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On the Analyticity of Smooth CR Mappings
between Real-Analytic CR Manifolds

SYLVAIN DAMOUR

Introduction

Let M c C" (n > 2) be a generic real-analytic CR submanifod, c C" a
real-analytic subset, anf: M — M’ a smooth (i.e., of clags*) CR mapping
defined near the point € M. Itis natural to ask the following question: Under
what conditions isf real-analytic? (Of course, in this case, it extends holomor-
phically to a neighborhood gf.)

In the equidimensional case, many authors considered the situation frlsen
a CR diffeomorphism [3; 16; 18; 20; 23; 27]. The more general situation, when
is supposed to be of only finite multiplicity, was studied in [4; 17]. Whérand
M’ have different dimensions, more recent results give also some sufficient con-
ditions [12; 13; 19]. We would also like to mention related works on the regularity
of continuous CR mappings [10; 11; 14; 28].

In this paper, generalizing the result of Coupet, Pinchuk, and Sukhov [12] to
arbitrary codimension, we give a new sufficient condition for the analyticity of a
smooth CR mapping: M — M’ between a generic real-analytic submanifold
M c C" and a real-analytic subsaf’ c C"". We prove that, ifM is minimal
at p € M and if the characteristic variety gf at p is 0-dimensional, therf is
real-analytic neap (see Theorem 1.2). Our result generalizes many situations pre-
viously considered by other authors:

(1) M, M’ c C" are hypersurfaceg{’ is strictly pseudoconvex, anflis a CR
diffeomorphism (Lewy [23] and Pinchuk [27]);

(2) M, M’ c C" are submanifolds)/ is minimal, M’ is essentially finite, angf
is a CR diffeomorphism (Baouendi, Jacobowitz, and Tréves [3]);

(3) M, M’ c C" are hypersurfaced/’ is essentially finite, and is of finite mul-
tiplicity (Diederich and Forneess [17] and Baouendi and Rothschild [4]).

We point out that our main result applies to situations not listed here—in partic-
ular, whenM andM’ have different dimensions. Our main result seems to be new
also in the equidimensional case, whehM’ c C" are submanifolds dfigher
codimension|n this case, our sufficient condition can be seen as a generalization
of the finite multiplicity condition of [4; 17].

Inthis paper, we introduce the notion of “characteristic variety” associated to the
setsM andM’ andto the mapping'; thisis a generalization to higher codimension
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of the notion introduced in [12]. The characteristic variety is the complex-analytic
subset ofC"’ defined by the vanishing of the family of holomorphic functions ob-
tained by applying the CR operators &f to the equations oM’ complexified

and pulled back by (see Definitiorl.1).

We explain now the idea of the proof of our main result. First of all, the assump-
tion that the characteristic variety is 0-dimensional implies, in a classical way using
the fundamental relatiory'(M) C M’, that each component functiofy satisfies
a polynomial equation with coefficients that are quotients of smooth functions on
M that are analytic with respect to z and the jet off(z) (see Lemma 3.3). Pro-
ceeding by contradiction, we deduce that these coefficients are @GR autside
their singular locus.

Then we prove that, sinclf is assumed to be minimal at these coefficients
extend meromorphically to a neighborhoodpofsee Proposition 2.5). This is the
main technical proposition of our paper; we believe that this result is of indepen-
dent interest and can be useful in other close situations. The proof of this proposi-
tion is divided into two steps. In the first step, using a symmetry in relatidd to
and Rothstein’s separate meromorphy theorem [29], we establish the meromor-
phic extension to a wedgé/;, which is the symmetry of the wedg#’, given by
Tumanov’s extension theorem [31] gt The second step is crucial. By a theorem
of lvashkovich [21], the envelope of meromorphy and the envelope of holomor-
phy of W, coincide. Thus, it suffices to prove that a functiomolomorphic in
W; extends to a full neighborhood pf The idea is to extend holomorphically
to W, by Tumanov’s theorem and to conclude by the edge-of-the-wedge theorem.
But the crucial problem (see Remark 2.10) is that the direction of wedge extend-
ability of a CR function defined on a neighborhobdglof p in M depends ot,.

In our situation, we actually need to control this direction of extendability, but the
setU, we deal with is defined as the edge of the welgg which can be arbitrar-

ily small. Our original method of dealing with this problem is to reaabpvery
pointg € M. Gluing together the associated wedygg, we obtain a “wedge at-
tached taM” (see Section 2.5 or [25] for precise definition). Its edge isalhnd
thus the associated direction of extendability is fixed.

Finally, the last ingredient that we use is a theorem of Malgrange [24], which
ensures that the graph of eaghis real-analytic, since by the construction just
described it is contained in a real-analytic subsetfok C of the same real di-
mension ag// (see Lemma 3.4).

The present paper is organized as follows. In Section 1, we give precise nota-
tion, definition, and statement of the results. Section 2 is devoted to the proof of the
meromorphic extension property for the coefficients of the polynomial equations
verified by the component functiorss. In Section 3 we prove a “generalized” re-
flection principle, which is a more general statement than our main result. Finally,
in Section 4, we study the relation between characteristic variety and essential
finiteness and we give the proofs of the corollaries of our main result.
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1. Statement of the Results

1.1. Notation and Definition

LetM c C" ~ R?" (n > 2) be a real-analytic submanifold defined in a neigh-
borhood of the poinp € M by the equationg,(z) = 0 (k =1, ...,d), where
ther, are real-valued real-analytic functions satisfyihg A --- A dry # 0 near

p and whered is the codimension o#/. Let T, M denote the real tangent space
of M atz e M and letT‘M = T.M NiT.M denote the complex tangent space.
We assume that the submanifald is Cauchy—Rieman(CR); that is, the com-
plex dimension o ‘M is a constant:, called the CR dimension df. We write
the defining equauons aff in the usual form:

ox(z,2) =0, k=1,...,4d,

where thep, are holomorphic functions ofr2variables satlsfylngpk(z 7)) €R,
k=1,...,d. We assume thal isgenericthatis,dp1 A - - - Adpy # 0near(p, p)

or (equwalently)n = n —d. The submanifoldV is minimalat p (in the sense of
[31]) if it contains no proper CR submanifold throughwith CR dimensionn.
Recall that, sincé is real-analytic, minimality is equivalent fmite typein the
sense of Bloom and Graham [7]. By the holomorphic implicit function theorem,
we may write the equations @f nearp in the form

yi=¢r(X,x,y), k=1....d, @1

where
C"sz=(x,y)eC" xC“ (1.2)

is a system of local holomorphic coordinates ngat (x,, y,) and where the
¢« (&, x, y) are holomorphic functions neét,,, x,, y,) satisfyingg:(x,, x, y) =
o€, xp,y) = yi, k=1,...,d. The operators

ad
sza—)?j+za;ﬂ((xxy) j=1...,m,

form a (commuting) basis of the CR operatorsidnvith real-analytic coefficients.
Recall that a* functiony defined onM is called Cauchy—Riemann if;y = 0
onMforall j =1,..., m. Amapping is CRif all its component functions are CR.

