Convexity Properties for Cycle Spaces

D. BARLET & V. VÂJÂITU

1. Introduction

In this article we study compact q-cycles on a complex reduced analytic space X, mainly in the case where q is the maximal dimension of a compact (irreducible) analytic subset of X.

We first give a result that generalizes a classical result due to Norguet and Siu [18] about finiteness of compact hypersurfaces in a p-convex manifold; it gives a suitable sufficient condition for X to have only finitely many irreducible compact q-cycles.

THEOREM 1. Let X and Y be complex spaces such that X is contained in Y as a locally closed analytic subset. Suppose that:

(a) $H^q(X, \Omega^q_X)$ has finite dimension over \mathbb{C} , say N; and

(b) $H^{q+1}(Y, \mathcal{F}) = 0$ for every coherent subsheaf $\mathcal{F} \subset \Omega_Y^q$.

Then X has at most N compact irreducible analytic subsets of dimension q.

We then study the convexity properties of the space of compact *q*-cycles $C_q(X)$.

THEOREM 2. Let X be a cohomologically q-complete complex space that is Kählerian and (q + r)-convex for some nonnegative integer r. Then $C_q(X)$ is r-complete with corners.

This looks like a nice "convexity transfer", but it is quite weak because the *r*-convexity with corners is not so restrictive for r > 0. The method is similar to the one used in [18] but requires us to work with *r*-plurisubharmonic functions (see Section 3.1 for definitions) and to prove an approximation result by functions that are *r*-convex with corners.

THEOREM 3. Let Z be a complex space admitting a continuous exhaustion function φ that is q-plurisubharmonic. If Z belongs to S_0 , then Z is q-complete with corners.

Note. S_0 is the class of complex spaces such that, on every relatively compact open subset, there exist continuous strongly plurisubharmonic functions. For instance,

Received January 4, 2001. Revision received August 6, 2001.

Z belongs to S_0 if Z is *K*-complete [15] and a fortiori if Z is holomorphically separable (see Lemma 5).

THEOREM 4. Let Z be a complex space and let φ be a strongly q-plurisubharmonic continuous function on Z. Then, for every $\varepsilon \in C^0(Z, \mathbb{R})$ with $\varepsilon > 0$, there is a function $\tilde{\varphi}$ on Z such that $\tilde{\varphi}$ is q-convex with corners and $|\tilde{\varphi} - \varphi| < \varepsilon$.

In order to get more information than that stated in Theorem 2—namely, the (relative) 0-completeness (0-complete = Stein) of $C_q(X)$ —we must make a more restrictive hypothesis: we ask X to be k-Stein in the sense of [7] for some integer $k \ge q$. This is slightly more than usual k-completeness, but it gives (strong) convexity information for q-cycles in a situation where they are not necessarily maximal.

THEOREM 5. Let X be a k-Stein space via the mapping $\pi: X \to \mathbb{P}^k$ for some integer $k \ge q$. Then every connected component \mathcal{Z} of $\mathcal{C}_q(X)$ has a continuous exhaustion function that is strongly plurisubharmonic along the fibers of $\pi_*: \mathcal{Z} \to \mathcal{C}_q(\mathbb{P}^k)$, where π_* is the direct image map of q-cycles.

2. Proof of Theorem 1

2.1. Preliminaries

Let *Z* be a complex space. The definition of *q*-convexity used in this paper is that of Andreotti and Norguet [4]: A function $\varphi \in C^2(Z, \mathbb{R})$ is said to be *q*-convex if, for every point $a \in Z$, there is a coordinate patch (U, ι, \hat{U}) , where $U \ni a$, \hat{U} is open in some Euclidean complex space, and $\iota: U \to \hat{U}$ is a holomorphic embedding such that there exists a $\hat{\varphi} \in C^2(\hat{U}, \mathbb{R})$ with $\hat{\varphi} \circ \iota = \varphi|_U$ and the Levi form of $\hat{\varphi}$ has at most *q* nonpositive eigenvalues at every point of \hat{U} . We say that *Z* is *q*-convex if there exists a class C^2 exhaustion function φ on *Z* that is *q*-convex on $Z \setminus K$, where $K \subset Z$ is a compact set. If we may take *K* as the empty set, then *Z* is said to be *q*-complete.

The space Z is said to be *cohomologically q-convex* (resp., *cohomologically q-complete*) if $H^i(X, \mathcal{F})$ has finite dimension as a complex vector space (resp., $H^i(X, \mathcal{F})$ vanishes) for every i > q and every coherent sheaf \mathcal{F} on X. (Cohomologically 0-complete \equiv Stein \equiv 0-complete.)

Also, we recall the definition of the sheaf of germs of holomorphic *j*-forms Ω_Z^j on *Z*, $j \in \mathbb{N}$. If *Z* is an analytic subset of a domain $D \subset \mathbb{C}^n$ then we define

$$\Omega_Z^j := (\Omega_D^j / (\mathcal{I}_Z \Omega_D^j + d\mathcal{I}_Z \wedge \Omega_D^{j-1}))|_Z$$

where \mathcal{I}_Z is the ideal sheaf of Z in D. In general, by using local embeddings and patching we obtain coherent \mathcal{O}_Z -modules Ω_Z^j , $j \in \mathbb{N}$.

If $\pi : X \to Y$ is a holomorphic map of complex spaces, then there is a canonical \mathcal{O}_Y -module morphism $\Omega_Y^j \to \pi_* \Omega_X^j$ that induces a map in the cohomology $H^q(Y, \Omega_Y^j) \to H^q(Y, \pi_*\Omega_X^j)$; furthermore, when composed with the natural map $H^q(Y, \pi_*\Omega_X^j) \to H^q(X, \Omega_X^j)$, this morphism gives

$$u_j \colon H^q(Y, \Omega^J_Y) \to H^q(X, \Omega^J_X).$$

REMARK 1. Let X be a complex space and let $\Gamma \subset X$ be a compact analytic subset of dimension q. By a classical theorem due to Lelong [16], there exists a canonical trace map (see [8] for details)

$$\operatorname{Tr}_{\Gamma} \colon H^{q}(X, \Omega^{q}_{X}) \to \mathbb{C}, \quad \xi \mapsto \int_{\Gamma} \xi,$$

given by "integrating cohomology classes" on Γ .

