we can extend our

(q + 1)-dimensional representation of SL(2, q) by representing this outer auto-
morphism by a matrixd with

vid =
√
ζviα (i 6= ∞), v∞d = 1√

ζ
v∞.

Moreover, the matrixd preserves the bilinear form(·, ·).
The following lemma makes clear that, in general, if field extensions are available
then we can adjust a representation of a group automorphism so as to preserve an
invariant bilinear form.

Lemma 2.3. LetV be an irreducible module forKG,whereK is an algebraically
closed field andG is a finite group, and suppose thatf is a nondegenerateG-
invariant bilinear form onV. Suppose that the automorphisma fixes the represen-
tation. Then there is a finite groupH containingG as a normal subgroup and an
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elementb ∈ H for which conjugation onG by b induces the action ofa, so that
the representation ofG onV extends to a representation ofH onV that preserves
the formf.

Proof. Form the semidirect productJ := G〈a〉. The action ofJ on the group al-
gebrakG by conjugation onG preserves the two-sided ideal (a matrix algebra over
k) associated toV, so by Skolem–Nöther there is a projective representationψ of
J in GL(V ). SinceV is given as aG-module,ψ may be assumed to restrict to a
homomorphism onG. Let b := aψ ∈GL(V ). If a has ordern, thenbn is a scalar
matrix. By algebraic closure, we may replaceb byb times a scalar to assumebn =
1, so in particularb has finite order. The action ofb on the 1-dimensional space
of invariant bilinear forms is by a root of unityc ∈K∗. Taked ∈K, a square root
of c. Thend−1b preservesf and induces the action ofa onGψ ∼= G. The group
〈Gψ, b〉 is finite.

We use Recipe 2.2 to compute explicit matrices giving the action of SL(2,27) on
its faithful 28-dimensional modules with characters 28D and 28E. (Note that the
matrixg in the 28-dimensional representation of Recipe 2.2 has order dividing 26
and has traceζ +1/ζ ; thus we obtain representations with characters 28D and 28E
by applying the recipe withζ chosen to be any particular primitive 26th root of
unity and its 9th power, respectively.) The direct sum of these matrix representa-
tions gives an explicit realization of the action of SL(2,27) onW. We will fix this
choice of matrix representation for the remainder of the paper, and we will write
S for the group of 56× 56 matrices giving the representation. We writeC (resp.
Ĉ ) for the centralizer ofS in GL(W ) (resp. GL(Ŵ )). The groupC has structure
k∗ × k∗. Matrix generators forC are readily available as direct sums of scalar
multiples of the identity acting on each of the summands ofW.

The bilinear forms given by Recipe 2.2 are alternating on the representations of
SL(2,27)with characters 28D and 28E. Hence they provide a family ofS-invariant
symplectic forms onW. Each of these invariant symplectic forms is specified by
giving two parameters fromk∗. We write〈·, ·〉 for the particular form onW which
restricts to (a) the form given by Recipe 2.2 on the submodule with character
28D and (b) the negative of the form given by Recipe 2.2 on the submodule with
character 28E. We observe that theS-invariant forms onW belong to a single
orbit of Ĉ, so our choice of bilinear form is equivalent to any other if we are
prepared to allow field extensions. However, the bilinear forms onW fall into
four orbits under the action ofC (corresponding to elements ofk∗/k∗2× k∗/k∗2).
Our choice of orbit for the form is convenient in avoiding later need for field
extensions.

We writeL for the Lie algebra of derivations of the symplectic form〈·, ·〉 (sim-
ilarly, we write L̂ for the Lie algebra of derivations of the form when viewed as a
pairing onŴ ). As Lie algebras,L andL̂ have typeC28. It is clear that these Lie
algebras areS-invariant. Let0 be the general linear group GL(Ŵ ), and let6 ∼=
Sp(56, k̂) be the subgroup of0 that preserves〈·, ·〉. LetC− be the subgroup ofC
that fixes〈·, ·〉, so thatC− ∼= 2× 2. The groupC− is the centralizer ofS in 6.
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We observe thatF1093 contains square roots of its primitive 26th roots of unity
(since 1093≡ 1 (mod 4)). Hence, the automorphisms specified in Recipe 2.2 pro-
vide an elementd in GL(W ) that acts as a graph automorphism ofS and preserves
theS-invariant bilinear form〈·, ·〉.

The computations that we describe later in this section will establish the fol-
lowing theorem.

