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On the Analyticity of Smooth CR Mappings
between Real-Analytic CR Manifolds

Sylvain Damour

Introduction

Let M ⊂ Cn (n ≥ 2) be a generic real-analytic CR submanifold,M ′ ⊂ Cn′ a
real-analytic subset, andf : M → M ′ a smooth (i.e., of classC∞) CR mapping
defined near the pointp ∈M. It is natural to ask the following question: Under
what conditions isf real-analytic? (Of course, in this case, it extends holomor-
phically to a neighborhood ofp.)

In the equidimensional case, many authors considered the situation whenf is
a CR diffeomorphism [3; 16; 18; 20; 23; 27]. The more general situation, whenf

is supposed to be of only finite multiplicity, was studied in [4; 17]. WhenM and
M ′ have different dimensions, more recent results give also some sufficient con-
ditions [12; 13; 19]. We would also like to mention related works on the regularity
of continuous CR mappings [10; 11; 14; 28].

In this paper, generalizing the result of Coupet, Pinchuk, and Sukhov [12] to
arbitrary codimension, we give a new sufficient condition for the analyticity of a
smooth CR mappingf : M → M ′ between a generic real-analytic submanifold
M ⊂ Cn and a real-analytic subsetM ′ ⊂ Cn′. We prove that, ifM is minimal
at p ∈ M and if the characteristic variety off at p is 0-dimensional, thenf is
real-analytic nearp (see Theorem1.2). Our result generalizes many situations pre-
viously considered by other authors:

(1) M,M ′ ⊂ Cn are hypersurfaces,M ′ is strictly pseudoconvex, andf is a CR
diffeomorphism (Lewy [23] and Pinchuk [27]);

(2) M,M ′ ⊂ Cn are submanifolds,M is minimal,M ′ is essentially finite, andf
is a CR diffeomorphism (Baouendi, Jacobowitz, and Trèves [3]);

(3) M,M ′ ⊂ Cn are hypersurfaces,M ′ is essentially finite, andf is of finite mul-
tiplicity (Diederich and Fornæss [17] and Baouendi and Rothschild [4]).

We point out that our main result applies to situations not listed here—in partic-
ular, whenM andM ′ have different dimensions. Our main result seems to be new
also in the equidimensional case, whenM,M ′ ⊂ Cn are submanifolds ofhigher
codimension.In this case, our sufficient condition can be seen as a generalization
of the finite multiplicity condition of [4; 17].

In this paper, we introduce the notion of “characteristic variety” associated to the
setsM andM ′ andto the mappingf ; this is a generalization to higher codimension
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of the notion introduced in [12]. The characteristic variety is the complex-analytic
subset ofCn′ defined by the vanishing of the family of holomorphic functions ob-
tained by applying the CR operators ofM to the equations ofM ′ complexified
and pulled back byf (see Definition1.1).

We explain now the idea of the proof of our main result. First of all, the assump-
tion that the characteristic variety is 0-dimensional implies, in a classical way using
the fundamental relationf(M) ⊂ M ′, that each component functionfj satisfies
a polynomial equation with coefficients that are quotients of smooth functions on
M that are analytic with respect toz, z̄ and the jet off(z) (see Lemma 3.3). Pro-
ceeding by contradiction, we deduce that these coefficients are CR onM outside
their singular locus.

Then we prove that, sinceM is assumed to be minimal atp, these coefficients
extend meromorphically to a neighborhood ofp (see Proposition 2.5). This is the
main technical proposition of our paper; we believe that this result is of indepen-
dent interest and can be useful in other close situations. The proof of this proposi-
tion is divided into two steps. In the first step, using a symmetry in relation toM

and Rothstein’s separate meromorphy theorem [29], we establish the meromor-
phic extension to a wedgeW s

p, which is the symmetry of the wedgeWp given by
Tumanov’s extension theorem [31] atp. The second step is crucial. By a theorem
of Ivashkovich [21], the envelope of meromorphy and the envelope of holomor-
phy ofW s

p coincide. Thus, it suffices to prove that a functionh holomorphic in
W s

p extends to a full neighborhood ofp. The idea is to extendh holomorphically
toWp by Tumanov’s theorem and to conclude by the edge-of-the-wedge theorem.
But the crucial problem (see Remark 2.10) is that the direction of wedge extend-
ability of a CR function defined on a neighborhoodUp of p in M depends onUp.
In our situation, we actually need to control this direction of extendability, but the
setUp we deal with is defined as the edge of the wedgeW s

p,which can be arbitrar-
ily small. Our original method of dealing with this problem is to reasonat every
pointq ∈M. Gluing together the associated wedgesW s

q, we obtain a “wedge at-
tached toM ” (see Section 2.5 or [25] for precise definition). Its edge is allM and
thus the associated direction of extendability is fixed.

Finally, the last ingredient that we use is a theorem of Malgrange [24], which
ensures that the graph of eachfj is real-analytic, since by the construction just
described it is contained in a real-analytic subset ofM × C of the same real di-
mension asM (see Lemma 3.4).

The present paper is organized as follows. In Section 1, we give precise nota-
tion, definition, and statement of the results. Section 2 is devoted to the proof of the
meromorphic extension property for the coefficients of the polynomial equations
verified by the component functionsfj . In Section 3 we prove a “generalized” re-
flection principle, which is a more general statement than our main result. Finally,
in Section 4, we study the relation between characteristic variety and essential
finiteness and we give the proofs of the corollaries of our main result.

Acknowledgments. The author wishes to thank Bernard Coupet and Alexan-
dre Sukhov for many fruitful conversations and constant encouragement. The
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1. Statement of the Results

1.1. Notation and Definition

LetM ⊂ Cn ' R2n (n ≥ 2) be a real-analytic submanifold defined in a neigh-
borhood of the pointp ∈ M by the equationsrk(z) = 0 (k = 1, . . . , d ), where
therk are real-valued real-analytic functions satisfyingdr1∧ · · · ∧ drd 6= 0 near
p and whered is the codimension ofM. Let TzM denote the real tangent space
of M at z ∈M and letT cz M := TzM ∩ iTzM denote the complex tangent space.
We assume that the submanifoldM is Cauchy–Riemann(CR); that is, the com-
plex dimension ofT cz M is a constantm, called the CR dimension ofM. We write
the defining equations ofM in the usual form:

ρk(z, z̄) = 0, k = 1, . . . , d,

where theρk are holomorphic functions of 2n variables satisfyingρk(z, z̄) ∈ R,
k = 1, . . . , d.We assume thatM isgeneric,that is,∂̄ρ1∧· · ·∧ ∂̄ρd 6= 0 near(p, p̄)
or (equivalently)m = n− d. The submanifoldM is minimalatp (in the sense of
[31]) if it contains no proper CR submanifold throughp with CR dimensionm.
Recall that, sinceM is real-analytic, minimality is equivalent tofinite typein the
sense of Bloom and Graham [7]. By the holomorphic implicit function theorem,
we may write the equations ofM nearp in the form

yk = φk(x̄, x, y), k = 1, . . . , d, (1.1)

where
Cn 3 z = (x, y)∈Cm × Cd (1.2)

is a system of local holomorphic coordinates nearp = (xp, yp) and where the
φk(ξ, x, y) are holomorphic functions near(xp, xp, yp) satisfyingφk(xp, x, y) ≡
φk(ξ, xp, y) ≡ yk, k = 1, . . . , d. The operators

Lj = ∂

∂xj
+

d∑
k=1

∂φk

∂xj
(x̄, x, y)

∂

∂yk
, j = 1, . . . , m,

form a (commuting) basis of the CR operators onM with real-analytic coefficients.
Recall that aC1 functionψ defined onM is called Cauchy–Riemann ifLjψ = 0
onM for all j = 1, . . . , m. A mapping is CR if all its component functions are CR.