Similarly to M, let M’ ¢ C" ~ R?" be a real-analytic subset defined in a
neighborhood of the point’ € M’ by the real-analytic equations (z, z’) = 0,
k=1...,d. Let f: M - M’ be a smooth (i.e., of clags®) CR mapping de-
fined in a neighborhood gf in M and such thaf(p) = p’. Fork =1,...,d",a €
N and fixedz’ € C"', we may apply the composed operafdr ;= L$*... L%
to the smooth functiop, (2, f()) defined onM as follows.
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DerINITION 1.1, Thecharacteristic varietyf f at p is the complex-analytic sub-
setV,(f) c C" defined in a neighborhood @f by the equations in’,

L%, (z, f()], =0 forall k=1 ...,d" anda € N".

Notice thatp’ € V,(f), sincef is CR ando; (f(z), f(z)) =0forallk=1,...,d’
andze M.

This notion of characteristic variety was first introduced in [12] for the case of
M ahypersurface. It was then generalized to arbitrary codimension by the author
in [15] for the algebraic case. The characteristic variety is related to “partial” ana-
lytic determinacy off by its jet, that is, finite analytic determinacy of some of
the component functions of by the other ones and by the jet ¢f In case the
characteristic variety is 0-dimensional, we prove tfig finitely and analytically
determined by its jet (see Lemma 3.3). This condition holds in many known situ-
ations (see [3; 4, 12; 17; 22; 23; 27]).

1.2. Results

The main theorem of our article generalizes the result of [12, Thm. 1] to arbitrary
codimension.

THEOREM 1.2. Let f: M — M’ be a smooth CR mapping between a generic
real-analytic submanifold/ c C” and a real-analytic subse¥’ c C"', with
peM, p eM,andf(p) = p'. If Mis minimal atp and if the dimension of
V,(f) at p’ is zero, thenf is real-analytic nearp.

The proof of this theorem is given in Sections 2 and 3.

In fact, we prove in Sectio 3 a “generalized” reflection principle (see Theo-
rem 3.2), which is a more general statement than Theorem 1.2. This result shows
that thefundamentalondition f(M) C M’, equivalent top, (f(z), f@) =0
forallk =1,...,d’ andz € M, is not necessary. It is sufficient to assume that
f: M — C" satisfies a system of equations of the fakni f(z), g(z)) = O forall
[=1,...,Dandz € M, whereg = (g1, ..., gn’) are arbitrary smooth CR func-
tions onM and whereR;, ..., Rp are arbitrary holomorphic functions irt + N’
variables.

If M’ is asmoothgeneric real-analytic submanifold 6", then theSegre va-
riety of M’ associated to the point close top’ is the complex submanifol@’,
defined in a neighborhood of by the equationg,(-,z’) =0,k =1,...,d". The
submanifoldM’ is calledessentially finitat p’ if the complex-analytic set’ , :=
{20, = Q;,,} is of dimension 0 ap’ (see e.g. [3; 4; 17; 18]). The following
result, due to [3], is a corollary of Theorem 1.2.

CoroLLARY 1.3. Let f: M — M’ be a smooth CR diffeomorphism between
generic real-analytic submanifold&, M’ c C”", with p € M, p’ € M’ and
f(p) = p’. If M is minimal atp and if M’ is essentially finite ap’ (or, equiva-
lently, if M is essentially finite ap), then f is real-analytic nearp.
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The firstresultin the diffeomorphic case was established by Lewy [23] and Pinchuk
[27]. They proved the followingeflection principle Any localC* CR diffeomor-
phism between strictly pseudoconvex real-analytic hypersurfaces is real-analytic.
It is a consequence of Corollary 1.3 in the situation wifeis smooth because,
in codimension 1, strict pseudoconvexity implies both minimality and essential
finiteness. Notice that, in this context, the complex-analytic subset defined by the
first-order equationg; o, (z/, ]T-))|p =0forallk=1...,d’andj=1...,m
is already O-dimensional af..

The following statement is a corollary of Theorem 1.2 wiignM’ c C" are
hypersurfaces and is of finite multiplicity; it was proved in [4] and [17]. We
refer the reader to [4] for a precise algebraic definitiofimfe multiplicity.

CoroLLARY 1.4. Let f: M — M’ be a smooth CR mapping between real-
analytic hypersurfaced, M’ c C", withpe M, p’e M'and f(p) = p’. If fis

of finite multiplicity atp and if M’ is essentially finite gp’, then f is real-analytic
nearp.

In the general situation defined in Sectibh, we saythat f is K-nondegenerate

at p for some positive integeX’ if the complex vector space spanned by the gradi-
ents(d/dz' )L, (z', f())|, atz’ = p/,fork =1,....d" and|a| < K, isallC"".

The following statement, established in [22], is an easy corollary of Theorem 1.2,
since in this situation the holomorphic implicit function theorem applies.

CoroLLARY 1.5. Let f: M — M’ be a smooth CR mapping between a generic
real-analytic submanifold/ c C” and a real-analytic subse¥’ c C"', with
peM, p’e M and f(p) = p’. If M is minimal atp and if f is K-nondegenerate

at p, then f is real-analytic nearp.

2. Meromorphic Extension

2.1. Preliminaries

We suppose that the submanifall C C” is given nearp by (1.1) in thesystem
of local holomorphic coordinates (1.2). It may also be defined pdarthe equa-
tions

Imy, =Gi(x,Rey), k=1,...,d, (2.1

where theg; are real-valued real-analytic functions n¢ay, Rey,). In the fol-
lowing, we will use the notatiop = (¢4, ..., ¢4) andG = (Gy, ..., Gy).
DeFINITION 2.1.  Awedgeassociated to the submanifald at the poinyy € M is
a domain of the form

WWN,C) :={zeN :Imy—G(x,Rey) e C}, (2.2)

whereV is a sufficiently small neighborhood @fn C" and where” is a nonempty
open convex cone iR¢ (with vertex 0). Theedgeof W(WN, C) is the open subset
MNN of M.
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The following extension theorem is well known; we will need a precise statement
of it.