Computational Theorem 2.4. The Lie algebrâL contains exactly fourS-
invariant subalgebras of typeE7. These algebras fall into a single orbit under
the normalizer ofS in 6 and into two orbits(of size2) underC−. The four
S-invariant subalgebras of typeE7 are spanned(as vector spaces) by elements in
the subalgebraL ⊂ L̂.

Corollary 2.5. The groupSL(2,27) has twelve Lie primitive embeddings into
2E7(C). For each of the six algebraically conjugate characters given by Lemma
2.1, there are two embeddings and these are conjugate by the action ofGL(2,27).

Proof. According to Larsen’s(0,p)-correspondence (see [GR1]), we can enumer-
ate Lie primitive embeddings of SL(2,27) into 2E7(C) by enumerating embed-
dings into 2E7(k̂). It is clear from Theorem 2.4 that such embeddings exist, but
we must now settle their number.

Let8 be a copy of 2E7(k̂)with8 ≤ 6. WriteE for a typeE7-subalgebra ofL
that is invariant under8. Suppose now thatS is a copy of SL(2,27) in 8. Then,
by Theorem 2.4,S preserves exactly fourE7-subalgebras ofL. One of these isE
(sinceS ≤ 8) and all four have the formEθ, whereθ ∈N6(S).

Now suppose thatS1 ≤ 8 is 0-conjugate toS, sayS = Sγ1 . We will show that
S andS1 are setwise conjugate in8.

We begin by showing thatS andS1 are6-conjugate. The form〈·, ·〉 is S1-
invariant becauseS1 ≤ 8 ≤ 6.We deduce thatγ transforms〈·, ·〉 to anS-invariant
form (sinceγ takesS1 toS). However, as we noted, theS-invariant bilinear forms
onW are images of〈·, ·〉 under elements of̂C. Hence there is an elementδ ∈ Ĉ
such thatσ = γδ preserves〈·, ·〉. But S σ1 = S.

Similarly,E isS1-invariant becauseS1 ≤ 8, soEσ is anS-invariant subalgebra
of L̂. We deduce thatEσ = Eθ for someθ ∈N6(S). HenceEσθ−1 = E, so that
σθ−1 is an element of8 that conjugatesS1 to S. Thus, two SL(2,27) subgroups
of 8 are conjugate if and only if they are conjugate in0.

The SL(2,27)-decompositions of the charactersχ133 andχ56 given in Lemma
2.1 fall into two orbits under Aut(SL(2,27)). Hence there are two orbits of0
on SL(2,27)-subgroups in8. Because we have just established that8 controls
fusion in0 of SL(2,27) subgroups, we can now deduce that there are two conju-
gacy classes of SL(2,27) subgroups in8. We further observe that no embedding
of SL(2,27) into8 is stabilized by a field automorphism of SL(2,27), since the
character decompositions of Lemma 2.1are not stabilized by field automorphisms.
Moreover, no embedding of SL(2,27) into 8 is stabilized by an outer diagonal
automorphism, since Theorem 2.4 shows that outer diagonal involutions fix no
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S-invariant Lie algebras of typeE7. We deduce that the two classes of subgroups
give rise to exactly twelve classes of embeddings.

Proof of Theorem 2.4.We now describe our computer construction that establishes
the Computational Theorem 2.4. Our goal is to classifyS-invariant Lie algebras
of typeE7 in L̂. As a Lie algebra,̂L has typeC28, but we can also view it as an
S-module, in which context it is isomorphic toS2(Ŵ ). This isomorphism and the
translation of [·, ·] to an explicit invariant Lie product (also written as [·, ·]) on
S2(Ŵ ) are given in [R]. We carry out our computations inS2(Ŵ ) rather than in
L̂. We used our own implementation of the MeatAxe to work inS2(Ŵ ), but the
computations described here could also be carried out with the GAP and Magma
systems.

The moduleS2(Ŵ ) has character 13a +13b + 6× 26a + 6× 26b + 6× 26c +
2×26d +2×26e+2×26f +6×27a+6×28a+4×28b+5×28c+4×28d +
4× 28e + 5× 28f . If π is an irreducible character ofS, we writeLπ for the sub-
module ofS2(Ŵ ) spanned by all irreducible submodules ofS2(Ŵ )with character
π. ThusL26a has character 6× 26a. It is a routine application of the MeatAxe
to obtain bases for all of the modules of the formLπ. (Note that we perform this
computation over the prime field and work inside the moduleS2(W ).)