Now suppose that X is contained as an analytic subset of a complex space Y. The natural map

$$H^q(Y, \Omega^J_Y) \to H^q(X, \Omega^J_X),$$

which can also be defined more explicitly via the Čech cohomology and the foregoing trace maps, give the commutative diagram

$$\begin{array}{ccc} H^{q}(Y, \Omega^{q}_{Y}) & \longrightarrow & H^{q}(X, \Omega^{q}_{X}) \\ & & & \downarrow \\ & & & \downarrow \\ \mathbb{C} & = & \mathbb{C} , \end{array}$$

where the vertical arrows are given by integrating on Γ .

REMARK 2. Let Z be a compact complex space of dimension n and let $\pi: \tilde{Z} \to Z$ be the normalization map. Then, integrating cohomology classes on Z and \tilde{Z} gives the canonical commutative diagram

$$\begin{array}{ccc} H^n(Z, \Omega^n_Z) & \longrightarrow & H^n(Z, \Omega^n_{\tilde{Z}}) \\ & & & \downarrow \\ & & & \downarrow \\ \mathbb{C} & = & \mathbb{C} \,. \end{array}$$

LEMMA 1. If X is an analytic subset of a complex space Y with $H^{q+1}(Y, \mathcal{F})$ vanishing for every coherent subsheaf $\mathcal{F} \subset \Omega_Y^j$, then u_j is surjective.

Proof. Let $\nu: X \to Y$ denote the inclusion map. We note that the natural map $\beta_j: \Omega_Y^j \to \nu_* \Omega_X^j$ is a surjection of \mathcal{O}_Y -modules; then the hypothesis and an exact cohomology sequence give the surjectivity of $H^q(Y, \Omega_Y^j) \to H^q(Y, \nu_* \Omega_X^j)$. We conclude easily since $H^{\bullet}(Y, \nu_* \Omega_X^j) \cong H^{\bullet}(X, \Omega_X^j)$.

LEMMA 2. Let X be a complex space and let $\pi : \tilde{X} \to X$ be the normalization map. Let $n := \dim(X)$. Then the natural map $H^n(X, \Omega^n_X) \to H^n(\tilde{X}, \Omega^n_{\tilde{X}})$ is surjective.

Proof. Let $\gamma : \Omega_X^n \to \pi_* \Omega_{\tilde{X}}^n$ be the canonical map. Because Ker γ and Coker γ are supported on Sing(X), which has complex dimension less than *n*, the lemma follows by standard machinery of long exact sequences and [21].

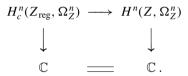
LEMMA 3. Let Z be a normal compact complex space of dimension n. Then the following statements hold.

- (1) The canonical map $H^n_c(Z_{reg}, \mathcal{F}) \to H^n(Z, \mathcal{F})$ is bijective for every $\mathcal{F} \in Coh(Z)$.
- (2) If Z is connected, then $\operatorname{Tr}_Z \colon H^n(Z, \Omega^n_Z) \to \mathbb{C}$ is an isomorphism.

Proof. (1) Let A := Sing(Z); hence dim $(A) \le n - 2$. Then the exact sequence

$$H^{n-1}(A, \mathcal{F}|_A) \to H^n_c(Z_{\mathrm{reg}}, \mathcal{F}) \to H^n(Z, \mathcal{F}) \to H^n(A, \mathcal{F}|_A),$$

where $\mathcal{F}|_A$ is the topological restriction, together with [21] gives the conclusion. (2) We have a canonical diagram that is commutative; namely,



Thus the map in statement (2) of the lemma is not zero; hence it is surjective. Then we conclude easily by statement (1), taking into account that

$$H^n_c(Z_{\operatorname{reg}}, \Omega^n_Z) \simeq (H^0(Z_{\operatorname{reg}}, \mathcal{O}_Z))^* \simeq \mathbb{C}.$$

LEMMA 4. Let Y be a complex space and let $Z_1, ..., Z_m$ be distinct irreducible compact analytic subsets of Y of dimension q. Then the map

$$H^{q}(Y, \Omega_{Y}^{q}) \ni \xi \mapsto \left(\int_{Z_{1}} \xi, \dots, \int_{Z_{m}} \xi\right) \in \mathbb{C}^{m}$$

is surjective if $H^{q+1}(Y, \mathcal{F}) = 0$ for every coherent subsheaf $\mathcal{F} \subset \Omega_Y^q$.

Proof. Let $Z := Z_1 \cup \cdots \cup Z_m$. By Lemma 1, it suffices to prove Lemma 4 for Y = Z. But this is a straightforward consequence of Lemmas 2 and 3 and the canonical commutative diagram in Remark 2.