THEOREM 2.2 (Tumanov [31]). Letg be a point inM and letV be a neigh-
borhood ofg in M. If M is minimal atg, then there exist a neighborhoodd =
N(q,V) ofg in C" and a nonempty open convex cafe= C(g, V) in R? such
that every continuous CR function éhextends holomorphically to the wedge
W(WN, C).

In order to study extendability properties for some classes of functions defined
on M (see Sections 2.2 and 2.4), it will be convenient to cut the complex affine
spaceC” into slices. Fou € C™ sufficiently close tox,, let E, C C" denote the
complex affine subspade = a} of complex dimensio@. The CR submanifold
M, := M N E, is real-analytidotally real (i.e., of CR dimension 0) and of maxi-
mal real dimension itE,. If VW is a wedge associated 36, thenW, .= WN E,
is a wedge associated 4, in E,.

The mapping: z — (x, ¢ (%, x, y)) defined neap is real-analytic inx and
antiholomorphic iny. Moreover, s is a symmetry in relation taV, because
M is invariant bys ands is an involution in a neighborhood gf. Indeed,
o(x,x,¢(x,x,y)) —y = 0, since for fixedx this mapping is antiholomorphic
and vanishes on the generic submaniftdd of E, .

For a wedgeV associated td4, the symmetric wedgef W is W* = s(W).
It is not actually a wedge according to Definition 2.1, but it contains a real wedge
of a cone possibly slightly smaller thanC. Notice that the relatiomV = s(WV*)
also holds, provided thad’ is small enough.

2.2. Definition and Basic Properties of the Ring of Functihs(M )
Let R ,(M) be the ring of germs gi of functions defined o/ of the form

h(z) = H(z, 7, 8(2)), (2.3)

whereg = (g1, ..., gx) are germs ap of smooth CR functions oM and where
H isagermatp, p, g(p)) of a holomorphic function itC2"+X . Notice that the
CR operatord; are derivations of the rin® ,(M). Let h be a representative of
a germ ofR ,(M) defined in some connected open neighborhbiodf p in M.
Assume that/ is minimal atp and let./ .= N (p, U), I := C(p, U), andW =
WU, I') be (respectively) the neighborhoodmfthe cone, and the wedge given
by Tumanov's extension theorem. LEét:= M NU C U be the edge and 1&V*
be the symmetric wedge (cf. Section 2.1).

We can now state the following useful extension lemma.

Lemma 2.3. If M is minimal atp, then the functiork extends as a real-analytic
functions in W (resp.,n* in W*), smooth up to the eddé’ and antiholomorphic
(resp., holomorphicwith respect toy.

Proof. First, we extend: to VV using the holomorphic extension of CR functions;
we then prove the extension . This property may be seen as an analog of the
Schwarz symmetry principle for wedges(lt instead of half-domains i.
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Step 1: Extension with Tumanov'’s theorefe function is given by (2.3) for
z € U. Without loss of generality, we may assume thap) = 0 and expand{
as a power series g,

h(2) =) ez D8R,
veNK
where the coefficients, are holomorphic functions neap, p). Since eacly;
is a CR function orU, it admits a holomorphic extensiogs to VW according to
Tumanov’s theorem. Then, the extensiorhdd W,

h(z)= )" c(s(2), D),

veNK

is clearly real-analytic and antiholomorphic with respect to

Step 2: Reflection principleThe extension of to W*,
*(2) = h(s(2)), (2.4)
is real-analytic and holomorphic with respectyto O

The functions ofR , (M) are neither CR nor real-analytic. Nevertheless, they ver-
ify the following uniqueness principle.

LEMMA 2.4. Leth be as before and assume thidtis minimal atp.

(i) If A vanishes on a nonempty open subigedf U’, thenk = 0onU’.
(i) Rp(M) is an integral domain.

Proof. (i) By Lemma 2.3/ has an extensioh to W, real-analytic and antiholo-
morphic with respect tg. Let V' be the projection o¥ ontoC” by : (x, y) —
x.Forallae V', his antiholomorphic iV, and vanishes o N E,, which is
a nonempty open subset 8f,. SinceM, is a totally real submanifold of, of
maximal dimension, the uniqueness theorem of Pinchuk [26] implie&that=
0. SinceM is a graph abov€”" x R‘éey, it follows that V' is a nonempty open
subset ofC”. Therefore, ifa moves inV’ thenW, fills an open subset ofV.
Hence vanlshes in an open subsetldf. Becausé is real-analytic, it vanishes
identically inWW. By continuity up to the edgé|, = 0.

(i) Let 7y andhy be inR , (M), and assume thath, = 0. If h1 # 0 nearp,
then there exists a nonempty open subisef M, sufficiently close tg, such that
hy vanishes orV. Thus, (i) applies and, = 0 nearp. O

2.3. Statement of the Meromorphic Extension Property

LetR »(M) be the quotientfield of the integral doma), (M) (cf. Lemma 2.4(ii))
and IetS (M) be the subfield oR »(M) of CR functions. More precisely, the ele-
ments ofS (M) are of the formyy = h1/h,, wherehy, ho e R ,(M), hp # 0, and
¥ is CR onM \ X nearp with ¥ := {z € M nearp : hy(z) = 0}. By the fore-
going uniqueness principle (cf. Lemmalgi)), ¥ is a closed subset @ff nearp
with empty interior.
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The main result of Section 2 is the following.

ProposITION 2.5. If M is minimal atp, then every germy € S,(M) extends
meromorphically to a neighborhood pfin C”.

The very technical proof of this proposition is given in Sections 2.4-2.6.
Whenvyr has no singularities at, we have the following stronger result.

ProposITION 2.6.  If M is minimal atp, then every gernyr € R ,(M) thatis CR
on M near p extends holomorphically to a neighborhoodoiin C”.

The proof of this result is trivial (see Section 2.6) in comparison to that of Propo-
sition 2.5. However, we actually need Proposition 2.5 because, in the proof of
Lemma 3.4, we may divide by elements7f,(M) and hence singularities at

may appear.

2.4. Edge-of-the-Wedge Theorem and Separate Meromorphy

ProposiTION 2.7. If M is minimal atp then, for every gernyr € S,(M), there
exits a wedg@V* at p such thatyr extends meromorphically td/*.

Proof. The proof of this proposition is divided into three steps.