Similarly toM, let M ′ ⊂ Cn′ ' R2n′ be a real-analytic subset defined in a
neighborhood of the pointp ′ ∈M ′ by the real-analytic equationsρ ′k(z ′, z ′) = 0,
k = 1, . . . , d ′. Let f : M → M ′ be a smooth (i.e., of classC∞) CR mapping de-
fined in a neighborhood ofp inM and such thatf(p) = p ′. Fork = 1, . . . , d ′, α ∈
Nm, and fixedz ′ ∈ Cn′, we may apply the composed operatorLα := Lα1

1 . . . Lαmm
to the smooth functionρ ′k(z ′, f(·)) defined onM as follows.



586 Sylvain Damour

Definition1.1. Thecharacteristic varietyof f atp is the complex-analytic sub-
setVp(f ) ⊂ Cn′ defined in a neighborhood ofp ′ by the equations inz ′,

Lαρ ′k(z
′, f(·))|p = 0 for all k = 1, . . . , d ′ andα ∈Nm.

Notice thatp ′ ∈Vp(f ), sincef is CR andρ ′k(f(z), f(z)) = 0 for allk = 1, . . . , d ′
andz∈M.

This notion of characteristic variety was first introduced in [12] for the case of
M a hypersurface. It was then generalized to arbitrary codimension by the author
in [15] for the algebraic case. The characteristic variety is related to “partial” ana-
lytic determinacy off by its jet, that is, finite analytic determinacy of some of
the component functions off by the other ones and by the jet off. In case the
characteristic variety is 0-dimensional, we prove thatf is finitely and analytically
determined by its jet (see Lemma 3.3). This condition holds in many known situ-
ations (see [3; 4; 12; 17; 22; 23; 27]).

1.2. Results

The main theorem of our article generalizes the result of [12, Thm. 1] to arbitrary
codimension.

Theorem 1.2. Let f : M → M ′ be a smooth CR mapping between a generic
real-analytic submanifoldM ⊂ Cn and a real-analytic subsetM ′ ⊂ Cn′, with
p ∈ M, p ′ ∈ M ′, andf(p) = p ′. If M is minimal atp and if the dimension of
Vp(f ) at p ′ is zero, thenf is real-analytic nearp.

The proof of this theorem is given in Sections 2 and 3.
In fact, we prove in Section 3 a “generalized” reflection principle (see Theo-

rem 3.2), which is a more general statement than Theorem 1.2. This result shows
that thefundamentalconditionf(M) ⊂ M ′, equivalent toρ ′k(f(z), f(z)) = 0
for all k = 1, . . . , d ′ andz ∈ M, is not necessary. It is sufficient to assume that
f : M → Cn′ satisfies a system of equations of the formRl(f(z), g(z)) = 0 for all
l = 1, . . . , D andz ∈M, whereg = (g1, . . . , gN ′) are arbitrary smooth CR func-
tions onM and whereR1, . . . , RD are arbitrary holomorphic functions inn′ +N ′
variables.

If M ′ is asmoothgeneric real-analytic submanifold ofCn′, then theSegre va-
riety of M ′ associated to the pointz ′ close top ′ is the complex submanifoldQ′z ′
defined in a neighborhood ofp ′ by the equationsρ ′k(·, z ′) = 0, k = 1, . . . , d ′. The
submanifoldM ′ is calledessentially finiteatp ′ if the complex-analytic setA′p ′ :=
{z ′ : Q′z ′ = Q′p ′ } is of dimension 0 atp ′ (see e.g. [3; 4; 17; 18]). The following
result, due to [3], is a corollary of Theorem 1.2.

Corollary 1.3. Let f : M → M ′ be a smooth CR diffeomorphism between
generic real-analytic submanifoldsM,M ′ ⊂ Cn, with p ∈ M, p ′ ∈ M ′ and
f(p) = p ′. If M is minimal atp and ifM ′ is essentially finite atp ′ (or, equiva-
lently, ifM is essentially finite atp), thenf is real-analytic nearp.
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The first result in the diffeomorphic case was established by Lewy [23] and Pinchuk
[27]. They proved the followingreflection principle: Any localC1 CR diffeomor-
phism between strictly pseudoconvex real-analytic hypersurfaces is real-analytic.
It is a consequence of Corollary 1.3 in the situation whenf is smooth because,
in codimension 1, strict pseudoconvexity implies both minimality and essential
finiteness. Notice that, in this context, the complex-analytic subset defined by the
first-order equationsLjρ ′k(z ′, f(·))|p = 0 for all k = 1, . . . , d ′ andj = 1, . . . , m
is already 0-dimensional atp ′.

The following statement is a corollary of Theorem 1.2 whenM,M ′ ⊂ Cn are
hypersurfaces andf is of finite multiplicity; it was proved in [4] and [17]. We
refer the reader to [4] for a precise algebraic definition offinite multiplicity.

Corollary 1.4. Let f : M → M ′ be a smooth CR mapping between real-
analytic hypersurfacesM,M ′ ⊂ Cn, withp ∈M, p ′ ∈M ′ andf(p) = p ′. If f is
of finite multiplicity atp and ifM ′ is essentially finite atp ′, thenf is real-analytic
nearp.

In the general situation defined in Section1.1, we saythatf isK-nondegenerate
atp for some positive integerK if the complex vector space spanned by the gradi-
ents(∂/∂z ′)Lαρ ′k(z ′, f(·))|p at z ′ = p ′, for k = 1, . . . , d ′ and|α| ≤ K, is allCn′.
The following statement, established in [22], is an easy corollary of Theorem 1.2,
since in this situation the holomorphic implicit function theorem applies.

Corollary 1.5. Letf : M → M ′ be a smooth CR mapping between a generic
real-analytic submanifoldM ⊂ Cn and a real-analytic subsetM ′ ⊂ Cn′, with
p ∈M, p ′ ∈M ′ andf(p) = p ′. If M is minimal atp and iff isK-nondegenerate
at p, thenf is real-analytic nearp.

2. Meromorphic Extension

2.1. Preliminaries

We suppose that the submanifoldM ⊂ Cn is given nearp by (1.1) in thesystem
of local holomorphic coordinates (1.2). It may also be defined nearp by the equa-
tions

Im yk = Gk(x,Rey), k = 1, . . . , d, (2.1)

where theGk are real-valued real-analytic functions near(xp,Reyp). In the fol-
lowing, we will use the notationφ = (φ1, . . . , φd) andG = (G1, . . . ,Gd).
Definition 2.1. Awedgeassociated to the submanifoldM at the pointq ∈M is
a domain of the form

W(N, C) := {z∈N : Im y − G(x,Rey)∈C}, (2.2)

whereN is a sufficiently small neighborhood ofq inCn and whereC is a nonempty
open convex cone inRd (with vertex 0). TheedgeofW(N, C) is the open subset
M ∩N of M.
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The following extension theorem is well known; we will need a precise statement
of it.