2.2. Proof of Theorem 1 and Consequences

For a complex space Z, let $V_q(Z)$ be the vector space of compact cycles of dimension q with complex coefficients. That is, an element of $V_q(Z)$ is given as a formal sum

$$\sum_{i=1}^m \lambda_i \Gamma_i,$$

where $m \in \mathbb{N}$, $\lambda_i \in \mathbb{C}$, and $\Gamma_i \subset Z$ are distinct compact irreducible analytic subsets of dimension q. By integrating cohomology classes, we thus obtain a canonical complex linear map

$$\Phi_q(Z)\colon V_q(Z)\to H^q(Z,\Omega_Z^q)^\star:=\operatorname{Hom}_{\mathbb{C}}(H^q(Z,\Omega_Z^q),\mathbb{C}).$$

Let now *X* and *Y* be complex spaces such that $X \subset Y$ as a locally closed analytic subset. Then we have a commutative diagram of canonical maps:

$$V_q(X) \longrightarrow H^q(X, \Omega_X^q)^{\star}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$V_q(Y) \longrightarrow H^q(Y, \Omega_Y^q)^{\star}.$$

Coming back to the situation of Theorem 1, we deduce by Lemma 4 that $\Phi_q(Y)$ is injective. Thus, the preceding diagram and the (obvious) injectivity of the map $V_q(X) \rightarrow V_q(Y)$ imply that $\Phi_q(X)$ is injective, which proves Theorem 1.

COROLLARY 1. Let X be a cohomologically (q - 1)-convex space that is cohomologically q-complete. Then X has finitely many compact irreducible analytic subsets of dimension q, and their number is bounded by dim $H^q(X, \Omega_X^q)$.

COROLLARY 2. Let X be an irreducible complex space of dimension n. Suppose that X is cohomologicaly (n - 2)-convex and noncompact. Then X has only finitely many compact irreducible hypersurfaces, and their number is bounded by dim $H^{n-1}(X, \Omega_X^{n-1})$.

Proof. Since X is cohomologically (n - 1)-complete by [22], Corollary 2 follows immediately from Corollary 1.

REMARK 3. For X smooth, we recover a result in [18].

PROPOSITION 1. Let X be a complex space such that $H^{q+1}(X, \mathcal{F})$ vanishes for every coherent subsheaf $\mathcal{F} \subset \Omega_X^q$. Then $\mathcal{C}_q(X)$ is K-complete. In particular, on every irreducible component of $\mathcal{C}_q(X)$ there exist smooth strongly plurisubharmonic functions; a fortiori, they are Kählerian.

Note. By [15] we say that a complex space Z is *K*-complete if, for every point $z_0 \in Z$, there is a holomorphic mapping $F: Z \to \mathbb{C}^N$, $N = N(z_0)$, such that z_0 is isolated in its fiber $F^{-1}(F(z_0))$.

REMARK 4. Another possibility for obtaining continuous strongly plurisubharmonic functions on $C_q(X)$ is to have a (q, q)-form α , smooth of class C^2 on X, such that $\partial \bar{\partial} \alpha \gg 0$ in the sense of Lelong. In particular this holds if X has a Kähler form ω and if $\omega^{q+1} := \omega \wedge \cdots \wedge \omega$ (the product is taken q + 1 times) is $\partial \bar{\partial}$ -exact; see [27].

Proof of Proposition 1. To conclude, by [23, Cor. 6, p. 235] it remains to show that $C_q(X)$ is *K*-complete. In order to settle this, we give the following lemma.

LEMMA 5. Let Z be a holomorphically separable complex space. Then Z is K-complete.

Proof. First we demonstrate the following.

CLAIM. Let $a \in Z$ and let $Y \subset Z$ be an analytic subset containing a. Then, for every discrete sequence $\{z_{\nu}\} \subset Y$ such that $z_{\nu} \neq a$ for all ν , there exists a holomorphic function f on Z with f(a) = 0 and $f(z_{\nu}) \neq 0$ for all ν . Moreover, if $\dim_{a} Y > 0$, then we may choose f with the additional property that

$$\dim_a Y \cap \{f = 0\} < \dim_a Y$$

To see this, we let $E = \{f \in \mathcal{O}(Z); f(a) = 0\}$ and $G_{\nu} = \{f \in E; f(z_{\nu}) \neq 0\}$. Clearly *E* is a nonempty Fréchet space and each G_{ν} is a dense open subset of *E* for every ν . Since the index set is at most countable, by Baire's theorem $\bigcap_{\nu} G_{\nu}$ is dense in *E* and a fortiori is not empty. Then any $f \in \bigcap_{\nu} G_{\nu}$ will do the job.

Now, in order to settle the "moreover", let $\{Y_{\mu}\}_{\mu}$ be the irreducible components of *Y* that contain *a* and are of positive dimension. By adding further points to the sequence $\{z_{\nu}\}$, we may assume that on each Y_{μ} there is at least one z_{ν} . Then we conclude as before.

To finish the proof of the lemma, we let $z_0 \in Z$ and set Y := the union of all irreducible components of Z containing z_0 . Then Y is a neighborhood of z_0 and $n := \dim(Y) < \infty$. The claim readily gives holomorphic functions $f_0, \ldots, f_n \in \mathcal{O}(Z)$ such that setting $F := (f_0, \ldots, f_n) \colon Z \to \mathbb{C}^{n+1}$ yields $Y \cap F^{-1}(F(z_0)) = \{z_0\}$. This proves the lemma and hence the proposition as well.

REMARK 5. Let *X* be a complex space and let

$$\operatorname{AN}_q \colon H^q(X, \Omega^q_X) \to \mathcal{O}(\mathcal{C}_q(X))$$

be the *Andreotti–Norguet transform* obtained by integrating cohomology classes [3; 4], which is well-defined by [8]. If $H^{q+1}(X, \mathcal{F})$ vanishes for every coherent subsheaf $\mathcal{F} \subset \Omega_X^q$, then Im(AN_q) separates the points of $C_q(X)$.

3. *q*-Plurisubharmonic Functions

3.1. Preliminaries

Let *X* be a complex space. A function $\varphi \in C^0(X, \mathbb{R})$ is said to be *q*-convex with corners [11; 12; 20] if every point of *X* admits an open neighborhood *U* on which there are finitely many *q*-convex functions f_1, \ldots, f_k such that

$$\varphi|_U = \max(f_1, \ldots, f_k).$$

Denote by $F_q(X)$ the set of all functions q-convex with corners on X.