Step 1: Tumanov's extension theorem and reflection princlpd¢h, andh, #
0 be representatives of germs7f,(M) defined in some connected open neigh-
borhood ofp in M. Up to shrinkingM, we may assume that andh, are defined
in all M and thatM is minimal at every poing € M, because minimality is an
open property on real-analytic CR submanifolds. et= {z € M : h(z) = 0}
and assume that the quotiefit:= h1/hs is CR onM \ X, that is,y € S,(M).
LetU € M be arelatively compact connected open neighborhogdinfM. As
in Section 2.2, let/, T, W, U’, andW* be (respectively) the neighborhood mf
the cone, the wedge, the edge and the symmetric wedge associgjedtpby
Tumanov’s extension theorem.

By Lemma 2.3/; has an extensmh} to W* that is real-analytic and holomor-
phic with respect to for j = 1, 2. Thus,m = i} /h2 is an extension ofy to W*
that is meromorphic with respect o

Step 2: Edge-of-the-wedge theorem in each shMe.use the following nota-
tion. Fora e C™, E, := {x = a} denotes a slice ¢f” as in Section 2.12a%(a, p)
denotes the open polydisc 6f of centera and radius > 0 and, ifa = 0, we
write A’; = AK(0, p); C*®(D), O(D), and M (D) denote (respectively) the rings
of smooth, holomorphic, and meromorphic functions in the dorfiain C”.

Letg be apointinU’\ X and letV be a neighborhood efin U’ \ . SinceM
is minimal atg (see step 1), Tumanov's extension theorem gives a neighborhood
VY = N(q, V) of g, an open convex cona := C(q, V), and a wedgéV* :=
W(V, A) of edgeV’ := M NV suchthat every CR function dnextends holomor-
phically toW*. In particular,y» extends holomorphically tbV*; we also denote
this extension byn.
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In order to simplify the notation, we may assume thié the origin 0. We may
also assume that has no singularities in the wedyg*’ := W*NV (up to shrink-
ing V). LetT'® be an arbitrary large proper subcone of the convex huliibfu A
and letW?* be the wedgéV(V, I'¥). For everya € A", ¢ > 0 sufficiently small,
we use the following notationW;’ := W*' N E,, W} := W* N E,, W=
W*NE, andV,:=V'NE,.

LeEmMa 2.8. Leth € O(W*) be such that, for every € A”, h, ‘= h|g, €
OWUW) NC®WS'UWz U V)). Thenh extends holomorphically tisy*
nearO.

Proof. Let a € A” and denote by, := (0, ¢(a, 0)) the point inM, such that
Ren, = 0. By the edge-of-the-wedge theorem of [1] (see also [6]), there exists
a neighborhooaV,, of n, in E, ~ C? such thath, extends holomorphically to
Wf N N,. We may assume that, for alle A", N\, D Ag for somes = 5(¢).
Thus, is holomorphic iny in W# N (A" x A4) and holomorphic in all the vari-
ables inW*. By Hartogs's theoreny; is holomorphic inW*# intersected with a
neighborhood of 0. 0

Applying Lemma 2.8 to the function, we obtain that is holomorphic inV# in-
tersected with a neighborhood of 0. In particulatis holomorphic in a nonempty
domainQ’ c W*.

Step 3: Propagation of meromorphy and separate meromorphy.

LEmMmaA 2.9. Let Q' € Q be nonempty domains i@di” and leth; andhy # 0
be real-analytic functions . If m := hy/h, is meromorphic ir2’, thenm is
meromorphic in all2.

Proof. Up to shrinking®2’, we may assume without loss of generality thatioes
not vanish in’.

Caseln =1, Q' and< are discs.This case is treated in [13, Lemma 3.6]. Let

¢’ be the center of2’. For¢ € 2, let y denote the closed segment []. Let i,
(resp.i2) be the holomorphic extension bf|y (resp.h|y) to a neighborhood
I" of y. We may assume thab does not vanish i’ N T (up to shrinkingl).
Thereforesi := h1/h» is holomorphic iR’ N T and coincides with: on Q' N y.

By the uniqueness theoremt, = m in Q' N T'. Then the functioth1hy — hahy,
which is real-analytic if, vanishes i’ N T". Hence, it vanishes in all and so
m|r = m is meromorphic. Using this argument for alk @, we show thain is
meromorphic in alk2.

Case 2n > 1, Q' and Q are polydiscs Assume thaf2’ = A"(¢/, R") andQ =
A"(c, R). We prove inductively that the meromorphymfropagates to each com-
plex direction ofC". Proceeding by induction oh = 0, ..., n, we assume that
m is meromorphic imM*((cy, ..., cx), R) x A" *((¢} 4, ..., c}), R") for somek €
{0, ..., n—1}. Foreaclt € A*((cy, ..., cx), R)ands’ e A" * (¢ p, ..., c)), R))
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such thatz, does not vanish identically i := {¢} x Al(c,QH, R') x {¢'}, we

apply case 1 ta\ and A = {¢} x Al(cit1, R) x {¢’}, which proves thain|a

is meromorphic. Consequently, by Rothstein’s separate meromorphy theorem
(see [29] or [30]), we obtain that is meromorphic iMA**((cy, ..., crs1), R) x

N (TIPS . )

Case 3: General casd.et ¢’ be a point inQ’. For each; € , let y be a com-
pact smooth simple curve linking ands and let(A7, . .., A”) be afinite cover of
y by polydiscs in2. Case 2 implies that the meromorphymfpropagates from
A to A7 4, and we obtain thak is meromorphic in a neighborhood offor all
e O

Lemma 2.9 applied to the functiom and the domain®’ c W?* proves thain is
meromorphic in albVv?.
The proof of Proposition 2.7 is complete. O

REMARK 2.10. At this stage, we could easily conclude thhagxtends meromor-
phically nearp if the direction of wedge extendability at of CR functions on

U c M were independent df’. This condition is satisfied, for instance, if the
submanifoldM has finite type ap with all Hormander’s numbers being the same
(see [8] and related results in [5]). Under this assumption, pushirigto W*

in the opposite direction of extendability shows that all holomorphic functions in
W# extend holomorphically near, and a theorem of lvashkovich [21] gives the
conclusion of Proposition 2.5.

2.5. Meromorphic Extension to a Wedge Attachegfto

We denote bywwM := TC"|,,/TM the normal bundle td1. Let ¢ be a point in
M, n, € N;M a normal vector taf atg, andW, = W(N,, C,) a wedge ay.

