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Convexity Properties for Cycle Spaces

D. Barlet & V. Vâjâitu

1. Introduction

In this article we study compactq-cycles on a complex reduced analytic spaceX,

mainly in the case whereq is the maximal dimension of a compact (irreducible)
analytic subset ofX.

We first give a result that generalizes a classical result due to Norguet and Siu
[18] about finiteness of compact hypersurfaces in ap-convex manifold; it gives a
suitable sufficient condition forX to have only finitely many irreducible compact
q-cycles.

Theorem 1. LetX andY be complex spaces such thatX is contained inY as a
locally closed analytic subset. Suppose that:

(a) Hq(X,�
q

X) has finite dimension overC, sayN; and
(b) H q+1(Y,F ) = 0 for every coherent subsheafF ⊂ �q

Y .

ThenX has at mostN compact irreducible analytic subsets of dimensionq.

We then study the convexity properties of the space of compactq-cyclesCq(X).
Theorem 2. Let X be a cohomologicallyq-complete complex space that is
Kählerian and(q + r)-convex for some nonnegative integerr. ThenCq(X) is
r-complete with corners.

This looks like a nice “convexity transfer”, but it is quite weak because ther-
convexity with corners is not so restrictive forr > 0. The method is similar to the
one used in [18] but requires us to work withr-plurisubharmonic functions (see
Section 3.1 for definitions) and to prove an approximation result by functions that
arer-convex with corners.

Theorem 3. LetZ be a complex space admitting a continuous exhaustion func-
tion ϕ that isq-plurisubharmonic. IfZ belongs toS0, thenZ is q-complete with
corners.

Note. S0 is the class of complex spaces such that, on every relatively compact open
subset, there exist continuous strongly plurisubharmonic functions. For instance,
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Z belongs toS0 if Z is K-complete[15] and a fortiori ifZ is holomorphically
separable (see Lemma 5).

Theorem 4. LetZ be a complex space and letϕ be a stronglyq-plurisubhar-
monic continuous function onZ. Then, for everyε ∈C 0(Z,R) with ε > 0, there
is a functionϕ̃ onZ such thatϕ̃ is q-convex with corners and|ϕ̃ − ϕ| < ε.

In order to get more information than that stated in Theorem 2—namely, the (rel-
ative) 0-completeness(0-complete= Stein) of Cq(X)—we must make a more
restrictive hypothesis: we askX to bek-Stein in the sense of [7] for some inte-
gerk ≥ q. This is slightly more than usualk-completeness, but it gives (strong)
convexity information forq-cycles in a situation where they are not necessarily
maximal.

Theorem 5. LetX be ak-Stein space via the mappingπ : X → P k for some
integerk ≥ q. Then every connected componentZ of Cq(X) has a continuous ex-
haustion function that is strongly plurisubharmonic along the fibers ofπ? : Z →
Cq(P k), whereπ? is the direct image map ofq-cycles.

2. Proof of Theorem 1

2.1. Preliminaries

LetZ be a complex space. The definition ofq-convexity used in this paper is that
of Andreotti and Norguet [4]: A functionϕ ∈ C2(Z,R) is said to beq-convexif,
for every pointa ∈ Z, there is a coordinate patch(U, ι, Û ), whereU 3 a, Û is
open in some Euclidean complex space, andι : U → Û is a holomorphic embed-
ding such that there exists âϕ ∈ C2(Û,R) with ϕ̂ B ι = ϕ|U and the Levi form
of ϕ̂ has at mostq nonpositive eigenvalues at every point ofÛ. We say thatZ is
q-convexif there exists a classC2 exhaustion functionϕ onZ that isq-convex on
Z \ K, whereK ⊂ Z is a compact set. If we may takeK as the empty set, then
Z is said to beq-complete.

The spaceZ is said to becohomologicallyq-convex(resp.,cohomologically
q-complete) if H i(X,F ) has finite dimension as a complex vector space (resp.,
H i(X,F ) vanishes) for everyi > q and every coherent sheafF onX. (Cohomo-
logically 0-complete≡ Stein≡ 0-complete.)