Theorem 2.2 (Tumanov [31]). Let q be a point inM and letV be a neigh-
borhood ofq in M. If M is minimal atq, then there exist a neighborhoodN =
N (q,V ) of q in Cn and a nonempty open convex coneC = C(q,V ) in Rd such
that every continuous CR function onV extends holomorphically to the wedge
W(N, C).
In order to study extendability properties for some classes of functions defined
onM (see Sections 2.2 and 2.4), it will be convenient to cut the complex affine
spaceCn into slices. Fora ∈Cm sufficiently close toxp, letEa ⊂ Cn denote the
complex affine subspace{x = a} of complex dimensiond. The CR submanifold
Ma := M ∩Ea is real-analytictotally real (i.e., of CR dimension 0) and of maxi-
mal real dimension inEa. If W is a wedge associated toM, thenWa :=W ∩Ea
is a wedge associated toMa in Ea.

The mappings : z 7→ (x, φ(x̄, x, y)) defined nearp is real-analytic inx and
antiholomorphic iny. Moreover, s is a symmetry in relation toM, because
M is invariant bys and s is an involution in a neighborhood ofp. Indeed,
φ(x̄, x, φ(x̄, x, y)) − ȳ ≡ 0, since for fixedx this mapping is antiholomorphic
and vanishes on the generic submanifoldMx of Ex.

For a wedgeW associated toM, thesymmetric wedgeofW isW s := s(W ).
It is not actually a wedge according to Definition 2.1, but it contains a real wedge
of a cone possibly slightly smaller than−C. Notice that the relationW = s(W s)

also holds, provided thatW is small enough.

2.2. Definition and Basic Properties of the Ring of FunctionsRp(M)

LetRp(M) be the ring of germs atp of functions defined onM of the form

h(z) = H(z, z̄, g(z)), (2.3)

whereg = (g1, . . . , gK) are germs atp of smooth CR functions onM and where
H is a germ at(p, p̄, g(p)) of a holomorphic function inC2n+K. Notice that the
CR operatorsLj are derivations of the ringRp(M). Let h be a representative of
a germ ofRp(M) defined in some connected open neighborhoodU of p in M.
Assume thatM is minimal atp and letU := N (p,U), 0 := C(p,U), andW :=
W(U, 0) be (respectively) the neighborhood ofp, the cone, and the wedge given
by Tumanov’s extension theorem. LetU ′ := M ∩ U ⊂ U be the edge and letW s

be the symmetric wedge (cf. Section 2.1).
We can now state the following useful extension lemma.

Lemma 2.3. If M is minimal atp, then the functionh extends as a real-analytic
functionh̃ inW (resp.,h̃s inW s), smooth up to the edgeU ′ and antiholomorphic
(resp., holomorphic) with respect toy.

Proof. First, we extendh toW using the holomorphic extension of CR functions;
we then prove the extension toW s. This property may be seen as an analog of the
Schwarz symmetry principle for wedges inCn instead of half-domains inC.
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Step 1: Extension with Tumanov’s theorem.The functionh is given by (2.3) for
z ∈ U. Without loss of generality, we may assume thatg(p) = 0 and expandH
as a power series in̄g,

h(z) =
∑
ν∈NK

cν(z, z̄)gν(z),

where the coefficientscν are holomorphic functions near(p, p̄). Since eachgj
is a CR function onU, it admits a holomorphic extensionsg̃j toW according to
Tumanov’s theorem. Then, the extension ofh toW,

h̃(z) =
∑
ν∈NK

cν(s(z), z̄)g̃ν(z),

is clearly real-analytic and antiholomorphic with respect toy.

Step 2: Reflection principle.The extension ofh toW s,

h̃s(z) = h̃(s(z)), (2.4)

is real-analytic and holomorphic with respect toy.

The functions ofRp(M) are neither CR nor real-analytic. Nevertheless, they ver-
ify the following uniqueness principle.

Lemma 2.4. Leth be as before and assume thatM is minimal atp.

(i) If h vanishes on a nonempty open subsetV ofU ′, thenh ≡ 0 onU ′.
(ii) Rp(M) is an integral domain.

Proof. (i) By Lemma 2.3,h has an extensioñh toW, real-analytic and antiholo-
morphic with respect toy. LetV ′ be the projection ofV ontoCmx byπ : (x, y) 7→
x. For all a ∈ V ′, h̃ is antiholomorphic inWa and vanishes onV ∩ Ea, which is
a nonempty open subset ofMa. SinceMa is a totally real submanifold ofEa of
maximal dimension, the uniqueness theorem of Pinchuk [26] implies thath̃|Wa

≡
0. SinceM is a graph aboveCmx × RdRey, it follows thatV ′ is a nonempty open
subset ofCmx . Therefore, ifa moves inV ′ thenWa fills an open subset ofW.
Hence,h̃ vanishes in an open subset ofW. Becausẽh is real-analytic, it vanishes
identically inW. By continuity up to the edge,h|U ′ ≡ 0.

(ii) Let h1 andh2 be inRp(M), and assume thath1h2 = 0. If h1 6≡ 0 nearp,
then there exists a nonempty open subsetV ofM, sufficiently close top, such that
h2 vanishes onV. Thus, (i) applies andh2 ≡ 0 nearp.

2.3. Statement of the Meromorphic Extension Property

LetR̂p(M)be the quotient field of the integral domainRp(M) (cf. Lemma 2.4(ii))
and letSp(M) be the subfield of̂Rp(M) of CR functions. More precisely, the ele-
ments ofSp(M) are of the formψ = h1/h2,whereh1, h2 ∈Rp(M), h2 6≡ 0, and
ψ is CR onM \ 6 nearp with 6 := {z ∈M nearp : h2(z) = 0}. By the fore-
going uniqueness principle (cf. Lemma 2.4(i)), 6 is a closed subset ofM nearp
with empty interior.
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The main result of Section 2 is the following.

Proposition 2.5. If M is minimal atp, then every germψ ∈ Sp(M) extends
meromorphically to a neighborhood ofp in Cn.

The very technical proof of this proposition is given in Sections 2.4–2.6.
Whenψ has no singularities atp, we have the following stronger result.

Proposition 2.6. If M is minimal atp, then every germψ ∈Rp(M) that is CR
onM nearp extends holomorphically to a neighborhood ofp in Cn.

The proof of this result is trivial (see Section 2.6) in comparison to that of Propo-
sition 2.5. However, we actually need Proposition 2.5 because, in the proof of
Lemma 3.4, we may divide by elements ofRp(M) and hence singularities atp
may appear.

2.4. Edge-of-the-Wedge Theorem and Separate Meromorphy

Proposition 2.7. If M is minimal atp then, for every germψ ∈ Sp(M), there
exits a wedgeW s at p such thatψ extends meromorphically toW s.

Proof. The proof of this proposition is divided into three steps.

Step 1: Tumanov’s extension theorem and reflection principle.Let h1 andh2 6≡
0 be representatives of germs ofRp(M) defined in some connected open neigh-
borhood ofp inM. Up to shrinkingM,we may assume thath1 andh2 are defined
in all M and thatM is minimal at every pointq ∈ M, because minimality is an
open property on real-analytic CR submanifolds. Let6 := {z ∈M : h2(z) = 0}
and assume that the quotientψ := h1/h2 is CR onM \ 6, that is,ψ ∈ Sp(M).
LetU b M be a relatively compact connected open neighborhood ofp in M. As
in Section 2.2, letU, 0,W, U ′, andW s be (respectively) the neighborhood ofp,
the cone, the wedge, the edge and the symmetric wedge associated to(p,U) by
Tumanov’s extension theorem.