Identifying N, M with R, we may assume th&t, C N, M. We say thaWV, has
directionn, if n, € C,. By definition, “W, has directiom, = 0" means thatV,

is a full neighborhood of in C".

DEeFINITION 2.11. LetQ be a connected open subsetddf The domainw is a
wedge attached t@ (see [25]) if there exists a smooth sectionQ — NQ of
the normal bundle such that, for everyg Q, » contains a wedge gtwith direc-
tionn(q).

This notion of attached wedge allows us to give the following global meromorphic
extension result.

ProrosiTioN 2.12. Let M C C” be a generic real-analytic submanifold that is
minimal at every poinp € M. Let ¥ C M be a closed subset of empty interior
and lety be a smooth CR function off \ . Assume that, for every poipte

M, there exist(a) a wedgelV, whose edge is a neighborhodg of p in M and

(b) an extensiom, € M(W,) of ¥|y,\=. Then, for every connected open subset
Q € M, there exist(a) a wedgew attached ta2 containingWV, for everyp € Q
and (b) an extensiom: € M(w) of ¥|q\x.
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For the proof of Proposition 2.12, we need some technical lemmas. The following
lemma is a uniqueness principle with singularities on the edge.

LemMma 2.13. Let W be a wedge of edgé and letm € M (VW) be an extension
of y eC>®U \ X). If ¥ =0, thenm =0.

Proof. Let p € U \ . There exists a neighborhoddlof p such thatn is holo-
morphic inWW N V. By Pinchuk’s uniqueness principle [26}],, = 0. Then, by
the uniqueness principle for holomorphic mappings between connected complex
manifolds (hereyV andP(C)), m = 0. O

The following lemma is an edge-of-the-wedge theorem with singularities on the
edge.

LEmMA 2.14. Let M c C" be a generic real-analytic submanifold minimal at
some pointp € M and letU be a connected open neighborhoodpoih M. Let

¥ C M be a closed subset of empty interior and{Jebe a smooth CR function
onM \ X. Assume that there exist wedgés of edgeU and of cone€’; and ex-
tensionsn; € M(W;) of |y 5 for j = 1, 2. Then there exisfa) a wedgelV

of edgeU’ C U a neighborhood op in M and of coneC almost containing the
convex hull ofC1 U C;, and (b) an extensiom: € M(W) of |y 5.

REMark. We will always use the following conventions.

(i) All our cones are presumed to be convex.

(ii) The phrase “a con€ almost containg coneC’” means thatC contains a
proper subcone af’ with vertex 0. In practice, this subcone can be chosen
as large as we wish, so this slight abuse of notation makes no difference in
the following.

Proof of Lemma 2.14Let i; be a holomorphic function inV;. SinceM is mini-
mal atp, there exists a wedge’’ of edgelU’ C U a neighborhood op in M and
of coneC such that every CR function i extends holomorphically t&V’.

We may assume that the positive axisgjis inside the con€’;. Ford > 0, let
t“ be the translation along lg, with lengthd and letU¢ := t4(U). Thenhy|ya is
CR and extends holomorphically W'? := t¢()W’). According to Atapetyan’s
edge-of-the-wedge theorem [1], there exist a neighborlidod U’ of p in M
and a cone&”] almost containing the convex hull 64 U C’ such that:; extends
holomorphically to the wedg®/,? of edgeU;“ := t,(U;) and of coneC;. Notice
thatw,? = t,(W]), whereW), is the wedge of edg&, and of coneC;. Letting
d tend to zero, we obtain thaf extends holomorphically tsV,. By a theorem of
Ivashkovich [21], the envelope of holomorphy and the envelope of meromorphy
of the open se¥V; coincide. Consequently;, extends meromorphically ta].
Similarly, m, extends meromorphically to the wedgé, of edgeU; C U’ aneigh-
borhood ofp in M and of coneC; almost containing the convex hull 6%, U C'.
We may assume that; = U, =: U,. By the uniqueness principle (Lemma 2.13),
the extensions af; andm, coincide inW] N W,. Thus, we obtain a common
extensionm e MWV UW,) of 1/f|Ul;\E.
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Finally, applying Ivashkovich's and wépetyan's theorems fo; U W, we
prove thain extends meromorphically to the wedge” of edgelU” C U, aneigh-
borhood ofp in M and of coneC” almost containing the convex hull 6 U C5.
Moreover,m admitsy |y~ x as smooth boundary value &ff' \ . O

Following the notation of Proposition 2.12, we may assume thal/jrare traces
on M of balls ofC"; thatis,U, = B(p, R,) "M with R, > 0. Fore > 0, we de-
fine thee-shrinkingof U, to beU; := B(p, R, —¢&) N M. In the following, when
a wedgew is attached to some connected open sufdset M, we will always as-
sume that2 is a finite union of som&,, that is,@ = (J;_, U,;. Thus, we may
also define the-shrinkingof Q to beQ*® = Ule U,f,~

REMARK 2.15. LetK be a compact subset 8f and let(U,,,);=1 ...s be an open
cover of K. Then there exists an> 0 such tha(U;"j )j=1...,s IS @ cover ofK, too.

The following lemma allows us to glue two attached wedges together.

LEmMMA 2.16. LetM C C" be a generic real-analytic submanifold that is mini-
mal at every poinp € M. Let ¥ C M be a closed subset of empty interior, and
let ¢ be a smooth CR function o \ X. Let w; be a wedge attached to a con-
nected open subsét; of M, and letm; € M(w;) be an extension ofs |,z for

Jj =1 2. Assume thaf2; N 2, # @. Then, for all sufficiently small > 0, there
exist(a) a wedgew® attached toQ2® := Qf U Q5 that contains the restriction of
w; 10 27 for j =1, 2and(b) an extensiom® € M(w®) of ¥|qe\x.