We say that *X* is *q*-complete with corners if there exists an exhaustion function $\varphi \in F_q(X)$. (Hence Stein spaces correspond to spaces that are 0-complete with corners.)

This *q*-convexity with corners is weaker than usual *q*-convexity. For instance, the intersection of finitely many *q*-complete open subsets of \mathbb{C}^n is *q*-complete with corners, but in general it is not *q*-complete. However, by [11; 12], every complex space *X* of dimension *n* that is *q*-complete with corners is \tilde{q} -complete, where

 $\tilde{q} = n - [n/(q+1)]$. Notice that, for q with $(n-1)/2 \le q \le n-1$, we have $\tilde{q} = n-1$; this gives no new information, in view of [10] and [19].

Note that, if $\varphi, \psi \in F_q(X)$ and $\chi \in C^{\infty}(\mathbb{R}, \mathbb{R})$ with $\chi' > 0$ and $\chi'' \ge 0$, then $\max(\varphi, \psi)$ and $\chi(\varphi)$ belong to $F_q(X)$. However, if $\{\varphi_{\lambda}\}_{\lambda} \subset F_q(X)$ is an arbitrary family and $\varphi := \sup_{\lambda} \varphi_{\lambda}$ is (even) continuous, then it may happen that φ does not belong to $F_q(X)$, as simple examples show. To avoid this, we enlarge the set $F_q(X)$ by introducing *q*-plurisubharmonic functions.

An upper semicontinuous function $\varphi \colon X \to \mathbb{R} \cup \{-\infty\}$ is said to be:

- (a) subpluriharmonic if, for every Ω ∈ X and every pluriharmonic function h defined near Ω (i.e., h is locally the real part of a holomorphic function), we have φ ≤ h on Ω when φ ≤ h on ∂Ω;
- (b) *q-plurisubharmonic* if, for every open set $G \subset \mathbb{C}^{q+1}$ and holomorphic map $f: G \to X$, the function $\varphi \circ f$ is subpluriharmonic on G.

EXAMPLE [14]. Let X be a complex manifold of pure dimension. Then a function $\varphi \in C^2(X, \mathbb{R})$ is q-plurisubharmonic if and only if the Levi form $L(\varphi)$ has, at every point of X, at most q nonpositive eigenvalues.

NOTATION. We use $P_q(X)$ to denote the set of all *q*-plurisubharmonic functions on *X*, and $SP_q(X)$ denotes the set of all *strongly q*-plurisubharmonic functions on *X*—that is, those $\varphi \in P_q(X)$ such that, for every $\theta \in C_0^\infty(X, \mathbb{R})$, there exists an $\varepsilon > 0$ with $\varphi + \varepsilon \theta \in P_q(X)$. Obviously we have $F_q(X) \subset SP_q(X) \cap C^0(X, \mathbb{R})$.

REMARK 6. $P_0(X)$ and $SP_0(X)$ are precisely the *weakly plurisubharmonic* and *weakly strongly plurisubharmonic* functions (respectively) introduced by Fornæss and Narasimhan [13].

REMARK 7. If $D \subset \mathbb{C}^n$ is an open set, then an upper semicontinuous function φ on D is subpluriharmonic if and only if φ is (n - 1)-plurisubharmonic.

REMARK 8. Let $\Omega \subset \mathbb{C}^{n+1}$ be an open set. For every unit vector $v \in \mathbb{C}^{n+1}$ we consider the directional distance $\delta_v \colon \Omega \to \mathbb{R} \cup \{\infty\}$ with respect to v, which is given as follows:

 $\delta_{v}(z) := \sup\{r > 0; \ z + tv \in \Omega, \ \forall t \in \mathbb{C}, \ |t| < r\}, \quad z \in \Omega.$

If Ω is *q*-complete with corners, then $-\log \delta_v$ is *q*-plurisubharmonic [14].

We shall also need the following two lemmas (the first one is obvious).

LEMMA 6. Let $\pi : X \to Y$ be a holomorphic map of complex spaces, and let $\psi \in P_a(Y)$. Then $\psi \circ \pi \in P_a(X)$.

LEMMA 7. Let $\pi : X \to Y$ be a finite holomorphic surjective map between pure dimensional complex spaces, and let $\varphi \in P_q(X)$. Let $\psi : Y \to \mathbb{R} \cup \{-\infty\}$ be defined by

$$\psi(y) = \max\{\varphi(x); x \in \pi^{-1}(y)\}, \quad y \in Y.$$

If ψ is continuous, then $\psi \in P_q(Y)$.

Proof. Let $A \subset Y$ be a rare analytic set such that $\pi^{-1}(A)$ is rare in X and π induces a locally biholomorphic map between $X \setminus \pi^{-1}(A)$ and $Y \setminus A$. Clearly $\psi_1 := \psi|_{Y \setminus A} \in P_q(Y \setminus A)$. Let ψ_2 denote the upper semicontinuous extension of ψ_1 to Y; since A is locally complete pluripolar, $\psi_2 \in P_q(Y)$ in view of [25, Prop. 6]. But since ψ is continuous, $\psi = \psi_2$, whence the lemma.

3.2. Proof of Theorem 3

First we quote the following from [25].

THEOREM 6. Let X be a complex space admitting a continuous exhaustion function Φ that is strongly q-plurisubharmonic. Then X is q-complete with corners.

Thus, to conclude Theorem 3, we must produce an exhaustion function $\Phi \in SP_q(X) \cap C^0(X, \mathbb{R})$ as in Theorem 6.

For this we proceed as follows. Clearly we may suppose that $\varphi > 0$. (Otherwise, replace φ by $\varphi + C$ for some large constant C > 0.) For $n \in \mathbb{N}^*$ we let $K_n := \{\varphi \le n\}$ and $D_n = \{\varphi < n+2\}$. Let $\psi_n \in C^0(X, \mathbb{R}), \psi_n > 0$, such that ψ_n is strongly plurisubharmonic on D_{n+1} .