By Lemma 2.3,hj has an extensioñhsj toW s that is real-analytic and holomor-
phic with respect toy for j = 1,2. Thus,m = h̃s1/h̃s2 is an extension ofψ toW s

that is meromorphic with respect toy.

Step 2: Edge-of-the-wedge theorem in each slice.We use the following nota-
tion. Fora ∈Cm, Ea := {x = a} denotes a slice ofCn as in Section 2.1;1k(a, ρ)
denotes the open polydisc ofCk of centera and radiusρ > 0 and, ifa = 0, we
write1kρ := 1k(0, ρ); C∞(D),O(D), andM(D) denote (respectively) the rings
of smooth, holomorphic, and meromorphic functions in the domainD ⊂ Cn.

Let q be a point inU ′ \6 and letV be a neighborhood ofq in U ′ \6. SinceM
is minimal atq (see step 1), Tumanov’s extension theorem gives a neighborhood
V := N (q,V ) of q, an open convex cone3 := C(q,V ), and a wedgeW ∗ :=
W(V,3) of edgeV ′ := M∩V such that every CR function onV extends holomor-
phically toW ∗. In particular,ψ extends holomorphically toW ∗; we also denote
this extension bym.
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In order to simplify the notation, we may assume thatq is the origin 0. We may
also assume thatm has no singularities in the wedgeW s ′ :=W s∩V (up to shrink-
ingV ). Let0] be an arbitrary large proper subcone of the convex hull of−0 ∪3
and letW ] be the wedgeW(V, 0]). For everya ∈1mε , ε > 0 sufficiently small,
we use the following notation:W s

a
′ := W s ′ ∩ Ea, W ∗a := W ∗ ∩ Ea, W ]

a :=
W ] ∩ Ea, andV ′a := V ′ ∩ Ea.
Lemma 2.8. Let h ∈ O(W ∗) be such that, for everya ∈ 1mε , ha := h|Ea ∈
O(W s

a
′ ∪W ∗a ) ∩ C∞(W s

a
′ ∪W ∗a ∪ V ′a ). Thenh extends holomorphically toW ]

near0.

Proof. Let a ∈ 1mε and denote byηa := (0, φ(a,0)) the point inMa such that
Reηa = 0. By the edge-of-the-wedge theorem of [1] (see also [6]), there exists
a neighborhoodNa of ηa in Ea ' Cd such thatha extends holomorphically to
W ]

a ∩ Na. We may assume that, for alla ∈ 1mε , Na ⊃ 1d
δ for someδ = δ(ε).

Thus,h is holomorphic iny inW ] ∩ (1mε ×1d
δ) and holomorphic in all the vari-

ables inW ∗. By Hartogs’s theorem,h is holomorphic inW ] intersected with a
neighborhood of 0.

Applying Lemma 2.8 to the functionm,we obtain thatm is holomorphic inW ] in-
tersected with a neighborhood of 0. In particular,m is holomorphic in a nonempty
domain�′ ⊂W s.

Step 3: Propagation of meromorphy and separate meromorphy.

Lemma 2.9. Let �′ ⊂ � be nonempty domains inCn and leth1 andh2 6≡ 0
be real-analytic functions in�. If m := h1/h2 is meromorphic in�′, thenm is
meromorphic in all�.

Proof. Up to shrinking�′,we may assume without loss of generality thath2 does
not vanish in�′.

Case 1:n = 1, �′ and� are discs.This case is treated in [13, Lemma 3.6]. Let
c ′ be the center of�′. For ζ ∈�, let γ denote the closed segment [c ′, ζ ]. Let h̃1

(resp.h̃2) be the holomorphic extension ofh1|γ (resp.h2|γ ) to a neighborhood
0 of γ. We may assume that̃h2 does not vanish in�′ ∩ 0 (up to shrinking0).
Therefore,m̃ := h̃1/h̃2 is holomorphic in�′ ∩0 and coincides withm on�′ ∩ γ.
By the uniqueness theorem,m̃ = m in �′ ∩ 0. Then the functioñh1h2 − h̃2h1,

which is real-analytic in0, vanishes in�′ ∩ 0. Hence, it vanishes in all0 and so
m|0 ≡ m̃ is meromorphic. Using this argument for allζ ∈�, we show thatm is
meromorphic in all�.

Case 2:n ≥ 1, �′ and� are polydiscs.Assume that�′ = 1n(c ′, R ′) and� =
1n(c, R).We prove inductively that the meromorphy ofm propagates to each com-
plex direction ofCn. Proceeding by induction onk = 0, . . . , n, we assume that
m is meromorphic in1k((c1, . . . , ck), R)×1n−k((c ′k+1, . . . , c

′
n), R

′) for somek ∈
{0, . . . , n−1}. For eachζ ∈1k((c1, . . . , ck), R)andζ ′∈1n−k−1((c ′k+2, . . . , c

′
n), R

′)
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such thath2 does not vanish identically in1′ := {ζ} × 11(c ′k+1, R
′) × {ζ ′ }, we

apply case 1 to1′ and1 := {ζ} × 11(ck+1, R) × {ζ ′ }, which proves thatm|1
is meromorphic. Consequently, by Rothstein’s separate meromorphy theorem
(see [29] or [30]), we obtain thatm is meromorphic in1k+1((c1, . . . , ck+1), R)×
1n−k−1((c ′k+2, . . . , c

′
n), R

′).

Case 3: General case.Let c ′ be a point in�′. For eachζ ∈�, let γ be a com-
pact smooth simple curve linkingc ′ andζ and let(1n1, . . . , 1

n
r) be a finite cover of

γ by polydiscs in�. Case 2 implies that the meromorphy ofm propagates from
1nν to1nν+1, and we obtain thatm is meromorphic in a neighborhood ofζ for all
ζ ∈�.
Lemma 2.9 applied to the functionm and the domains�′ ⊂W s proves thatm is
meromorphic in allW s.

The proof of Proposition 2.7 is complete.

Remark 2.10. At this stage, we could easily conclude thatm extends meromor-
phically nearp if the direction of wedge extendability atp of CR functions on
U ⊂ M were independent ofU. This condition is satisfied, for instance, if the
submanifoldM has finite type atp with all Hörmander’s numbers being the same
(see [8] and related results in [5]). Under this assumption, pushingM intoW s

in the opposite direction of extendability shows that all holomorphic functions in
W s extend holomorphically nearp, and a theorem of Ivashkovich [21] gives the
conclusion of Proposition 2.5.

2.5. Meromorphic Extension to a Wedge Attached toM

We denote byNM := TCn|M/TM the normal bundle toM. Let q be a point in
M, nq ∈ NqM a normal vector toM at q, andWq = W(Nq, Cq) a wedge atq.
IdentifyingNqM with Rd , we may assume thatCq ⊂ NqM. We say thatWq has
directionnq if nq ∈Cq. By definition, “Wq has directionnq = 0” means thatWq

is a full neighborhood ofq in Cn.