Proof. By Definition 2.11, for everyp € Q1N Q5 and forj = 1, 2, there exists a
wedgeW, ; C w; of edgeU, ;, of coneC, ;, and of directiorw;(p), wheren;
is the smooth section ¥ 2; associated te;. By Lemma 2.14, there exist (a) a
wedgeW, of edgeU, C U, 1N U, . and of coneC,, almost containing the convex
hull of C,1 U C,, > and (b) a functiom, € M(W,) extendingy |y, =

Lete > Oandlet; be the restriction ab; to SZ; forj =12 Let(Uljl, U;;;)
be a finite open cover of the adherence AdhN Q35) € M of Q] N Q5. The do-
maine® = wi Uwj; UW, U.---UW, is awedge attached @° := Qf U Q3.
Indeed, we build a smooth section of the normal bundle using a smooth partition
of unity associated to the open cover of A6tf U Q5) € M by Q1 andQ, and
using the fact tha€,, almost contains the convex hull 6f, 1 U C,, 2. In view
of Lemma 2.13, the functions; in w; (j =1,2) andm,, in W, (k=1...,s)
coincide on the intersections of these wedges. Hence, we obtain a meromorphic
extensionn® of ¥ |qe\x t0 @°. O

Proof of Proposition 2.12 (cont.)Let (U,,, ..., U,,) be a finite open cover of
Adh(2) and lete > 0 be such tha(U[fl, - Ug) is still a cover of AdRS2) (cf.
Remark 2.15). We prove by induction anc {1, ..., s} that there exist a wedge
w, attached to2, = U,,”f/‘Y U---uU Up’ff/‘* containing thew,, (k = 1,...,n)
and an extensiom, € M(w,) of ¥|q,\x. Forn = 1, the statement is clear
with w1 = W,, andmy = m,,. Assume that the statement is verified for some
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nell,...,s —1}. According to Lemma 2.16, fot/s we may glue the wedges
W,,., andw, together. This gives the statement fios- 1.

Forn = s, we obtain a wedge, attached ta2; D © and an extensiom; €
M(w;) of ¥r|q,\x. Finally, we takew to be the restriction of, to Q andm :=
mg|,. To refine the result, we glue with all theW,, p € Q, and extendn to this
larger domain (using lvashkovich’s andraApetyan’s theorems only).

The proof of Proposition 2.12 is complete. O

2.6. Deformation of the Submanifald

Proof of Proposition 2.5 (cont.)We follow the notation of Section 2.4; we as-
sume thatM is minimal at every poing € M and thatU € M is a relatively com-
pact connected open neighborhoodpoh M. Therefore, for every poing € U,
Proposition 2.7 holds and there exist a wetg of edgeU, and a meromorphic
extensionn, of ¥r[y,\x to Wy.

By Proposition 2.12, we can glue the wedg#s together and obtain a wedge
w* attached tdJ such thaty |\ » extends tan® as a meromorphic functiom®
and such thab* contains the wedgV,. With the help of a smooth partition of
unity, as in Lemma 2.16, we may apply a small smooth deformatidn io the
direction ofn*, the smooth section of the normal bundlelticassociated to the
wedgew®. We assume that this deformation depends smoothly on the parameter
d > 0 and that the deformation is the identity #be= 0. We denote by/? c »*
the deformation olJ.

The wedgé/, is obtained by analytic discs attachedidsee [31]). Therefore,
there is still an analytic disc attached@, making a wedge/vpd that is a small
smooth deformation ofV,. In particular, Vs tends to/V, asd tends to zero. For
sufficiently smalld > 0, Wy is “almost symmetric” ta/V; in the sense that the
cones oprd andW, intersect. With possibly smallet > 0, we may even as-
sume that the cone (WF? contains the directior-n*(p) and hence thgp € Wpd.
Thus, we obtain that the envelope of holomorphyéfcontains a neighborhood
of p. By Ivashkovich’s theorem [21], this proves that extends meromorphically
to this neighborhood of.

The proof of Proposition 2.5 is complete. O

When v has no singularities gt, the proof of the (holomorphic) extendability
property is trivial.

Proof of Proposition 2.6 Let ¢ be a representative of a germf,(M ) defined in
some connected open neighborhdddf p in M, and assume that is CR onU.
By Tumanov’s theoremys extends holomorphically tdV; by Lemma 2.3, it ex-
tends toV* as a function holomorphic in, whereWV is the wedge associated to
(p, U) andW* is its symmetric wedge. Now, by tledassicaledge-of-the-wedge
theorem applied in each slidg, and by Hartogs’s theorem, we conclude tijat
extends holomorphically to a neighborhoodpoin C”.

The proof of Proposition 2.6 is complete. O
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3. Generalized Reflection Principle

3.1. Statement of the Generalized Reflection Principle
and Application to the Mapping Problem

Let M c C" be a generic real-analytic submanifold and pe€ M. Let G =
(G, ..., Gy’) be smooth CR functions oM (nearp) and letR;(Z, W), | =
1,..., D, be holomorphic functions in a neighborhood & G(p)) in C¥ x CV'.
We consider the following system of equationsfin

Ri(F(z),G(z) =0, [=1...,D, zeM, ()

where F: M — CV is a smooth CR mapping defined ngarand such that
F(p)=P.

DeriniTION 3.1.  Thecharacteristic varietyat p of the system of equations)is
the complex-analytic subs®},(S) ¢ CV defined in a neighborhood @t by the
equations irnz,

L°R/(Z,G())|, =0 foralll=1,...,D anda e N".

The following “generalized” reflection principle generalizes [12, Prop. 3] to arbi-
trary codimension.

THEOREM 3.2. LetF: M — C be a smooth CR mapping wiff( p) = P sat-
isfying the system of equatiof). If M is minimal atp and if the dimension of
V,(S) at P is zero, thenF is real-analytic nearp.

The proof of this theorem is given in Sections 3.2-3.3.
This theorem applies to teapping problendefined in Section 1, and we obtain
Theorem 1.2 as a special case of Theorem 3.2.

Proof of Theorem 1.2 (cont.)Thefundamentatondition f(M) Cc M’ is equiva-
lent to the following equations:

or(f(2), f(2) =0, k=1..,d, zeM.

This system of equations is equivalent§g (vith F = G = f andR, = p; (k =
1 ....d"). Clearly,V,(f) = V,(S) and Theorem 3.2 applies.
The proof of Theorem 1.2 is complete. O

3.2. Algebraicity over the Rin& , (M)

LemMa 3.3. LetF: M — C¥ be asmooth CR mapping wiff{ p) = P satisfy-
ing the system of equatiogs). If the dimension o), (S) at P is zero, then each
component functio; (j =1,..., N) is algebraic over the ringz ,(M).

Proof. In the following, all our reasonings will be localized at Applying the
operatorsL® = L{*... L% to the system of equations’), we obtain
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L°R/(F(z),G(z)) =0, I=1...,D, acN", zeM. (3.1
SinceF is CR, we may rewrite (3.1) in the form
Hl(z,Z, D¥G(z), F(z)) =0, [=1....,D, a eN", zeM, (3.2)
where theH* are holomorphic functions neap, p, Dlal—G(p) P) and where

| IAG,
DG = 5
0z IBl<A,v=Ll...M

denotes the partial derivatives@fup to orderd, sometimes called thiet of order
A of G. The equations oV, (S) are clearly equivalent to the following ones:

H(p,p,D*G(p),Z)=0, I=1...,D, aeN".