Also, we recall the definition of the sheaf of germs of holomorphicj -forms�j

Z

onZ, j ∈N. If Z is an analytic subset of a domainD ⊂ Cn then we define

�
j

Z := (�j

D/(IZ�j

D + dIZ ∧�j−1
D ))|Z,

whereIZ is the ideal sheaf ofZ in D. In general, by using local embeddings and
patching we obtain coherentOZ-modules�j

Z, j ∈N.
If π : X → Y is a holomorphic map of complex spaces, then there is a canon-

ical OY -module morphism�j

Y → π∗�
j

X that induces a map in the cohomology
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Hq(Y,�
j

Y )→ Hq(Y, π∗�
j

X); furthermore, when composed with the natural map
H q(Y, π∗�

j

X)→ Hq(X,�
j

X), this morphism gives

uj : Hq(Y,�
j

Y )→ Hq(X,�
j

X).

Remark 1. LetX be a complex space and let0 ⊂ X be a compact analytic
subset of dimensionq. By a classical theorem due to Lelong [16], there exists a
canonical trace map (see [8] for details)

Tr0 : Hq(X,�
q

X)→ C, ξ 7→
∫
0

ξ,

given by “integrating cohomology classes” on0.
Now suppose thatX is contained as an analytic subset of a complex spaceY.

The natural map

H q(Y,�
j

Y )→ Hq(X,�
j

X),

which can also be defined more explicitly via theČech cohomology and the fore-
going trace maps, give the commutative diagram

H q(Y,�
q

Y ) −−→ Hq(X,�
q

X)y y
C C ,

where the vertical arrows are given by integrating on0.

Remark 2. LetZ be a compact complex space of dimensionn and letπ : Z̃→
Z be the normalization map. Then, integrating cohomology classes onZ andZ̃
gives the canonical commutative diagram

Hn(Z,�n
Z) −−→ Hn(Z̃,�n

Z̃
)y y

C C .

Lemma 1. If X is an analytic subset of a complex spaceY withHq+1(Y,F ) van-
ishing for every coherent subsheafF ⊂ �j

Y , thenuj is surjective.

Proof. Let ν : X → Y denote the inclusion map. We note that the natural map
βj : �j

Y → ν∗�
j

X is a surjection ofOY -modules; then the hypothesis and an exact
cohomology sequence give the surjectivity ofHq(Y,�

j

Y ) → Hq(Y, ν∗�
j

X). We
conclude easily sinceH •(Y, ν∗�

j

X)
∼= H •(X,�

j

X).

Lemma 2. LetX be a complex space and letπ : X̃ → X be the normalization
map. Letn := dim(X). Then the natural mapHn(X,�n

X) → Hn(X̃,�n
X̃
) is

surjective.
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Proof. Let γ : �n
X → π∗�n

X̃
be the canonical map. Because Kerγ and Cokerγ

are supported on Sing(X), which has complex dimension less thann, the lemma
follows by standard machinery of long exact sequences and [21].

Lemma 3. LetZ be a normal compact complex space of dimensionn. Then the
following statements hold.

(1) The canonical mapHn
c (Zreg,F ) → Hn(Z,F ) is bijective for everyF ∈

Coh(Z).
(2) If Z is connected, thenTrZ : Hn(Z,�n

Z)→ C is an isomorphism.

Proof. (1) LetA := Sing(Z); hence dim(A) ≤ n− 2. Then the exact sequence

Hn−1(A,F |A)→ Hn
c (Zreg,F )→ Hn(Z,F )→ Hn(A,F |A),

whereF |A is the topological restriction, together with [21] gives the conclusion.
(2) We have a canonical diagram that is commutative; namely,

Hn
c (Zreg, �

n
Z) −−→ Hn(Z,�n

Z)y y
C C .

Thus the map in statement (2) of the lemma is not zero; hence it is surjective. Then
we conclude easily by statement (1), taking into account that

Hn
c (Zreg, �

n
Z) ' (H 0(Zreg,OZ))? ' C.