The irreducible submodules ofL26a can be parameterized by the 1-dimensional
subspaces of a 6-dimensional space,X say. Take six independent (isomorphic)
irreducible submodules ofL26a , and select a vector from the first of these sub-
modules together with a corresponding vector (under anS-isomorphism) from
each of the other independent submodules. We will call this 6-tuple of vectors
(w1, w2, . . . , w6). Any nonzero vector(x1, x2, . . . , x6) ∈X corresponds to the ir-
reducible submodule ofL26a spanned by theS-images of

∑
i xiw

i. Moreover, all
irreducible submodules ofL26a are obtained in this way. It is easy to use the stan-
dard basis program of the MeatAxe to obtain an explicit 6-tuple of vectors from
S2(W ) as just described.

For each elements ∈ S, let φs : X ⊗X→ S2(Ŵ ) be the linear transformation
defined by

φs((x1, . . . , x6)⊗ (y1, . . . , y6)) =
[∑

i xiw
i,
∑

i yiw
is
]
.

Suppose thatE is anS-invariant subalgebra ofS2(Ŵ ) with typeE7. ThenE
has anS-invariant constituent with character 26a. This constituent is an irre-
ducible submodule ofL26a ; it corresponds to a vector(x1, x2, . . . , x6) ∈ X as
before. Lets be an element ofS; then we have

[∑
i xiw

i,
∑

i xiw
is
] ∈ E ⊂

L26a+L26b+L26c+L27a+L28a . NowL26a+L26b+L26c+L27a+L28a is a proper
subspace of̂L, so for each choice ofs we have(x1, x2, . . . , x6)⊗(x1, x2, . . . , x6)∈
φ−1
s (L26a + L26b + L26c + L27a + L28a ). We used a standard Gaussian elimina-

tion to compute this inverse image for a random nonidentity elements ∈ S. We
obtained a 10-dimensional subspace,Y = φ−1

s (L26a +L26b+L26c+L27a +L28a ).

In order to locate candidates for the vector(x1, x2, . . . , x6), we are faced with
determining which vectors ofY can be written as “tensor squares” of elements in
X. This is a special case of the following general problem.
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Problem 2.6. Suppose thatX is a vector space andY is a given subspace of
X ⊗ X. Find an efficient procedure to determine all elements ofY that can be
written in the formx ⊗ x for somex ∈X.
We can view this as a problem of finding a relative eigenvector for a collection of
matrices.

Definition 2.7. Suppose thatA1, A2, . . . , Ar is a collection of (not necessarily
square) matrices of the same dimensions. Arelative eigenvalueis a projective point
(a1 : a2 : · · · : ar) for which there is a nonzero vectorv such thatvA1, vA2, . . . , vAn
are linearly dependent vectors in the proportion(a1: a2 : · · · : an); that is,ajvAi =
aivAj for all i, j. We also say thatv is arelative eigenvector for the relative eigen-
value(a1: a2 : · · · : ar).
We remark that ifA1 andA2 are square matrices such thatA2 is invertible, thenv
is a relative eigenvector with eigenvalue(a1: a2) if and only if v is an eigenvector
of A1A

−1
2 with eigenvaluea1/a2.

We transform Problem 2.6 into a relative eigenvector problem by selecting
bases ofX andX ⊗ X so that a vector ofX corresponds to a row vectorα =
(x1, x2, . . . , xn) with tensor square

α ⊗ α = (x1x1, x1x2, . . . , x1xn, x2x1, x2x2, . . . , x2xn, . . . , xnxn).

Now, in Problem 2.6, ifY has dimensionm then we can describe a basis ofY ≤
X⊗X by giving anm×n2 matrix. This matrix is naturally partitioned intonblocks,
B1, B2, . . . , Bn, of sizem×n. (The blockBi corresponds to then columns ofα⊗α
of the formxi xj .) Any solution to Problem 2.6 gives a vectorβ = (y1, y2, . . . , ym)

such thatβB1 = x1α, βB2 = x2α, . . . , βBn = xnα. Hence(x1: x2 : x3 : · · · : xn)
is a relative eigenvalue for the matricesB1, B2, . . . , Bn. Moreover, there is a rel-
ative eigenvectorβ for the relative eigenvalue(x1: x2 : x3 : · · · : xn) such that the
imagesβBi are all multiples of(x1, x2, x3, . . . , xn).

In the particular instance of Problem 2.6 that we face, with dim(X) = 6 and
dim(Y ) = 10, the spaceB is small enough to allow us to locate all relative eigen-
values quickly. In fact, the echelon form of our basis ofY gives the following six
matrices forB1, B2, . . . , B6 overF1093.