In view of (3.2), these equations are verified oe= P and thereforeP? € V,(S).
Since the ringDp of germs atP of holomorphic functions irC" is Ncetherian,
there exists a positive integdrsuch that/, (S) is given nearP by the equations

H(p. p.D¥G(p),Z)=0, I=1,....D, |a| <A. (3.3)

Modifying slightly the functiongd ¥, we may rewrite (3.3) in the more convenient
form
HX(p,p, DAG(p),Z)=0, I=1...,D, || <A.

Let V be the complex-analytic variety defined néar= (p, p, DAG(p), P)
by the equations
H(z,6,A,Z)=0, I=1...,D, |a| <A,

where(z, ¢, A, Z) denotes the canonical coordinateifi+<+" and the integer
k is the length of the vectaP4G; that is,

A
K= N’(n + )
n
Notice thatV, (S) coincides with the fiber

V(mi%) ={Z nearP : (p, p, DAG(p), Z) e V}.

Since this fiber is assumed to be 0-dimensiondllatve may apply the funda-
mental theorem on local representation of complex-analytic sets (see [9, Sec. 5.6,
Prop. 4]). This theorem states thats contained in a complex-analytic variefy
defined neafl by the equations

Qi(z, ¢, A)(Z;))=0, j=1,...,N, (3.4)

whereQ;(z, ¢, A)(Z;) is a Weierstrass polynomial idi; with coefficients holo-
morphic in(z, ¢, A). Combining (3.2), (3.4), and the relatidhcC Q, we obtain

0i(z,z, DAG(2))(Fj(z)) =0, j=1....,N, ze M. (3.5)

This result can be seen as a finite analytic determinatiaf by the jet of order
AofG.
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Condition (3.5) means that ea¢h annihilates o/ a polynomial with coeffi-
cients inR ,(M); hence, the proof of Lemma 3.3 is complete. O

3.3. Analyticity of the Graph

Lemma 3.4.  Let¢ be a smooth CR function defined in a neighborhoagiof M.
If M is minimal atp and if there exist/ > landoy e R,(M) (k=0,...,d =1
such that

¢!+ oy 109+ +ap=0 onM nearp (3.6)

outside the singular locus of the,, theng is real-analytic nearp.

Proof. The proof is divided into two steps.
Step 1: Algebraicity over the field of meromorphic functiobhet
¢° + Bs_10° 1+ -+ Bo=0 onM nearp (3.7)

be a polynomial equation of the form (3.6) of minimal degéeéor every;j =
1, ..., m we apply the CR operatdt;, which is a derivation of the fiel® ,(M),
to (3.7). Sincep is CR, we obtain

(LiBs-D¢° 4+ -+ (LjBo) =0 onM nearp. (3.8)

Necessarily, foralk =0, ..., — 1, L;x = 0 onM nearp outside the singular
locus of 8. Otherwise, lekg > 1 denote the larger integer such thag,, # 0
and then divide (3.8) by.; 8,. We obtain a contradiction with the fact that (3.7)
is of minimal degree. Therefore, tifg are inS, (M) and by Proposition 2.5 there
exists a meromorphic extensiery, of 8, nearp for all k. Hence,¢ satisfies the
polynomial equation wittmeromorphicoefficients

¢° +ms_10° 1+ -+ mo=0 onM nearp (3.9)

outside the singular locus of they; that is,¢ is algebraic over the field,, of
germs atp of meromorphic functions ic”.

Step 2: Analyticity of the graphMultiplying (3.9) by the least common multi-
ple of the denominators of the coefficients, we obtain

hs¢® +---+ho=0 onM nearp, (3.10)

where theh; are holomorphic functions near. Let W: (M, p) — (R, 0), 1 =

2m + d, be a local real-analytic diffeomorphism. The functign= ¢ o ¥ tis
smooth near 0 and the := h; o ¥~ are real-analytic near 0. In these new coor-
dinates, (3.10) is changed into

asy® +---+ag=0 onR' near 0 (3.11)

We may assume that(0) = 0 and that the;; have no common factors (as ele-
ments of the ring of convergent power serigy, ..., x;}). Denote byl', the
graph ofyr over a neighborhood of 0 iR’; T, is a smooth submanifold d&'+?
passing through 0. Denote bythe real-analytic subset &' x C,, ~ R/*2 de-
fined in a neighborhood of 0 by the equation
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as(X)w’ + - 4+ ag(x) = 0. (3.12)
In view of (3.11),I;, C Y in a neighborhood of 0.

CrLam 3.5. Ty andY have the same dimensionGat

Therefore, by aresult of Malgrange [24, Chap. VI, Prop. 3I11Jis a real-analytic
submanifold and consequentlyis real-analytic near 0.
The proof of Lemma 3.4 is complete. O

The method that we used in step 2 follows the idea of [2, Lemma 2.7]. How-
ever, the following short proof of Claim 3.5 uses only basic notions of commu-
tative algebra (see e.g. [32]) and simplifies the elimination method applied in [3,
Lemma 5.1].

Proof of Claim 3.5.The dimension of"y, at O isl. Notice that (3.12) is divided
into two real-valued equations. Therefore, the dimensiok af 0 is/ or/ + 1

Let S denote the common zeros of thg Forx ¢ S, (3.12) determines up to
finitely many possibilities—that is/ is ad-sheeted ramified analytic cover over
R’\ S near 0. Therefore, the dimensionloft such points is. Now we deal with
the singular sef. Clearly, S x C C Y and so, in order to prove that dithh= 1,

it suffices to prove that dil§ < [ — 2. It is easier (and sufficient) to prove that
dime S < 1 — 2, whereS is the complex-analytic subset @f defined near 0 by
the equations;(z) =0, j =0, ..., 4. In these equations, we consider teto

be elements of the ring of convergent power seflgs, ..., z;}. Without loss of
generality, we may assume for gl= O, ...,  thata; # 0, ¢;(0) = 0, anda; is ir-
reducible (otherwise, we would use the following reasoning with each irreducible
factor ofa;). Let A; be the irreducible complex-analytic subéet(z) = O} of di-
mension —1in C'. Since thez; have no common factors, there exist two indices
J1# j2suchthat;, # a;, up to aunit ofC{zy, ..., z;}, thatis,A;, andA;, do not
coincide near 0. Therefore, dym; N A;, =1 — 2 (see [32, Chap. N, Sec. 9,
Cor. 2]) and dim S <[ — 2 as desired. O

Proof of Theorem 3.2 (cont.for eachj = 1,..., N, Lemma 3.3 shows thd&f;
is algebraic over the fiel® ,(M). Then, Lemma 3.4 shows that eaEhis real-
analytic neap.