Lemma 4. LetY be a complex space and letZ1, . . . , Zm be distinct irreducible
compact analytic subsets ofY of dimensionq. Then the map

H q(Y,�
q

Y )3 ξ 7→
(∫

Z1

ξ, . . . ,

∫
Zm

ξ

)
∈Cm

is surjective ifHq+1(Y,F ) = 0 for every coherent subsheafF ⊂ �q

Y .

Proof. Let Z := Z1 ∪ · · · ∪ Zm. By Lemma 1, it suffices to prove Lemma 4 for
Y = Z. But this is a straightforward consequence of Lemmas 2 and 3 and the
canonical commutative diagram in Remark 2.

2.2. Proof of Theorem 1 and Consequences

For a complex spaceZ, let Vq(Z) be the vector space of compact cycles of di-
mensionq with complex coefficients. That is, an element ofVq(Z) is given as a
formal sum

m∑
i=1

λi0i,

wherem∈N, λi ∈C, and0i ⊂ Z are distinct compact irreducible analytic subsets
of dimensionq. By integrating cohomology classes, we thus obtain a canonical
complex linear map
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8q(Z) : Vq(Z)→ Hq(Z,�
q

Z)
? := HomC(H

q(Z,�
q

Z),C).

Let nowX andY be complex spaces such thatX ⊂ Y as a locally closed analytic
subset. Then we have a commutative diagram of canonical maps:

Vq(X) −−→ Hq(X,�
q

X)
?y y

Vq(Y ) −−→ Hq(Y,�
q

Y )
? .

Coming back to the situation of Theorem 1, we deduce by Lemma 4 that8q(Y )

is injective. Thus, the preceding diagram and the (obvious) injectivity of the map
Vq(X)→ Vq(Y ) imply that8q(X) is injective, which proves Theorem 1.

Corollary 1. LetX be a cohomologically(q − 1)-convex space that is coho-
mologicallyq-complete. ThenX has finitely many compact irreducible analytic
subsets of dimensionq, and their number is bounded bydimHq(X,�

q

X).

Corollary 2. LetX be an irreducible complex space of dimensionn. Suppose
that X is cohomologicaly(n − 2)-convex and noncompact. ThenX has only
finitely many compact irreducible hypersurfaces, and their number is bounded by
dimHn−1(X,�n−1

X ).

Proof. SinceX is cohomologically(n−1)-complete by [22], Corollary 2 follows
immediately from Corollary 1.

Remark 3. ForX smooth, we recover a result in [18].

Proposition 1. LetX be a complex space such thatHq+1(X,F ) vanishes for
every coherent subsheafF ⊂ �q

X. ThenCq(X) isK-complete. In particular, on
every irreducible component ofCq(X) there exist smooth strongly plurisubhar-
monic functions; a fortiori, they are Kählerian.

Note. By [15] we say that a complex spaceZ is K-completeif, for every point
z0 ∈ Z, there is a holomorphic mappingF : Z → CN, N = N(z0), such thatz0

is isolated in its fiberF −1(F(z0)).

Remark 4. Another possibility for obtaining continuous strongly plurisubhar-
monic functions onCq(X) is to have a(q, q)-form α, smooth of classC2 onX,
such that∂∂̄α � 0 in the sense of Lelong. In particular this holds ifX has a Käh-
ler formω and ifωq+1 := ω∧· · ·∧ω (the product is takenq+1 times) is∂∂̄-exact;
see [27].

Proof of Proposition 1.To conclude, by [23, Cor. 6, p. 235] it remains to show
thatCq(X) isK-complete. In order to settle this, we give the following lemma.

Lemma 5. LetZ be a holomorphically separable complex space. ThenZ isK-
complete.
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Proof. First we demonstrate the following.

Claim. Let a ∈ Z and letY ⊂ Z be an analytic subset containinga. Then, for
every discrete sequence{zν} ⊂ Y such thatzν 6= a for all ν, there exists a holo-
morphic functionf onZ with f(a) = 0 andf(zν) 6= 0 for all ν. Moreover, if
dima Y > 0, then we may choosef with the additional property that

dima Y ∩ {f = 0} < dima Y.