Definition 2.11. Let� be a connected open subset ofM. The domainω is a
wedge attached to� (see [25]) if there exists a smooth sectionn : � 7→ N� of
the normal bundle such that, for everyq ∈�, ω contains a wedge atq with direc-
tion n(q).

This notion of attached wedge allows us to give the following global meromorphic
extension result.

Proposition 2.12. LetM ⊂ Cn be a generic real-analytic submanifold that is
minimal at every pointp ∈M. Let6 ⊂ M be a closed subset of empty interior
and letψ be a smooth CR function onM \ 6. Assume that, for every pointp ∈
M, there exist(a) a wedgeWp whose edge is a neighborhoodUp of p in M and
(b) an extensionmp ∈M(Wp) of ψ |Up\6. Then, for every connected open subset
� b M, there exist(a) a wedgeω attached to� containingWp for everyp ∈�
and (b) an extensionm∈M(ω) of ψ |�\6.
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For the proof of Proposition 2.12, we need some technical lemmas. The following
lemma is a uniqueness principle with singularities on the edge.

Lemma 2.13. LetW be a wedge of edgeU and letm∈M(W ) be an extension
of ψ ∈ C∞(U \6). If ψ ≡ 0, thenm ≡ 0.

Proof. Let p ∈ U \ 6. There exists a neighborhoodV of p such thatm is holo-
morphic inW ∩ V. By Pinchuk’s uniqueness principle [26],m|V ≡ 0. Then, by
the uniqueness principle for holomorphic mappings between connected complex
manifolds (here,W andP1(C)), m ≡ 0.

The following lemma is an edge-of-the-wedge theorem with singularities on the
edge.

Lemma 2.14. LetM ⊂ Cn be a generic real-analytic submanifold minimal at
some pointp ∈M and letU be a connected open neighborhood ofp in M. Let
6 ⊂ M be a closed subset of empty interior and letψ be a smooth CR function
onM \6. Assume that there exist wedgesWj of edgeU and of conesCj and ex-
tensionsmj ∈M(Wj ) of ψ |U\6 for j = 1,2. Then there exist(a) a wedgeW
of edgeU ′ ⊂ U a neighborhood ofp in M and of coneC almost containing the
convex hull ofC1∪ C2 and (b) an extensionm∈M(W ) of ψ |U\6.
Remark. We will always use the following conventions.

(i) All our cones are presumed to be convex.
(ii) The phrase “a coneC almost containsa coneC ′ ” means thatC contains a

proper subcone ofC ′ with vertex 0. In practice, this subcone can be chosen
as large as we wish, so this slight abuse of notation makes no difference in
the following.

Proof of Lemma 2.14.Let h1 be a holomorphic function inW1. SinceM is mini-
mal atp, there exists a wedgeW ′ of edgeU ′ ⊂ U a neighborhood ofp inM and
of coneC such that every CR function inU extends holomorphically toW ′.

We may assume that the positive axis Imzn is inside the coneC1. Ford > 0, let
t d be the translation along Imzn with lengthd and letUd := t d(U). Thenh1|Ud is
CR and extends holomorphically toW ′d := t d(W ′). According to Aı̆rapetyan’s
edge-of-the-wedge theorem [1], there exist a neighborhoodU ′1 ⊂ U ′ of p in M
and a coneC ′1 almost containing the convex hull ofC1∪ C ′ such thath1 extends
holomorphically to the wedgeW ′d1 of edgeU ′d1 := td(U ′1) and of coneC ′1. Notice
thatW ′d1 = td(W ′1), whereW ′1 is the wedge of edgeU ′1 and of coneC ′1. Letting
d tend to zero, we obtain thath1 extends holomorphically toW ′1. By a theorem of
Ivashkovich [21], the envelope of holomorphy and the envelope of meromorphy
of the open setW1 coincide. Consequently,m1 extends meromorphically toW ′1.
Similarly,m2 extends meromorphically to the wedgeW ′2 of edgeU ′2 ⊂ U ′ a neigh-
borhood ofp in M and of coneC ′2 almost containing the convex hull ofC2 ∪ C ′.
We may assume thatU ′1= U ′2 =: U ′p. By the uniqueness principle (Lemma 2.13),
the extensions ofm1 andm2 coincide inW ′1 ∩W ′2. Thus, we obtain a common
extensionm∈M(W ′1 ∪W ′2) of ψ |U ′p\6.
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Finally, applying Ivashkovich’s and A˘ırapetyan’s theorems forW ′1 ∪W ′2, we
prove thatm extends meromorphically to the wedgeW ′′ of edgeU ′′ ⊂ U ′p a neigh-
borhood ofp inM and of coneC ′′ almost containing the convex hull ofC ′1∪C ′2.
Moreover,m admitsψ |U ′′\6 as smooth boundary value onU ′′ \6.
Following the notation of Proposition 2.12, we may assume that theUp are traces
onM of balls ofCn; that is,Up = B(p,Rp)∩M with Rp > 0. Forε > 0,we de-
fine theε-shrinkingof Up to beUε

p := B(p,Rp − ε)∩M. In the following, when
a wedgeω is attached to some connected open subset� ofM, we will always as-
sume that� is a finite union of someUp, that is,� = ⋃s

j=1Upj . Thus, we may
also define theε-shrinkingof � to be�ε :=⋃s

j=1U
ε
pj
.

Remark 2.15. LetK be a compact subset ofM and let(Upj )j=1, ...,s be an open
cover ofK. Then there exists anε > 0 such that(Uε

pj
)j=1, ...,s is a cover ofK, too.

The following lemma allows us to glue two attached wedges together.

Lemma 2.16. LetM ⊂ Cn be a generic real-analytic submanifold that is mini-
mal at every pointp ∈M. Let6 ⊂ M be a closed subset of empty interior, and
let ψ be a smooth CR function onM \ 6. Let ωj be a wedge attached to a con-
nected open subset�j ofM, and letmj ∈M(ωj ) be an extension ofψ |�j \6 for
j = 1,2. Assume that�1∩�2 6= ∅. Then, for all sufficiently smallε > 0, there
exist (a) a wedgeωε attached to�ε := �ε

1 ∪ �ε
2 that contains the restriction of

ωj to�ε
j for j = 1,2 and (b) an extensionmε ∈M(ωε) ofψ |�ε\6.

Proof. By Definition 2.11, for everyp ∈�1∩�2 and forj = 1,2, there exists a
wedgeWp,j ⊂ ωj of edgeUp,j, of coneCp,j, and of directionnj(p), wherenj
is the smooth section ofN�j associated toωj . By Lemma 2.14, there exist (a) a
wedgeWp of edgeU ′p ⊂ Up,1∩Up,2 and of coneCp almost containing the convex
hull of Cp,1∪ Cp,2 and (b) a functionmp ∈M(Wp) extendingψ |U ′p\6.

Letε > 0 and letωεj be the restriction ofωj to�ε
j for j = 1,2. Let(U ′p1

, . . . , U ′ps )
be a finite open cover of the adherence Adh(�ε

1 ∩�ε
2) b M of�ε

1 ∩�ε
2. The do-

mainωε := ωε1 ∪ ωε2 ∪Wp1 ∪ · · · ∪Wps is a wedge attached to�ε := �ε
1 ∪�ε

2.