The proof of Theorem 3.2 is complete. O

4. Characteristic Variety and Essential Finiteness

The notion of essential finiteness is related to the characteristic variety of a smooth
CR diffeomorphism as follows.

Lemma 4.1. If f: M — M’ is a smooth CR diffeomorphism between generic
real-analytic submanifoldds, M’ c C", withp e M, p’ e M’, and f(p) = p/,
thenA;, coincides withV, (f) in a neighborhood op’.
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Proof. Let M’ ¢ C"' be a generic real-analytic CR submanifold of codimension
d’ and CR dimensiom’. As in Sectiorl.1, we maywrite the equations ¥/’ near
the pointp’ € M’ in the form

v =¢i (X, x,y), k=1...d, (4.1)
whereC" 57/ = (x,y’) e C" x C?"is a system of local holomorphic coordi-
nates neap’ = (x;,, y[/,) and where the, (¢', x’, y") are holomorphic functions
near(x,, x,,, y,) satisfyingg, (x, x', ') = ¢;(¢', x,, y') = y". The operators

d

00, — 0
= —I—Zi_’/‘(x/,x/,y/)—_,, j=1....m
X, 4 0x; oy,

ool TN
Li(z',z)) =

form a (commuting) basis of the CR operators &, and the complexified
complex-conjugate operators

d
£( )_8’+Z (x xp,yp) 1....m,

T

form a (commuting) basis of the holomorphic operators tangeQ(ptothe Segre

variety of M’ associated to the poipt. We have used the notati@iZ) := h(Z)
for a holomorphic functiork. It is easy to prove the following “curved” version
of the uniqueness theorem for holomorphic functions.

Fact 4.2. A functionR holomorphlc neap’ vanishes identically OQ/, if and
only if L'“R|, = 0 for alla e N™"

Sincef: M — M’ is a smooth CR diffeomorphism, it follows that= n’, m =
m’, andd = d’. Notice thatA;], is the set of points’ nearp’ such thato; (-, z’)
vanishes identically orQ;,, forallk =1,...,d. Inview of Fact 4.27' € A/p, if
and only if

0 (2| =0, k=1....,d, a eN", (4.2)

which is clearly equivalent (after complex conjugation) to
L'z, )]y =0, k=1..,d aeN" (4.3)

The pull-backk; := f*L; (j =1 ...,m) of the L form a basis of the CR oper-
ators onM. Since (4.3) is equivalent to

K% fO)l, =0, k=1....d, aeN",
we have that (4.3), and consequently (4.2), is equivalent to
L, fDl, =0, k=1....d, aeN". (4.4)

We thus conclude tha¢;,, coincides withV, (f) nearp’.
The proof of Lemma 4.1 is complete. O
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REMARK 4.3. In the proof of Lemma 4.1, we replace the equaiity = Q
between complex analytic sets (cf. Section 1.2) by the infinite system of complex-
analytic equations (4.4), which represents the equality ofjhrensat p’ of the
complex-analytic setQ;,, andQ’,. Furthermore, by Ncether’s theorem, we may
replace (4.4) by a finite subsystem representing the equality ¢éthat p’ of the
setsQ;, andQ’,.

Lemma 4.1 yields the following new characterization of essential finiteness.

ProrosiTiON 4.4. The submanifold/ is essentially finite ap if and only if the
dimension ofV,(idy) at p is O, whereid, is the identity mapping a¥/.

Proof. This is clear in view of Lemma 4.1. O
We now give the proofs of the corollaries of Theorem 1.2.

Proof of Corollary 1.3.Lemma 4.1, together with Theorem 1.2, directly gives the
conclusion. 0

Proof of Corollary 1.4.We assume thap = p’ = 0 and use normal coor-
dinates (see(l 1)z = (x/,y) € C"1 x C, so thatM’ is given near 0 by

y o= ¢'(x',x,y"), whereqb (&, x’, y") is holomorphic near0, 0, 0) and satis-
fies¢’(0,x,y") = ¢'(§,,0,y') = y’. We write f = (f’, f,) in the normal co-
ordinates. By a reasoning on formal power series, Baouendi and Rothschild [4]
proved that, iff is of finite multiplicity at p and if M’ is essentially finite ap’,

then the complex-analytic subséty(f) ¢ C"~* defined by the equations i,

L% (F(),x,0)o=0 forall « e N"?

is of dimension 0. Recall that the characteristic varlégyyf) is given by the equa-
tionsinz/,

L%'(z', f(N]o=0 forall for alle € N"~2, (4.5)
where we can choose/(z’,z’) := ¢'(x/,x’,y’) — y’ as a defining function of
M'. Fora = (0,...,0), (4.5) implies that'(0, x’, y’) — 0 = y’ = 0. Therefore,
(4.5) is equivalent td.%(¢'( (), x', 0) — f,())|o = O for allae € N*~1 Since the
coordinates are normal,*f,|o = O for all « € N*~% which implies thafVo( f)
coincides withWy(f) near 0 and is consequently of dimension 0. Furthermore,
[4, Thm. 3] shows tha! is necessarily essentially finite at Since it is a hyper-
surface,M is therefore minimal ap and Theorem 1.2 applies, proving thais
real-analytic neap. ]

Proof of Corollary 1.5.That f is K-nondegenerate @t obviously implies, by the
holomorphic implicit function theorem, that the dimension of the characteristic
varietyV,(f) is 0 atp’; Theorem 1.2 then gives the conclusion. O

REMARK 4.5. In the situation of Corollary 1.5, the proof of Theorem 1.2 is highly
simplified: in Section 3.2, the holomorphic implicit function theorem shows that
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fi() = Hi(z,z, DAf(z)) for j = 1,...,n’ andz € M, where theH, are holo-
morphic neaK p, p, DAf(p)) andD“ f(z) denotes the jet of ordet of f atz; in

other wordsf; isinR ,(M). Since, moreoverf; is CR onM, there is no need to

use our main technical tool (Proposition 2.5) in this situation; the simplified ver-
sion (Proposition 2.6), which deals with the nonsingular case directly, proves that
eachf; extends holomorphically in a neighborhood;of
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