999 992 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 757 161 0 0
0 0 985 341 0 0

658 1034 0 0 0 0
1066 426 0 0 0 0

992 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 579 623 0 0
0 0 485 585 0 0

1034 0 0 0 0 0
426 0 0 0 0 0
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0 0 0 0 0 0
0 0 884 1015 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

757 579 0 0 511 1
985 485 0 0 387 0
0 0 202 157 0 0
0 0 5 756 0 0

0 0 0 0 0 0
0 0 1015 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

161 623 0 0 425 0
341 585 0 0 180 1
0 0 157 0 0 0
0 0 756 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 511 425 0 0
0 0 387 180 0 0
0 0 0 0 691 1
0 0 0 0 357 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

These matrices are small enough and sparse enough to make easy the deter-
mination of relative eigenvalues(x1: x2 : x3 : x4 : x5 : x6) and corresponding rela-
tive eigenvectors(y1, . . . , y10). For example, consideration of the third and fourth
columns of the last two matrices shows that(y7, y8) is a relative eigenvector
with relative eigenvalue(x5 : x6) for the matrices:

(
511 425
387 180

)
and

(
1 0
0 1

)
. This is

just an ordinary eigenvector computation. Moreover given the sparse outer col-
umns of the fourth matrix, knowledge ofy7 andy8 determines the proportions
(x1: x2 : x5 : x6)—this because(y7, y8)

(
161 623 0 0 425 0
341 585 0 0 180 1

)
is a scalar multiple of

(x1, x2, x3, x4, x5, x6). After a short series of similar computations, we obtained
four possibilities for(x1: x2 : · · · : x6) as follows:

(684 : 249 : 20 : 54 :135 :1) with relative eigenvector
(793,730,528,825,684,249,20,54,135,1);

(684 : 249 :1073 :1039 :135 :1) with relative eigenvector
(793,730,528,825,684,249,1073,1039,135,1);

(414 : 915 : 374 :196 : 556 :1) with relative eigenvector
(1080,161,654,495,414,915,374,196,556,1);

(414 : 915 : 719 : 897 : 556 :1) with relative eigenvector
(1080,161,654,495,414,915,719,897,556,1).

We thus find that there are at most fourS-invariant Lie subalgebras of̂L that
have typeE7. Moreover, we know explicit vectors spanning 26-dimensional sub-
spaces of each of these four potential Lie subalgebras inL. In all four cases the
26-dimensional subspace generates a 133-dimensional subalgebra ofL, which
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must beS-invariant because it is generated by anS-invariant space. In each case,
an application of the MeatAxe shows that thisS-invariant 133-dimensional alge-
bra has character 26a + 26b + 26c + 27a + 28a when viewed as anS-module.
Moreover, for each of the four133-dimensional algebras, we can check (as before)
that each of its five irreducible submodules is a generating set. It follows that the
algebra has noS-invariant subalgebra. Moreover, since the four 133-dimensional
algebras have been obtained as algebras of 56× 56 matrices, it is an easy matter
to check (from its 56-dimensional representation) that each of them has a non-
singular trace form. Now consider one of the four 133-dimensional algebras that
we have obtained, call itX. As in [GR3, Lemma 4], we can apply Block’s theo-
rem [B] to show thatX is a direct sum

⊕
i Xi of indecomposable ideals, each of

which is either (a) 1-dimensional or (b) simple and having one of the typesA, B,

C, D, E, F, orG. By construction, we know thatX is generated by the elements
of one of its 26-dimensional subspaces. It follows thatX cannot be abelian; hence
at least one of its idealsXi is nonabelian. The sum of theS-images ofXi must
beX, sinceX has noS-invariant subalgebra. However, as in the proof of [GR3,
Lemma 4], the sum ofS-images ofXi is a direct sum of independentS-images of
Xi. We deduce that dim(Xi) divides dim(X) = 133= 7×19. But the only divisor
of 133 that is the dimension of a simple Lie algebra of one of the typesA, . . . ,G

is 133 itself (we are in characteristic not 2 or 3, so the algebras with Chevalley
bases for indecomposable root systems remain simple). It follows thatXi andX
must both have typeE7, and thus our construction ofS as automorphisms of a
56-dimensional representation ofX gives an embeddingS ≤ 2E7(1093).

Finally, we verified the information in Theorem 2.4 about the action ofN6(S)

on the fourS-invariant Lie algebras by checking that the algebras are paired up
by the groupC− and that these pairs are interchanged by the explicit matrixd in
N6(S) \ C−.
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