Indeed, we build a smooth section of the normal bundle using a smooth partition
of unity associated to the open cover of Adh(�ε

1 ∪ �ε
2) b M by�1 and�2 and

using the fact thatCpk almost contains the convex hull ofCpk,1 ∪ Cpk,2. In view
of Lemma 2.13, the functionsmj in ωj (j = 1,2) andmpk inWpk (k = 1, . . . , s)
coincide on the intersections of these wedges. Hence, we obtain a meromorphic
extensionmε of ψ |�ε\6 toωε.

Proof of Proposition 2.12 (cont.).Let (Up1, . . . , Ups ) be a finite open cover of
Adh(�) and letε > 0 be such that(Uε

p1
, . . . , Uε

ps
) is still a cover of Adh(�) (cf.

Remark 2.15). We prove by induction onn ∈ {1, . . . , s} that there exist a wedge
ωn attached to�n = U

nε/s
p1 ∪ · · · ∪ U nε/s

pn containing theWpk (k = 1, . . . , n)
and an extensionmn ∈ M(ωn) of ψ |�n\6. For n = 1, the statement is clear
with ω1 = Wp1 andm1 = mp1. Assume that the statement is verified for some
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n∈ {1, . . . , s −1}. According to Lemma 2.16, forε/s we may glue the wedges
Wpn+1 andωn together. This gives the statement forn+1.

For n = s, we obtain a wedgeωs attached to�s ⊃ � and an extensionms ∈
M(ωs) of ψ |�s\6. Finally, we takeω to be the restriction ofωs to � andm :=
ms |ω. To refine the result, we glueω with all theWp, p ∈�, and extendm to this
larger domain (using Ivashkovich’s and A˘ırapetyan’s theorems only).

The proof of Proposition 2.12 is complete.

2.6. Deformation of the SubmanifoldM

Proof of Proposition 2.5 (cont.).We follow the notation of Section 2.4; we as-
sume thatM is minimal at every pointq ∈M and thatU b M is a relatively com-
pact connected open neighborhood ofp in M. Therefore, for every pointq ∈U,
Proposition 2.7 holds and there exist a wedgeW s

q of edgeUq and a meromorphic
extensionmq of ψ |Uq\6 toW s

q.

By Proposition 2.12, we can glue the wedgesW s
q together and obtain a wedge

ωs attached toU such thatψ |U\6 extends toωs as a meromorphic functionms

and such thatωs contains the wedgeW s
p. With the help of a smooth partition of

unity, as in Lemma 2.16, we may apply a small smooth deformation toU in the
direction ofns, the smooth section of the normal bundle toU associated to the
wedgeωs. We assume that this deformation depends smoothly on the parameter
d ≥ 0 and that the deformation is the identity ford = 0. We denote byUd ⊂ ωs
the deformation ofU.

The wedgeWp is obtained by analytic discs attached toU (see [31]). Therefore,
there is still an analytic disc attached toUd, making a wedgeW d

p that is a small
smooth deformation ofWp. In particular,W d

p tends toWp asd tends to zero. For
sufficiently smalld > 0,W d

p is “almost symmetric” toW s
p in the sense that the

cones ofW d
p andWp intersect. With possibly smallerd > 0, we may even as-

sume that the cone ofW d
p contains the direction−ns(p) and hence thatp ∈W d

p .

Thus, we obtain that the envelope of holomorphy ofωs contains a neighborhood
of p. By Ivashkovich’s theorem [21], this proves thatms extends meromorphically
to this neighborhood ofp.

The proof of Proposition 2.5 is complete.

Whenψ has no singularities atp, the proof of the (holomorphic) extendability
property is trivial.

Proof of Proposition 2.6.Letψ be a representative of a germ ofRp(M) defined in
some connected open neighborhoodU of p inM, and assume thatψ is CR onU.
By Tumanov’s theorem,ψ extends holomorphically toW; by Lemma 2.3, it ex-
tends toW s as a function holomorphic iny, whereW is the wedge associated to
(p,U) andW s is its symmetric wedge. Now, by theclassicaledge-of-the-wedge
theorem applied in each sliceEa and by Hartogs’s theorem, we conclude thatψ

extends holomorphically to a neighborhood ofp in Cn.
The proof of Proposition 2.6 is complete.
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3. Generalized Reflection Principle

3.1. Statement of the Generalized Reflection Principle
and Application to the Mapping Problem

Let M ⊂ Cn be a generic real-analytic submanifold and letp ∈ M. Let G =
(G1, . . . , GN ′) be smooth CR functions onM (nearp) and letRl(Z,W ), l =
1, . . . , D, be holomorphic functions in a neighborhood of(P,G(p)) inCN ×CN ′.
We consider the following system of equations inF :

Rl(F(z),G(z)) = 0, l = 1, . . . , D, z∈M, (S )

whereF : M → CN is a smooth CR mapping defined nearp and such that
F(p) = P.
Definition 3.1. Thecharacteristic varietyatp of the system of equations (S ) is
the complex-analytic subsetVp(S) ⊂ CN defined in a neighborhood ofP by the
equations inZ,

LαRl(Z,G(·))|p = 0 for all l = 1, . . . , D andα ∈Nm.
The following “generalized” reflection principle generalizes [12, Prop. 3] to arbi-
trary codimension.

Theorem 3.2. LetF : M → CN be a smooth CR mapping withF(p) = P sat-
isfying the system of equations(S). If M is minimal atp and if the dimension of
Vp(S) at P is zero, thenF is real-analytic nearp.

The proof of this theorem is given in Sections 3.2–3.3.
This theorem applies to themapping problemdefined in Section1, and we obtain

Theorem 1.2 as a special case of Theorem 3.2.

Proof of Theorem 1.2 (cont.).The fundamentalconditionf(M) ⊂ M ′ is equiva-
lent to the following equations:

ρ ′k(f(z), f(z)) = 0, k = 1, . . . , d ′, z∈M.
This system of equations is equivalent to (S ) with F = G = f andRk = ρ ′k (k =
1, . . . , d ′). Clearly,Vp(f ) = Vp(S) and Theorem 3.2 applies.

The proof of Theorem 1.2 is complete.

3.2. Algebraicity over the RingRp(M)

Lemma 3.3. LetF : M → CN be a smooth CR mapping withF(p) = P satisfy-
ing the system of equations(S ). If the dimension ofVp(S) atP is zero, then each
component functionFj (j = 1, . . . , N ) is algebraic over the ringRp(M).

Proof. In the following, all our reasonings will be localized atp. Applying the
operatorsLα = Lα1

1 . . . L
αm
m to the system of equations (S ), we obtain
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LαRl(F(z),G(z)) = 0, l = 1, . . . , D, α ∈Nm, z∈M. (3.1)

SinceF is CR, we may rewrite (3.1) in the form

H α
l (z, z̄,D

|α|G(z), F(z)) = 0, l = 1, . . . , D, α ∈Nm, z∈M, (3.2)

where theH α
l are holomorphic functions near(p, p̄,D|α|G(p), P ) and where

DAG =
(
∂ |β|Gν

∂zβ

)
|β|≤A, ν=1, ...,M

denotes the partial derivatives ofG up to orderA, sometimes called thejet of order
A of G. The equations ofVp(S) are clearly equivalent to the following ones:

H α
l (p, p̄,D

|α|G(p), Z) = 0, l = 1, . . . , D, α ∈Nm.
In view of (3.2), these equations are verified forZ = P and thereforeP ∈Vp(S).
Since the ringOP of germs atP of holomorphic functions inCN is Nœtherian,
there exists a positive integerA such thatVp(S) is given nearP by the equations

H α
l (p, p̄,D

|α|G(p), Z) = 0, l = 1, . . . , D, |α| ≤ A. (3.3)

Modifying slightly the functionsH α
l ,we may rewrite (3.3) in the more convenient

form
H α
l (p, p̄,D

AG(p), Z) = 0, l = 1, . . . , D, |α| ≤ A.
Let V be the complex-analytic variety defined near5 := (p, p̄,DAG(p), P )

by the equations

H α
l (z, ζ,1,Z) = 0, l = 1, . . . , D, |α| ≤ A,

where(z, ζ,1,Z) denotes the canonical coordinates inC2n+κ+N and the integer
κ is the length of the vectorDAG; that is,

κ = N ′
(
n+ A
n

)
.