Choose constants $a_n > 1$ such that $a_n > \varphi + \psi_n$ on K_{n+2} , and define $h_n \colon \mathbb{R} \to \mathbb{R}$ by

$$h_n(t) := \max(t, a_n(t - n - 1)), \quad t \in \mathbb{R}.$$

Then h_n is strictly increasing and convex, $h_n(t) = t$ for $t \le n+1$, and $h_n(n+2) \ge a_n$; thus $h_n(\varphi) > \varphi + \psi_n$ on a neighborhood of the set $\{\varphi = n+2\}$, a fortiori on a neighborhood of ∂D_n . We may thus define $\varphi_n \in C^0(X, \mathbb{R})$ by

$$\varphi_n = \begin{cases} \max(h_n(\varphi), \varphi + \psi_n) & \text{on } D_n, \\ h_n(\varphi) & \text{on } X \setminus D_n. \end{cases}$$

One may easily check that $\varphi_n > 0$, φ_n is exhaustive, $\varphi_n \in P_q(X)$, and $\varphi_n|_{D_{n-1}} \in SP_q(D_{n-1})$ (where it equals $\varphi + \psi_n$). Now, if the sequence $\{\varepsilon_n\}_n$, $\varepsilon_n > 0$, decreases (fast enough) to zero, then we may define $\Phi \in C^0(X, \mathbb{R})$ by

$$\Phi := \varphi + \sum_n \varepsilon_n \varphi_n.$$

Since $\Phi \ge \varphi$, it follows that Φ is exhaustive; we need only check that $\Phi \in SP_q(X)$, which is straightforward owing to the construction of the φ_n .

Mutatis mutandis, the same proof gives also the following.

COROLLARY 3. Let $\pi: Z \to Y$ be a holomorphic map of complex spaces such that there exists an exhaustion function $\varphi \in C^0(Z, \mathbb{R})$ that is q-plurisubharmonic along the fibers of π .

If $Z \in S_0$, then there exists an exhaustion function $\Phi \in C^0(Z, \mathbb{R})$ that is strongly *q*-plurisubharmonic along the fibers of π .

COROLLARY 4. Let X be a complex space that is an increasing union of Stein open subsets. Then X is Stein if and only if X admits a plurisubharmonic exhaustion function $\varphi \colon X \to \mathbb{R}$.

3.3. Proof of Theorem 4

We give the proof in three steps. The first two deal with a local statement; in the final step, we prove our theorem by a (standard) perturbation procedure.

Let $V \subseteq U \subseteq X$ be open subsets such that U is holomorphically embedded as an analytic subset of some open set $\hat{U} \subset \mathbb{C}^N$.

Step 1: There exist an open neighborhood D of U in \hat{U} and $\hat{\varphi} \in P_q(D)$ that is locally bounded from below and such that $\hat{\varphi}|_U = \varphi|_U$.

In order to check this, consider the Hartogs domain U_{φ} of φ defined by

$$U_{\varphi} := \{ (x, t) \in U \times \mathbb{C}; |t| < \exp(-\varphi(x)) \}.$$

It can be seen that U_{φ} is *q*-complete with corners (applying e.g. Theorem 6); then, as an analytic subset of $\hat{U} \times \mathbb{C}$, it admits a neighborhood system of open sets that are *q*-complete with corners (see [26, Prop. 1, p. 1194]). Therefore, if $\Psi : \hat{U} \rightarrow \mathbb{R}$ is a continuous function that extends $\varphi|_U$, then there exists an open set $\Omega \subset \hat{U} \times \mathbb{C}$ that is *q*-complete with corners and such that:

(a) $\Omega \cap (U \times \mathbb{C}) = U_{\varphi};$

(b) $\Omega \subset \hat{U}_{\Psi} := \{(z,t) \in \hat{U} \times \mathbb{C}; |t| < \exp(-\Psi(z))\}.$

Let $D := \{z \in \mathbb{C}^N; (z, 0) \in \Omega\}$. Then *D* is an open subset of \hat{U} that contains *U*. Let δ denote the boundary distance function of Ω with respect to $v = (0, ..., 0, 1) \in \mathbb{C}^{N+1}$ (see Remark 8). Then $-\log \delta$ is *q*-plurisubharmonic. Define $\hat{\varphi} : D \to \mathbb{R}$ by setting, for $z \in D$,

$$\hat{\varphi}(z) = -\log \delta(z, 0).$$

Then $\hat{\varphi}$ and *D* are as desired (e.g., $\hat{\varphi} \ge \Psi|_D$), from which Step 1 follows.

Step 2: For every c > 0 there exists $\psi \in F_q(V)$ with $|\psi - \varphi| < c$ on V. We show this by using the next two lemmas (the first one is quoted from [9]).

LEMMA 8. Let $D \in \mathbb{C}^N$ be an open set and let $\varphi \in C^0(D, \mathbb{R}) \cap P_q(D)$. Then, for every $\varepsilon > 0$, there exists a $\tilde{\varphi} \in F_q(D)$ with $|\tilde{\varphi} - \varphi| < \varepsilon$.

LEMMA 9. Let $\Omega \subset \mathbb{C}^N$ be an open set and let $\varphi \in P_q(\Omega)$ with $\varphi \geq 0$. Then, for every $W \subseteq \Omega$, there exists a sequence $\{\psi_v\}_v \subset F_q(W)$ that decreases pointwise to $\varphi|_W$.

Proof. By standard arguments, this reduces to the following claim.

CLAIM. Let $v \in C^0(\Omega, \mathbb{R})$ with $\varphi < v$ on \overline{W} . Then there exists a $\psi \in F_q(W)$ such that $\varphi|_W < \psi < v|_W$.