To see this, we letE = {f ∈O(Z); f(a) = 0} andGν = {f ∈ E; f(zν) 6= 0}.
ClearlyE is a nonempty Fréchet space and eachGν is a dense open subset ofE
for everyν. Since the index set is at most countable, by Baire’s theorem

⋂
ν Gν is

dense inE and a fortiori is not empty. Then anyf ∈⋂ν Gν will do the job.
Now, in order to settle the “moreover”, let{Yµ}µ be the irreducible components

of Y that containa and are of positive dimension. By adding further points to the
sequence{zν}, we may assume that on eachYµ there is at least onezν. Then we
conclude as before.

To finish the proof of the lemma, we letz0 ∈ Z and setY := the union of all
irreducible components ofZ containingz0. ThenY is a neighborhood ofz0 and
n := dim(Y ) < ∞. The claim readily gives holomorphic functionsf0, . . . , fn ∈
O(Z) such that settingF := (f0, . . . , fn) : Z→ Cn+1 yieldsY ∩ F −1(F(z0)) =
{z0}. This proves the lemma and hence the proposition as well.

Remark 5. LetX be a complex space and let

ANq : Hq(X,�
q

X)→ O(Cq(X))
be theAndreotti–Norguet transformobtained by integrating cohomology classes
[3; 4], which is well-defined by [8]. IfH q+1(X,F ) vanishes for every coherent
subsheafF ⊂ �q

X, then Im(ANq) separates the points ofCq(X).

3. q-Plurisubharmonic Functions

3.1. Preliminaries

LetX be a complex space. A functionϕ ∈ C 0(X,R) is said to beq-convex with
corners[11; 12; 20] if every point ofX admits an open neighborhoodU on which
there are finitely manyq-convex functionsf1, . . . , fk such that

ϕ|U = max(f1, . . . , fk).

Denote byFq(X) the set of all functionsq-convex with corners onX.
We say thatX is q-complete with cornersif there exists an exhaustion function

ϕ ∈ Fq(X). (Hence Stein spaces correspond to spaces that are 0-complete with
corners.)

This q-convexity with corners is weaker than usualq-convexity. For instance,
the intersection of finitely manyq-complete open subsets ofCn is q-complete
with corners, but in general it is notq-complete. However, by [11; 12], every com-
plex spaceX of dimensionn that isq-complete with corners is̃q-complete, where
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q̃ = n− [n/(q+1)]. Notice that, forq with (n−1)/2 ≤ q ≤ n−1, we haveq̃ =
n−1; this gives no new information, in view of [10] and [19].

Note that, ifϕ,ψ ∈ Fq(X) andχ ∈ C∞(R,R) with χ ′ > 0 andχ ′′ ≥ 0, then
max(ϕ, ψ) andχ(ϕ) belong toFq(X). However, if{ϕλ}λ ⊂ Fq(X) is an arbitrary
family andϕ := supλ ϕλ is (even) continuous, then it may happen thatϕ does
not belong toFq(X), as simple examples show. To avoid this, we enlarge the set
Fq(X) by introducingq-plurisubharmonicfunctions.

An upper semicontinuous functionϕ : X→ R ∪ {−∞} is said to be:

(a) subpluriharmonicif, for every� b X and every pluriharmonic functionh
defined near̄� (i.e.,h is locally the real part of a holomorphic function), we
haveϕ ≤ h on� whenϕ ≤ h on ∂�;

(b) q-plurisubharmonicif, for every open setG ⊂ Cq+1 and holomorphic map
f : G→ X, the functionϕ B f is subpluriharmonic onG.

Example [14]. LetX be a complex manifold of pure dimension. Then a func-
tion ϕ ∈C2(X,R) is q-plurisubharmonic if and only if the Levi formL(ϕ) has, at
every point ofX, at mostq nonpositive eigenvalues.

Notation. We usePq(X) to denote the set of allq-plurisubharmonic functions
onX, andSPq(X) denotes the set of allstronglyq-plurisubharmonicfunctions on
X—that is, thoseϕ ∈ Pq(X) such that, for everyθ ∈ C∞0 (X,R), there exists an
ε > 0 with ϕ + εθ ∈Pq(X). Obviously we haveFq(X) ⊂ SPq(X) ∩ C 0(X,R).