Notice thatVp(S) coincides with the fiber

V
(p,p̄,DAG(p))

= {Z nearP : (p, p̄,DAG(p), Z)∈V }.
Since this fiber is assumed to be 0-dimensional at5, we may apply the funda-
mental theorem on local representation of complex-analytic sets (see [9, Sec. 5.6,
Prop. 4]). This theorem states thatV is contained in a complex-analytic varietyQ
defined near5 by the equations

Qj(z, ζ,1)(Zj ) = 0, j = 1, . . . , N, (3.4)

whereQj(z, ζ,1)(Zj ) is a Weierstrass polynomial inZj with coefficients holo-
morphic in(z, ζ,1). Combining (3.2), (3.4), and the relationV ⊂ Q, we obtain

Qj(z, z̄,DAG(z))(Fj(z)) = 0, j = 1, . . . , N, z∈M. (3.5)

This result can be seen as a finite analytic determination ofF by the jet of order
A of G.
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Condition (3.5) means that eachFj annihilates onM a polynomial with coeffi-
cients inRp(M); hence, the proof of Lemma 3.3 is complete.

3.3. Analyticity of the Graph

Lemma 3.4. Letφ be a smooth CR function defined in a neighborhood ofp inM.
If M is minimal atp and if there existd ≥ 1andαk ∈ R̂p(M) (k = 0, . . . , d −1)
such that

φd + αd−1φ
d−1+ · · · + α0 = 0 onM nearp (3.6)

outside the singular locus of theαk, thenφ is real-analytic nearp.

Proof. The proof is divided into two steps.

Step 1: Algebraicity over the field of meromorphic functions.Let

φδ + βδ−1φ
δ−1+ · · · + β0 = 0 onM nearp (3.7)

be a polynomial equation of the form (3.6) of minimal degreeδ. For everyj =
1, . . . , m we apply the CR operatorLj, which is a derivation of the field̂Rp(M),

to (3.7). Sinceφ is CR, we obtain

(Ljβδ−1)φ
δ−1+ · · · + (Ljβ0) = 0 onM nearp. (3.8)

Necessarily, for allk = 0, . . . , δ − 1, Ljβk ≡ 0 onM nearp outside the singular
locus ofβk. Otherwise, letk0 ≥ 1 denote the larger integer such thatLjβk0 6≡ 0
and then divide (3.8) byLjβk0. We obtain a contradiction with the fact that (3.7)
is of minimal degree. Therefore, theβk are inSp(M) and by Proposition 2.5 there
exists a meromorphic extensionmk of βk nearp for all k. Hence,φ satisfies the
polynomial equation withmeromorphiccoefficients

φδ +mδ−1φ
δ−1+ · · · +m0 = 0 onM nearp (3.9)

outside the singular locus of themk; that is,φ is algebraic over the fieldMp of
germs atp of meromorphic functions inCn.

Step 2: Analyticity of the graph.Multiplying (3.9) by the least common multi-
ple of the denominators of the coefficients, we obtain

hδφ
δ + · · · + h0 = 0 onM nearp, (3.10)

where thehj are holomorphic functions nearp. Let 9 : (M, p) → (Rl ,0), l =
2m + d, be a local real-analytic diffeomorphism. The functionψ := φ B 9−1 is
smooth near 0 and theaj := hj B9−1 are real-analytic near 0. In these new coor-
dinates, (3.10) is changed into

aδψ
δ + · · · + a0 = 0 onRl near 0. (3.11)

We may assume thatψ(0) = 0 and that theaj have no common factors (as ele-
ments of the ring of convergent power seriesR{x1, . . . , xl}). Denote by0ψ the
graph ofψ over a neighborhood of 0 inRl; 0ψ is a smooth submanifold ofRl+2

passing through 0. Denote byY the real-analytic subset ofRlx × Cw ' Rl+2 de-
fined in a neighborhood of 0 by the equation
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aδ(x)w
δ + · · · + a0(x) = 0. (3.12)

In view of (3.11),0ψ ⊂ Y in a neighborhood of 0.

Claim 3.5. 0ψ andY have the same dimension at0.

Therefore, by a result of Malgrange [24, Chap.VI, Prop. 3.11],0ψ is a real-analytic
submanifold and consequentlyψ is real-analytic near 0.

The proof of Lemma 3.4 is complete.

The method that we used in step 2 follows the idea of [2, Lemma 2.7]. How-
ever, the following short proof of Claim 3.5 uses only basic notions of commu-
tative algebra (see e.g. [32]) and simplifies the elimination method applied in [3,
Lemma 5.1].

Proof of Claim 3.5.The dimension of0ψ at 0 isl. Notice that (3.12) is divided
into two real-valued equations. Therefore, the dimension ofY at 0 isl or l + 1.
Let S denote the common zeros of theaj . For x /∈ S, (3.12) determinesw up to
finitely many possibilities—that is,Y is ad-sheeted ramified analytic cover over
Rl \S near 0. Therefore, the dimension ofY at such points isl. Now we deal with
the singular setS. Clearly,S × C ⊂ Y and so, in order to prove that dimY = l,
it suffices to prove that dimS ≤ l − 2. It is easier (and sufficient) to prove that
dimC S ≤ l − 2, whereS is the complex-analytic subset ofC l defined near 0 by
the equationsaj(z) = 0, j = 0, . . . , δ. In these equations, we consider theaj to
be elements of the ring of convergent power seriesC{z1, . . . , zl}. Without loss of
generality, we may assume for allj = 0, . . . , δ thataj 6≡ 0, aj(0) = 0, andaj is ir-
reducible (otherwise, we would use the following reasoning with each irreducible
factor ofaj ). LetAj be the irreducible complex-analytic subset{aj(z) = 0} of di-
mensionl−1 inC l . Since theaj have no common factors, there exist two indices
j1 6= j2 such thataj1 6≡ aj2 up to a unit ofC{z1, . . . , zl}, that is,Aj1 andAj2 do not
coincide near 0. Therefore, dim0Aj1 ∩ Aj2 = l − 2 (see [32, Chap. VIII, Sec. 9,
Cor. 2]) and dim0 S ≤ l − 2 as desired.

Proof of Theorem 3.2 (cont.).For eachj = 1, . . . , N, Lemma 3.3 shows thatFj
is algebraic over the field̂Rp(M). Then, Lemma 3.4 shows that eachFj is real-
analytic nearp.

The proof of Theorem 3.2 is complete.