In order to show this, consider $W \in \Omega$ an open set such that $W \in W'$. Then choose r > 0 (small enough) such that, for every $\xi \in \mathbb{C}^N$ with $\|\xi\| \le r$ and $z \in \overline{W}$, one has $\{\xi\} + \overline{W'} \subset \Omega$, $\{\xi\} + \overline{W} \subset W'$, and $\varphi(z + \xi) < v(z)$.

Let $g \in C_0^{\infty}(\mathbb{C}^N, \mathbb{R})$ be such that $0 \le g \le 1$, g(0) = 1, and $\operatorname{supp}(g) \subset B(0; r)$ (the ball of radius r in \mathbb{C}^N centered at the origin). Then define $\psi' \colon W \to [0, \infty)$ by setting

$$\psi'(z) = \sup\{\tilde{\varphi}(z+\xi)g(\xi); \xi \in \mathbb{C}^N\}, \quad z \in W,$$

where $\tilde{\varphi}$ is the trivial extension of φ to \mathbb{C}^N (i.e., $\tilde{\varphi} = 0$ on $\mathbb{C}^N \setminus \Omega$). Rewriting this definition yields $\psi' = \sup_{\lambda \in \Lambda} \psi_{\lambda}$, where $\psi_{\lambda} \colon W \to [0, \infty)$ is given by $\psi_{\lambda}(z) = \tilde{\varphi}(\lambda)g(\lambda - z)$ for $z \in W$ and $\lambda \in \Lambda := \overline{W} + \overline{B(0; r)}$. Since the family $\{\psi_{\lambda}\}_{\lambda}$ consists of smooth functions whose real Hessian is uniformly bounded from below, we deduce that ψ' is continuous; hence ψ' is *q*-plurisubharmonic.

Apply now Lemma 8 to $\psi' + \varepsilon \theta$, where θ is continuous and strongly plurisubharmonic near \overline{W} with some $\varepsilon > 0$ sufficiently small. The claim follows, whence Lemma 9.

Now, to conclude Step 2, take $V_1 \in D$ an open set with $\overline{V} \subset V_1$. By Lemma 9 there exists a sequence $\{\psi_{\nu}\}_{\nu} \subset F_q(V_1)$ decreasing pointwise to $\hat{\varphi}|_{V_1}$. Since \overline{V} is compact and $\hat{\varphi}|_{\overline{V}}$ is continuous, $\psi := \psi_{\nu}|_{V}$ (for ν large enough) fulfills our requirements.

Step 3: End of Proof of Theorem 4.

Choose open sets $V_i \Subset U_i \Subset W_i \Subset X$, $i \in \mathbb{N}$, such that $\{V_i\}_i$ is a covering of X, each W_i embeds holomorphically into some open subset of \mathbb{C}^{N_i} , and $\{W_i\}_i$ is locally finite. Select $\rho_i \in C_0^{\infty}(X, \mathbb{R})$ such that $-1 \le \rho_i \le 1$, $\rho_i \equiv 1$ on U_i , $\rho_i = -1$ on ∂V_i , and $\supp(\rho_i) \subset W_i$.

Consider $\varepsilon_i > 0$ to be constants sufficiently small that $\varphi + \varepsilon_i \rho_i \in SP_q(X)$ and

$$3\varepsilon_i < 2\inf_{V_i} \varepsilon.$$
 (*)

Applying Step 2, there exist $\varphi_i \in F_q(U_i)$ with

$$|\varphi_i - \varphi - \varepsilon_i \rho_i| < \varepsilon_i/2 \text{ on } V_i. \tag{(\sharp)}$$

Now, for every $x \in X$ set $I(x) := \{i \in I; V_i \ni x\}$; then define $\tilde{\varphi} \colon X \to \mathbb{R}$ by

$$\tilde{\varphi}(x) = \sup_{i \in I(x)} \varphi_i(x), \quad x \in X.$$

By (*) and (\sharp) we obtain that $|\tilde{\varphi} - \varphi| < \varepsilon$ and every point x_0 of X has an open neighborhood $B \subset \bigcap_{i \in I(x_0)} V_i$ such that

$$\tilde{\varphi}|_B = \max_{i \in I(x_0)} \varphi_i|_B,$$

hence $\tilde{\varphi} \in F_q(X)$.

4. Proof of Theorem 2

4.1. Some General Considerations

Let *q* be a nonnegative integer and let $\varphi \colon X \to [0, \infty)$ be a continuous function. Consider $\Phi \colon C_q(X) \to [0, \infty)$ defined by setting

$$\Phi(\Gamma) := \max\{\varphi(x); x \in |\Gamma|\}, \quad \Gamma \in \mathcal{C}_q(X),$$

where $\Gamma = n_1\Gamma_1 + \cdots + n_k\Gamma_k$ for $n_i \in \mathbb{N}^*$ and where the Γ_i are distinct irreducible compact analytic subsets of X of dimension q; as usual, we put $|\Gamma| := \Gamma_1 \cup \cdots \cup \Gamma_k$, the support of Γ . As in [18], we check easily that Φ is continuous.

REMARK 9. If, moreover, φ is proper and X is Kählerian, then the restriction of Φ to every connected component of $C_q(X)$ is proper. (For Kählerian metrics on complex spaces we refer the reader to [17] and [28].)

LEMMA 10. Let r be a nonnegative integer such that φ is (q + r)-convex on $X \setminus \{\varphi = 0\}$. Then Φ is r-plurisubharmonic on $C_q(X) \setminus \{\Phi = 0\}$.