Remark 6. P0(X) andSP0(X) are precisely theweakly plurisubharmonicand
weakly strongly plurisubharmonicfunctions (respectively) introduced by Fornæss
and Narasimhan [13].

Remark 7. If D ⊂ Cn is an open set, then an upper semicontinuous functionϕ

onD is subpluriharmonic if and only ifϕ is (n−1)-plurisubharmonic.

Remark 8. Let� ⊂ Cn+1 be an open set. For every unit vectorv ∈ Cn+1 we
consider the directional distanceδv : � → R ∪ {∞} with respect tov, which is
given as follows:

δv(z) := sup{r > 0; z+ tv ∈�, ∀t ∈C, |t | < r}, z∈�.
If � is q-complete with corners, then−logδv is q-plurisubharmonic [14].

We shall also need the following two lemmas (the first one is obvious).

Lemma 6. Letπ : X→ Y be a holomorphic map of complex spaces, and letψ ∈
Pq(Y ). Thenψ B π ∈Pq(X).
Lemma 7. Letπ : X→ Y be a finite holomorphic surjective map between pure
dimensional complex spaces, and letϕ ∈ Pq(X). Letψ : Y → R ∪ {−∞} be de-
fined by

ψ(y) = max{ϕ(x); x ∈π−1(y)}, y ∈ Y.
If ψ is continuous, thenψ ∈Pq(Y ).
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Proof. Let A ⊂ Y be a rare analytic set such thatπ−1(A) is rare inX andπ in-
duces a locally biholomorphic map betweenX \π−1(A) andY \A. Clearlyψ1 :=
ψ |Y \A ∈ Pq(Y \ A). Let ψ2 denote the upper semicontinuous extension ofψ1 to
Y ; sinceA is locally complete pluripolar,ψ2 ∈ Pq(Y ) in view of [25, Prop. 6].
But sinceψ is continuous,ψ = ψ2, whence the lemma.

3.2. Proof of Theorem 3

First we quote the following from [25].

Theorem 6. LetX be a complex space admitting a continuous exhaustion func-
tion8 that is stronglyq-plurisubharmonic. ThenX is q-complete with corners.

Thus, to conclude Theorem 3, we must produce an exhaustion function8 ∈
SPq(X) ∩ C 0(X,R) as in Theorem 6.

For this we proceed as follows. Clearly we may suppose thatϕ > 0. (Otherwise,
replaceϕ by ϕ + C for some large constantC > 0.) For n ∈ N? we letKn :=
{ϕ ≤ n} andDn = {ϕ < n + 2}. Let ψn ∈ C 0(X,R), ψn > 0, such thatψn is
strongly plurisubharmonic onDn+1.

Choose constantsan > 1 such thatan > ϕ+ψn onKn+2, and definehn : R→
R by

hn(t) := max(t, an(t − n−1)), t ∈R.
Thenhn is strictly increasing and convex,hn(t) = t for t ≤ n+1, andhn(n+2) ≥
an; thushn(ϕ) > ϕ + ψn on a neighborhood of the set{ϕ = n+ 2}, a fortiori on
a neighborhood of∂Dn. We may thus defineϕn ∈C 0(X,R) by

ϕn =
{

max(hn(ϕ), ϕ + ψn) onDn,

hn(ϕ) onX \Dn.

One may easily check thatϕn > 0, ϕn is exhaustive,ϕn ∈ Pq(X), andϕn|Dn−1 ∈
SPq(Dn−1) (where it equalsϕ + ψn). Now, if the sequence{εn}n, εn > 0, de-
creases (fast enough) to zero, then we may define8∈C 0(X,R) by

8 := ϕ +
∑
n

εnϕn.

Since8 ≥ ϕ, it follows that8 is exhaustive; we need only check that8∈ SPq(X),
which is straightforward owing to the construction of theϕn.

Mutatis mutandis,the same proof gives also the following.

Corollary 3. Let π : Z → Y be a holomorphic map of complex spaces such
that there exists an exhaustion functionϕ ∈C 0(Z,R) that isq-plurisubharmonic
along the fibers ofπ.

If Z ∈S0, then there exists an exhaustion function8∈C 0(Z,R) that is strongly
q-plurisubharmonic along the fibers ofπ.