4. Characteristic Variety and Essential Finiteness

The notion of essential finiteness is related to the characteristic variety of a smooth
CR diffeomorphism as follows.

Lemma 4.1. If f : M → M ′ is a smooth CR diffeomorphism between generic
real-analytic submanifoldsM,M ′ ⊂ Cn, with p ∈M, p ′ ∈M ′, andf(p) = p ′,
thenA′p ′ coincides withVp(f ) in a neighborhood ofp ′.
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Proof. LetM ′ ⊂ Cn′ be a generic real-analytic CR submanifold of codimension
d ′ and CR dimensionm′. As in Section1.1, we maywrite the equations ofM ′ near
the pointp ′ ∈M ′ in the form

y ′k = φ ′k(x ′, x ′, y ′), k = 1, . . . , d ′, (4.1)

whereCn′ 3 z ′ = (x ′, y ′) ∈ Cm′ × Cd ′ is a system of local holomorphic coordi-
nates nearp ′ = (x ′p, y ′p) and where theφ ′k(ξ ′, x ′, y ′) are holomorphic functions

near(x ′p, x ′p, y ′p) satisfyingφ ′k(x ′p, x ′, y ′) ≡ φ ′k(ξ ′, x ′p, y ′) ≡ y ′. The operators

L′j(z
′, z ′) = ∂

∂x ′j
+

d ′∑
k=1

∂φ ′k
∂x ′j

(x ′, x ′, y ′)
∂

∂y ′k
, j = 1, . . . , m′,

form a (commuting) basis of the CR operators onM ′, and the complexified
complex-conjugate operators

L′j(z ′) =
∂

∂x ′j
+

d ′∑
k=1

∂φ ′k
∂x ′j

(x ′, x ′p, y ′p)
∂

∂y ′k
, j = 1, . . . , m′,

form a (commuting) basis of the holomorphic operators tangent toQ′p ′ , the Segre

variety ofM ′ associated to the pointp ′. We have used the notationh̄(Z) := h(Z̄)
for a holomorphic functionh. It is easy to prove the following “curved” version
of the uniqueness theorem for holomorphic functions.

Fact 4.2. A functionR holomorphic nearp ′ vanishes identically onQ′p ′ if and
only if L′αR|p ′ = 0 for all α ∈Nm′.
Sincef : M → M ′ is a smooth CR diffeomorphism, it follows thatn = n′, m =
m′, andd = d ′. Notice thatA′p ′ is the set of pointsz ′ nearp ′ such thatρ ′k(·, z ′)
vanishes identically onQ′p ′ for all k = 1, . . . , d. In view of Fact 4.2,z ′ ∈ A′p ′ if
and only if

L′αρ ′k(·, z ′)|p ′ = 0, k = 1, . . . , d, α ∈Nm, (4.2)

which is clearly equivalent (after complex conjugation) to

L′αρ ′k(z
′, ·̄)|p ′ = 0, k = 1, . . . , d, α ∈Nm. (4.3)

The pull-backKj := f ∗L′j (j = 1, . . . , m) of theL′j form a basis of the CR oper-
ators onM. Since (4.3) is equivalent to

Kαρ ′k(z
′, f(·))|p = 0, k = 1, . . . , d, α ∈Nm,

we have that (4.3), and consequently (4.2), is equivalent to

Lαρ ′k(z
′, f(·))|p = 0, k = 1, . . . , d, α ∈Nm. (4.4)

We thus conclude thatA′p ′ coincides withVp(f ) nearp ′.
The proof of Lemma 4.1 is complete.
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Remark 4.3. In the proof of Lemma 4.1, we replace the equalityQ′z ′ = Q′p ′
between complex analytic sets (cf. Section 1.2) by the infinite system of complex-
analytic equations (4.4), which represents the equality of thegermsat p ′ of the
complex-analytic setsQ′p ′ andQ′z ′ . Furthermore, by Nœther’s theorem, we may
replace (4.4) by a finite subsystem representing the equality of thejetsatp ′ of the
setsQ′p ′ andQ′z ′ .

Lemma 4.1 yields the following new characterization of essential finiteness.

Proposition 4.4. The submanifoldM is essentially finite atp if and only if the
dimension ofVp(idM) at p is 0, whereidM is the identity mapping ofM.

Proof. This is clear in view of Lemma 4.1.

We now give the proofs of the corollaries of Theorem 1.2.

Proof of Corollary 1.3.Lemma 4.1, together with Theorem 1.2, directly gives the
conclusion.

Proof of Corollary 1.4.We assume thatp = p ′ = 0 and use normal coor-
dinates (see(1.1)) z ′ = (x ′, y ′) ∈ Cn−1 × C, so thatM ′ is given near 0 by
y ′ = φ ′(x ′, x ′, y ′), whereφ ′(ξ ′, x ′, y ′) is holomorphic near(0,0,0) and satis-
fiesφ ′(0, x ′, y ′) ≡ φ ′(ξ ′,0, y ′) ≡ y ′. We writef = (f ′, fn) in the normal co-
ordinates. By a reasoning on formal power series, Baouendi and Rothschild [4]
proved that, iff is of finite multiplicity atp and ifM ′ is essentially finite atp ′,
then the complex-analytic subsetW0(f ) ⊂ Cn−1 defined by the equations inx ′,

Lαφ ′(f ′(·), x ′,0)|0 = 0 for all α ∈Nn−1,

is of dimension 0. Recall that the characteristic varietyV0(f ) is given by the equa-
tions inz ′,

Lαρ ′(z ′, f(·))|0 = 0 for all for allα ∈Nn−1, (4.5)

where we can chooseρ ′(z ′, z ′) := φ ′(x ′, x ′, y ′) − y ′ as a defining function of
M ′. Forα = (0, . . . ,0), (4.5) implies thatφ ′(0, x ′, y ′)− 0 = y ′ = 0. Therefore,
(4.5) is equivalent toLα(φ ′(f ′(·), x ′,0)− fn(·))|0 = 0 for allα ∈Nn−1. Since the
coordinates are normal,Lαfn|0 = 0 for all α ∈ Nn−1, which implies thatV0(f )

coincides withW0(f ) near 0 and is consequently of dimension 0. Furthermore,
[4, Thm. 3] shows thatM is necessarily essentially finite atp. Since it is a hyper-
surface,M is therefore minimal atp and Theorem 1.2 applies, proving thatf is
real-analytic nearp.

Proof of Corollary 1.5.Thatf isK-nondegenerate atp obviously implies, by the
holomorphic implicit function theorem, that the dimension of the characteristic
varietyVp(f ) is 0 atp ′; Theorem 1.2 then gives the conclusion.

Remark 4.5. In the situation of Corollary 1.5, the proof of Theorem 1.2 is highly
simplified: in Section 3.2, the holomorphic implicit function theorem shows that
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fj(z) = Hj(z, z̄,DAf(z)) for j = 1, . . . , n′ andz ∈ M, where theHj are holo-
morphic near(p, p̄,DAf(p)) andDAf(z) denotes the jet of orderA of f atz; in
other words,fj is inRp(M). Since, moreover,fj is CR onM, there is no need to
use our main technical tool (Proposition 2.5) in this situation; the simplified ver-
sion (Proposition 2.6), which deals with the nonsingular case directly, proves that
eachfj extends holomorphically in a neighborhood ofp.
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