Proof. We proceed as in [18, pp. 213–214] and consider (for the sake of clarity) only the case where X is smooth. Recall that $C_q(X)$ is a complex space and that the incidence set

$$G := \{ (x, \Gamma) \in X \times \mathcal{C}_p(X); \ x \in |\Gamma| \}$$

is an analytic subset of $X \times C_q(X)$. Denote by π_1 and π_2 the natural projections from *G* into *X* and $C_q(X)$, respectively. Notice that π_2 is proper.

Now let $\Gamma_0 \in C_q(X)$ with $\Phi(\Gamma_0) > 0$. We show that Φ is *r*-plurisubharmonic on a suitable neighborhood *W* of Γ_0 in $C_q(X)$. For this we let λ be a real number with $0 < \lambda < \Phi(\Gamma_0)$ and set

$$K := |\Gamma_0| \cap \{\varphi \ge \lambda\}.$$

Clearly *K* is a compact subset of *X*. Take $x \in K$ arbitrarily. Then there exists a local chart (U, τ, Ω) with $U \ni x$, $\Omega \subset \mathbb{C}^N$ open, and $0 \in \Omega$ such that:

(a) $\tau(x) = 0;$

(b) $\Delta^n \subseteq \Omega$, where Δ is the open unit disc in \mathbb{C} ;

(c) $(\partial \Delta^{n-q} \times \overline{\Delta}^q) \cap \tau(|\Gamma_0| \cap U) = \emptyset$; and

(d) the restriction of φ to $U \cap \tau^{-1}(\Delta^{n-q} \times \{\xi\})$ is *r*-convex for every $\xi \in \Delta^q$.

Let $D_x = \tau^{-1}(\Delta^n)$. Choose an open neighborhood W_x of Γ_0 in $\mathcal{C}_q(X)$ such that

(i) $\tau(|\Gamma| \cap U) \cap (\partial \Delta^{n-q} \times \overline{\Delta^q}) = \emptyset$ for $\Gamma \in W_x$, and

(ii) $\tau(|\Gamma| \cap U) \cap \Delta^n \neq \emptyset$ for $\Gamma \in W_x$.

For every $\xi \in \Delta^q$, the map

$$\sigma_{\xi} \colon (\tau \circ \pi_1|_U)^{-1}(\Delta^{n-q} \times \{\xi\}) \cap \pi_2^{-1}(W_x) \to W_x$$

is an analytic (branched) covering (of some finite degree), where σ_{ξ} is induced by π_2 . It follows that, for $\xi \in \Delta^q$, the function Ψ_{ξ} on W_x given by

$$\Psi_{\xi}(\Gamma) := \max\{(\varphi \circ \pi_1)(y); y \in \sigma_{\xi}^{-1}(\Gamma)\}, \quad \Gamma \in W_x,$$

is *continuous* (here we use the topology of $C_q(X)$!) and, by Lemmas 6 and 7, $\Psi_{\xi} \in P_r(W_x)$. Define $\Phi_x \colon W_x \to [0, \infty)$ by setting

$$\Phi_x(\Gamma) := \sup\{\Psi_{\xi}(\Gamma); \xi \in \Delta^q\}, \quad \Gamma \in W_x.$$

Since *K* is compact, there exist $x_1, \ldots, x_m \in K$ such that $K \subset \bigcup_{j=1}^m D_{x_j}$. Since $\Phi(\Gamma_0) > \lambda$ and φ is less than λ on the compact set $|\Gamma_0| \setminus \bigcup_{j=1}^m D_{x_j}$, there exists an open neighborhood *W* of Γ_0 , $W \subset \bigcap_{j=1}^m W_{x_j}$, with the following properties:

- (a) the infimum of Φ on *W* is > λ ; and
- (b) the supremum of φ on $\pi_1(\pi_2^{-1}(W)) \setminus \bigcup_{i=1}^m D_{x_i}$ is $< \lambda$.

These imply easily that, on W,

$$\Phi = \max(\Phi_{x_1}, \ldots, \Phi_{x_m}).$$

Consequently, since Φ is continuous and since each Φ_{x_j} is a supremum of a family of *r*-plurisubharmonic functions, it follows that $\Phi \in P_r(W)$.

This lemma and Remark 9 give the next proposition.

PROPOSITION 2. Let X be a (q + r)-convex space for some nonnegative integers q and r. Then there is a continuous function $\Phi: C_q(X) \to [0, \infty)$ that is r-plurisubharmonic.

If, moreover, X is Kählerian, then we may choose Φ such that its restriction to every connected component of $C_q(X)$ is proper.

Proof. Take Φ_1 as in Lemma 10. Let $\chi \in C^{\infty}(\mathbb{R}, \mathbb{R}_+)$ be increasing and convex, so that $\{\chi = 0\} = (-\infty, 1]$. Then $\Phi := \chi(\Phi_1)$ is as desired.

4.2. Proof of Theorem 2

The hypotheses of Theorem 2 and Proposition 1 show that $C_q(X)$ belongs to S_0 . On the other hand, Proposition 2 gives a continuous *r*-plurisubharmonic function Φ on $C_q(X)$ that is exhaustive on every connected component of $C_q(X)$. Theorem 2 now follows easily from Theorem 3.

5. Proof of Theorem 5

Let *X* be a *k*-Stein space via the holomorphic map $\pi : X \to \mathbb{P}^k$. We refer the reader to [7] for definitions and further properties. Because π has Stein fibers, we obtain a canonical map $\pi_* : C_q(X) \to C_q(\mathbb{P}^k)$ that is holomorphic [5, Thm. 6, p. 109]. By [7] again, there exists a function $\varphi : X \to [0, \infty)$ that is proper and of class C^2 such that, for every compact set $K \subset X$, there exists a constant $C_K > 0$ such that

$$i\partial\bar{\partial}\varphi + C_K\pi^*(\omega)$$

is positive definite on *K*, where ω is the Kähler form of the Fubini–Study metric on \mathbb{P}^k . Consider now the function

$$\Psi_K : \mathcal{C}_q(X) \to [0,\infty)$$

given by

$$\Psi_K(\Gamma) = \int_{\Gamma} \varphi \beta_K, \quad \Gamma \in \mathcal{C}_q(X),$$

where β_K is the *d*-exact (q, q)-form that follows from the equation

$$(C_K \pi^*(\omega) + i \partial \bar{\partial} \varphi_2)^{q+1} = C_K^{q+1} \pi^*(\omega^{q+1}) + i \partial \bar{\partial} \varphi \wedge \beta_K.$$

Then, using [6], we have that Ψ_K is continuous and strongly plurisubharmonic on the cycles contained in the interior of *K*. Therefore, $C_q(X) \in S_0$.