Corollary 4. LetX be a complex space that is an increasing union of Stein
open subsets. ThenX is Stein if and only ifX admits a plurisubharmonic exhaus-
tion functionϕ : X→ R.
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3.3. Proof of Theorem 4

We give the proof in three steps. The first two deal with a local statement; in the
final step, we prove our theorem by a (standard) perturbation procedure.

Let V b U b X be open subsets such thatU is holomorphically embedded as
an analytic subset of some open setÛ ⊂ CN.

Step 1: There exist an open neighborhoodD ofU in Û and ϕ̂ ∈ Pq(D) that is
locally bounded from below and such thatϕ̂|U = ϕ|U .

In order to check this, consider the Hartogs domainUϕ of ϕ defined by

Uϕ := {(x, t)∈U × C; |t | < exp(−ϕ(x))}.
It can be seen thatUϕ is q-complete with corners (applying e.g. Theorem 6); then,
as an analytic subset of̂U ×C, it admits a neighborhood system of open sets that
areq-complete with corners (see [26, Prop. 1, p. 1194]). Therefore, if9 : Û →
R is a continuous function that extendsϕ|U , then there exists an open set� ⊂
Û × C that isq-complete with corners and such that:

(a) � ∩ (U × C) = Uϕ;
(b) � ⊂ Û9 := {(z, t)∈ Û × C; |t | < exp(−9(z))}.
LetD := {z∈CN ; (z,0)∈�}. ThenD is an open subset of̂U that containsU. Let
δ denote the boundary distance function of� with respect tov = (0, . . . ,0,1) ∈
CN+1 (see Remark 8). Then−logδ is q-plurisubharmonic. Definêϕ : D→ R by
setting, forz∈D,

ϕ̂(z) = −logδ(z,0).

Thenϕ̂ andD are as desired (e.g.,ϕ̂ ≥ 9|D), from which Step 1 follows.

Step 2: For everyc > 0 there existsψ ∈Fq(V ) with |ψ − ϕ| < c onV.
We show this by using the next two lemmas (the first one is quoted from [9]).

Lemma 8. LetD b CN be an open set and letϕ ∈ C 0(D,R) ∩ Pq(D). Then,
for everyε > 0, there exists ãϕ ∈Fq(D) with |ϕ̃ − ϕ| < ε.

Lemma 9. Let� ⊂ CN be an open set and letϕ ∈Pq(�) with ϕ ≥ 0. Then, for
everyW b �, there exists a sequence{ψν}ν ⊂ Fq(W ) that decreases pointwise
to ϕ|W .
Proof. By standard arguments, this reduces to the following claim.

Claim. Let v ∈ C 0(�,R) with ϕ < v on W̄. Then there exists aψ ∈ Fq(W )
such thatϕ|W < ψ < v|W .
In order to show this, considerW b � an open set such thatW b W ′. Then
chooser > 0 (small enough) such that, for everyξ ∈ CN with ‖ξ‖ ≤ r andz ∈
W̄, one has{ξ} +W ′ ⊂ �, {ξ} + W̄ ⊂ W ′, andϕ(z+ ξ) < v(z).

Let g ∈C∞0 (CN,R) be such that 0≤ g ≤ 1, g(0) = 1, and supp(g) ⊂ B(0; r)
(the ball of radiusr in CN centered at the origin). Then defineψ ′ : W → [0,∞)
by setting
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ψ ′(z) = sup{ϕ̃(z+ ξ)g(ξ); ξ ∈CN }, z∈W,
whereϕ̃ is the trivial extension ofϕ toCN (i.e.,ϕ̃ = 0 onCN \�). Rewriting this
definition yieldsψ ′ = supλ∈3 ψλ, whereψλ : W → [0,∞) is given byψλ(z) =
ϕ̃(λ)g(λ− z) for z ∈W andλ∈3 := W̄ + B(0; r). Since the family{ψλ}λ con-
sists of smooth functions whose real Hessian is uniformly bounded from below,
we deduce thatψ ′ is continuous; henceψ ′ is q-plurisubharmonic.

Apply now Lemma 8 toψ ′ + εθ, whereθ is continuous and strongly plurisub-
harmonic nearW̄ with someε > 0 sufficiently small. The claim follows, whence
Lemma 9.

Now, to conclude Step 2, takeV1 b D an open set with̄V ⊂ V1. By Lemma 9
there exists a sequence{ψν}ν ⊂ Fq(V1) decreasing pointwise tôϕ|V1. SinceV̄
is compact and̂ϕ|V̄ is continuous,ψ := ψν |V (for ν large enough) fulfills our
requirements.

Step 3: End of Proof of Theorem 4.
Choose open setsVi b Ui b Wi b X, i ∈ N, such that{Vi}i is a covering of

X, eachWi embeds holomorphically into some open subset ofCNi , and{Wi}i is
locally finite. Selectρi ∈ C∞0 (X,R) such that−1≤ ρi ≤ 1, ρi ≡ 1 onUi, ρi =
−1 on∂Vi, and supp(ρi) ⊂ Wi.

Considerεi > 0 to be constants sufficiently small thatϕ + εiρi ∈ SPq(X) and

3εi < 2 inf
Vi
ε. (?)

Applying Step 2, there existϕi ∈Fq(Ui) with

|ϕi − ϕ − εiρi | < εi/2 on V̄i . (])

Now, for everyx ∈X setI(x) := {i ∈ I ; Vi 3 x}; then defineϕ̃ : X→ R by

ϕ̃(x) = sup
i∈I(x)

ϕi(x), x ∈X.

By (?) and(]) we obtain that|ϕ̃ − ϕ| < ε and every pointx0 of X has an open
neighborhoodB ⊂⋂ i∈I(x0)

Vi such that

ϕ̃|B = max
i∈I(x0)

ϕi |B,
henceϕ̃ ∈Fq(X).

4. Proof of Theorem 2

4.1. Some General Considerations

Let q be a nonnegative integer and letϕ : X → [0,∞) be a continuous function.
Consider8 : Cq(X)→ [0,∞) defined by setting

8(0) := max{ϕ(x); x ∈ |0|}, 0 ∈ Cq(X),
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where0 = n101 + · · · + nk0k for ni ∈ N? and where the0i are distinct irre-
ducible compact analytic subsets ofX of dimensionq; as usual, we put|0| :=
01∪ · · · ∪ 0k, the support of0. As in [18], we check easily that8 is continuous.

Remark 9. If, moreover,ϕ is proper andX is Kählerian, then the restriction of
8 to every connected component ofCq(X) is proper. (For Kählerian metrics on
complex spaces we refer the reader to [17] and [28].)

Lemma 10. Let r be a nonnegative integer such thatϕ is (q + r)-convex onX \
{ϕ = 0}. Then8 is r-plurisubharmonic onCq(X) \ {8 = 0}.
Proof. We proceed as in [18, pp. 213–214] and consider (for the sake of clarity)
only the case whereX is smooth. Recall thatCq(X) is a complex space and that
the incidence set

G := {(x, 0)∈X × Cp(X); x ∈ |0|}
is an analytic subset ofX × Cq(X). Denote byπ1 andπ2 the natural projections
fromG intoX andCq(X), respectively. Notice thatπ2 is proper.

Now let00 ∈ Cq(X) with 8(00) > 0. We show that8 is r-plurisubharmonic
on a suitable neighborhoodW of 00 in Cq(X). For this we letλ be a real number
with 0< λ < 8(00) and set

K := |00| ∩ {ϕ ≥ λ}.
ClearlyK is a compact subset ofX. Takex ∈ K arbitrarily. Then there exists a
local chart(U, τ,�) with U 3 x, � ⊂ CN open, and 0∈� such that:

(a) τ(x) = 0;
(b) 1n b �, where1 is the open unit disc inC;
(c) (∂1n−q × 1̄q) ∩ τ(|00| ∩ U) = ∅; and
(d) the restriction ofϕ toU ∩ τ−1(1n−q × {ξ}) is r-convex for everyξ ∈1q.
LetDx = τ−1(1n). Choose an open neighborhoodWx of 00 in Cq(X) such that

(i) τ(|0| ∩ U) ∩ (∂1n−q ×1q) = ∅ for 0 ∈Wx, and
(ii) τ(|0| ∩ U) ∩1n 6= ∅ for 0 ∈Wx.