On the other hand, X is Kählerian by [24] and so the volume is constant on connected components of $C_q(X)$. Hence the method of Lemma 10 (with the function φ described in this section) produces a continuous function

$$\Phi\colon \mathcal{C}_q(X)\to [0,\infty),$$

whose restriction to every connected component of $C_q(X)$ is proper and whose restriction to the fibers of π_{\star} becomes plurisubharmonic.

The conclusion of the theorem now follows immediately by Corollary 3 and Remark 6. $\hfill \Box$

ACKNOWLEDGMENTS. The second-named author thanks the Institut Élie Cartan for support and hospitality during the completion of this paper.

References

- A. Andreotti and H. Grauert, *Théorèmes de finitude pour la cohomologie des espaces complexes*, Bull. Soc. Math. France 90 (1962), 193–259.
- [2] A. Andreotti and R. Narasimhan, Oka's Heftungslemma and the Levi problem for complex spaces, Trans. Amer. Math. Soc. 111 (1964), 345–366.
- [3] A. Andreotti and F. Norguet, Problème de Levi et convexité holomorphe pour les classes de cohomlogie, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1966), 197–241.
- [4] ——, La convexité holomorphe dans l'espace analytique des cycles d'une variété algebrique, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1967), 31–82.
- [5] D. Barlet, Espace analytique réduit des cycles analytiques complexes campacts d'un espace analytique complexe de dimension finie, Lecture Notes in Math., 482, pp. 1–158, Springer-Verlag, Berlin, 1975.
- [6] —, Convexité de l'espace des cycles, Bull. Soc. Math. France 106 (1978), 373–397.
- [7] D. Barlet and A. Silva, *Convexité holomorphe intermédiaire*, Math. Ann. 296 (1993), 649–665.
- [8] D. Barlet and J. Varouchas, *Fonctions holomorphes sur l'espace des cycles*, Bull. Soc. Math. France 117 (1989), 327–341.
- [9] L. Bungart, Piecewise smooth approximations to q-plurisubharmonic functions, Pacific J. Math. 142 (1990), 227–244.
- [10] J.-P. Demailly, Cohomology of q-convex spaces in top degrees, Math. Z. 204 (1990), 283–295.
- [11] K. Diederich and J.-E. Fornæss, Smoothing q-convex functions and vanishing theorems, Invent. Math. 82 (1985), 291–305.
- [12] —, Smoothing q-convex functions in the singular case, Math. Ann. 273 (1986), 665–671.
- [13] J.-E. Fornæss and R. Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980), 47–72.
- [14] O. Fujita, Domaines pseudoconvexes d'ordre général et fonctions pseudoconvexes d'ordre général, J. Math. Kyoto Univ. 30 (1990), 637–649.

- [15] H. Grauert, Charakterisierung der holomorph-vollständigen komplexen Räume, Math. Ann. 129 (1955), 233–259.
- [16] P. Lelong. Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239–262.
- [17] B. Moishezon, *Singular kählerian spaces*, Proceedings of the international conference on manifolds and related topics in topology (Tokyo 1973), pp. 343– 351, Univ. of Tokyo Press, 1975.
- [18] F. Norguet and Y.-T. Siu, *Holomorphic convexity of spaces of analytic cycles*, Bull. Soc. Math. France 105 (1977), 191–223.
- [19] T. Ohsawa, Completeness of noncompact analytic spaces, Publ. Res. Inst. Math. Sci. 20 (1984), 683–692.
- [20] M. Peternell, Continuous q-convex exhaustion functions, Invent. Math. 85 (1986), 249–262.
- [21] H.-J. Reiffen, *Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompakten Träger*, Math. Ann. 164 (1966), 272–279.
- [22] Y. T. Siu, Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces, Trans. Amer. Math. Soc. 143 (1969), 77–94.
- [23] V. Vâjâitu, Some convexity properties of morphisms of complex spaces, Math. Z. 217 (1994), 215–245.
- [24] —, Kählerianity of q-Stein spaces, Arch. Math. (Basel) 66 (1996), 250–257.
- [25] —, A Levi problem for continuous strongly q-plurisubharmonic functions, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 573–578.
- [26] —, The analyticity of q-concave sets of locally finite Hausdorff (2n 2q)measure, Ann. Inst. Fourier (Grenoble) 50 (2000), 1191–1203.
- [27] J. Varouchas, Sur l'image d'une variété kählérienne compacte, Fonctions de plusieurs variables complexes, V (Paris, 1979–1985), pp. 245–259, Lecture Notes in Math., 1188, Springer-Verlag, Berlin, 1986.
- [28] —, Kähler spaces and proper open morphisms, Math. Ann. 283 (1989), 13–52.

D. Barlet

Université Henri-Poincaré (Nancy 1) & Institut Universitaire de France, Institut Élie Cartan, U.M.R. 7502 B.P. 239, 54506 Vandœuvre lès Nancy Cedex France

barlet@iecn.u-nancy.fr

V. Vâjâitu Institute of Mathematics of the Romanian Academy P.O. Box 1-764 RO 70700, Bucharest Romania

vvajaitu@stoilow.imar.ro