For everyξ ∈1q, the map

σξ : (τ B π1|U)−1(1n−q × {ξ}) ∩ π−1
2 (Wx)→ Wx

is an analytic (branched) covering (of some finite degree), whereσξ is induced by
π2. It follows that, forξ ∈1q, the function9ξ onWx given by

9ξ(0) := max{(ϕ B π1)(y); y ∈ σ−1
ξ (0)}, 0 ∈Wx,

iscontinuous(here we use the topology ofCq(X) !) and, by Lemmas 6 and 7,9ξ ∈
Pr(Wx). Define8x : Wx → [0,∞) by setting

8x(0) := sup{9ξ(0); ξ ∈1q}, 0 ∈Wx.

SinceK is compact, there existx1, . . . , xm ∈ K such thatK ⊂ ⋃m
j=1Dxj . Since

8(00) > λ andϕ is less thanλ on the compact set|00| \⋃m
j=1Dxj, there exists

an open neighborhoodW of 00, W ⊂⋂m
j=1Wxj, with the following properties:
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(a) the infimum of8 onW is> λ; and
(b) the supremum ofϕ onπ1(π

−1
2 (W )) \⋃m

j=1Dxj is< λ.

These imply easily that, onW,

8 = max(8x1, . . . , 8xm).

Consequently, since8 is continuous and since each8xj is a supremum of a fam-
ily of r-plurisubharmonic functions, it follows that8∈Pr(W ).
This lemma and Remark 9 give the next proposition.

Proposition 2. Let X be a (q + r)-convex space for some nonnegative inte-
gersq and r. Then there is a continuous function8 : Cq(X) → [0,∞) that is
r-plurisubharmonic.

If, moreover,X is Kählerian, then we may choose8 such that its restriction to
every connected component ofCq(X) is proper.

Proof. Take81 as in Lemma 10. Letχ ∈C∞(R,R+) be increasing and convex,
so that{χ = 0} = (−∞,1]. Then8 := χ(81) is as desired.

4.2. Proof of Theorem 2

The hypotheses of Theorem 2 and Proposition1show thatCq(X)belongs toS0. On
the other hand, Proposition 2 gives a continuousr-plurisubharmonic function8
onCq(X) that is exhaustive on every connected component ofCq(X). Theorem 2
now follows easily from Theorem 3.

5. Proof of Theorem 5

Let X be ak-Stein space via the holomorphic mapπ : X → P k. We refer the
reader to [7] for definitions and further properties. Becauseπ has Stein fibers, we
obtain a canonical mapπ? : Cq(X) → Cq(P k) that is holomorphic [5, Thm. 6,
p. 109]. By [7] again, there exists a functionϕ : X→ [0,∞) that is proper and of
classC2 such that, for every compact setK ⊂ X, there exists a constantCK > 0
such that

i∂∂̄ϕ + CKπ?(ω)
is positive definite onK, whereω is the Kähler form of the Fubini–Study metric
onP k. Consider now the function

9K : Cq(X)→ [0,∞)
given by

9K(0) =
∫
0

ϕβK, 0 ∈ Cq(X),

whereβK is thed-exact(q, q)-form that follows from the equation

(CKπ
?(ω)+ i∂∂̄ϕ2)

q+1= C q+1
K π?(ωq+1)+ i∂∂̄ϕ ∧ βK.
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Then, using [6], we have that9K is continuous and strongly plurisubharmonic on
the cycles contained in the interior ofK. Therefore,Cq(X)∈S0.

On the other hand,X is Kählerian by [24] and so the volume is constant on con-
nected components ofCq(X). Hence the method of Lemma 10 (with the function
ϕ described in this section) produces a continuous function

8 : Cq(X)→ [0,∞),
whose restriction to every connected component ofCq(X) is proper and whose
restriction to the fibers ofπ? becomes plurisubharmonic.

The conclusion of the theorem now follows immediately by Corollary 3 and Re-
mark 6.
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