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Affine Surfaces withAK(S) = C
T. Bandman & L. Makar-Limanov

1. Introduction

In this paper we proceed with our research [BaM1; BaM2] of the smooth surfaces
withC+-actions. We denote byO(S) the ring of all regular functions onS. Let us
recall that theAK invariantAK(S) ⊂ O(S) of a surfaceS is just the subring of
the ringO(S) consisting of those regular functions onS that are invariant under all
C+-actions ofS. This invariant can be also described as the subring ofO(S) of all
functions that are constants for all locally nilpotent derivations ofO(S) [KKMR;
KM; M1].

We would like to give the answer to the following question: What are the sur-
faces with the trivial invariantAK ?

It is quite easy to show (see [M2]) that the complex lineC is the only curve
with the trivial invariant. It is also well known that, ifAK(S) = C andO(S) is a
unique factorization domain (UFD), thenS is an affine complex planeC2 [MiS;
S]. If we drop the UFD condition then we have many smooth surfaces with trivial
invariant—for example, any hypersurface of the form{xy = p(z)} ⊂ C3, where
all roots ofp(z) are simple.

Since we did not know any other examples, we had the following working con-
jecture.

Conjecture. Any smooth affine surfaceS withAK(S) = C is isomorphic to a
hypersurface

{xy = p(z)} ⊂ C3.

It turned out that this conjecture is true only with an additional assumption thatS

admits a fixed-point–freeC+-action. Also, if we assume thatS is a hypersurface
with AK(S) = C thenS is indeed isomorphic to a hypersurface defined by the
equationxy = p(z).

Surfaces of this kind have been well known since 1989 owing to the following
remarkable fact, which was discovered by Danielewski [D] in connection with the
generalized Zariski conjecture (see also Fieseler[F]): the surfaces{xny = p(z)}
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with n > 1 are not isomorphic to{xy = p(z)} (actually, they are pairwise non-
isomorphic). Nevertheless, the cylinders over all these surfaces are isomorphic
(S ×Cn is called “the cylinder over surfaceS ”). So it seems natural to introduce
a notion of equivalence for the surfaces, where two surfaces are equivalent when
cylinders over these surfaces are isomorphic. That is why we also try to consider
surfaces withAK(S) = C up to this equivalence. Though we are far from a com-
plete understanding, we know that there are two classes of surfaces that cannot be
mixed by this equivalence relation. The first class consists of the hypersurfaces
{xy = p(z)}mentioned previously. Here is an example of a surface from the sec-
ond class:

S =
 xy = (z2 −1)z
(x, y, z, u)∈C4 : zu = (y2 −1)y

xu = (z2 −1)(y2 −1)

.
2. Definitions and Related Notions

If AK(S) = C, then the group of automorphisms ofS has a dense orbit. Hence it
is natural to compare these surfaces with quasihomogeneous surfaces, which have
been investigated by Gizatullin, Danilov, and Bertin [G1; G2; GD; Ber].

Definition. A smooth affine surfaceS is calledquasihomogeneousif the group
Aut(S) of all automorphisms ofS has an orbitU = S \N, whereN is a finite set.

We will show that, ifAK(S) = C, then indeedS is a quasihomogeneous sur-
face. Therefore,S may be obtained from a smooth rational projective surfaceS̄ by
deleting a divisor of special form, which is called a “zigzag” [G1; G2; GD; Ber].

Let us denote byA the set of all surfacesS with AK(S) = C and byH those
surfaces that have only three components in the zigzag. We prove in Section 3 that
a surfaceS ∈A is isomorphic to a hypersurface if and only ifS ∈H (Theorem 1).
In Section 4 we use this fact to prove that:

(1) if S1∈H andS2 ∈A \H, then the cylindersS1× Ck andS2 × Ck cannot be
isomorphic (Theorem 2); and

(2) a surfaceS ∈ A admits a fixed-point–freeC+-action with reduced fibers if
and only ifS ∈H (Theorem 3).

The following notation will be used in this paper:

O(X), the ring of regular functions on a varietyX;
K(S), canonical divisor of a surfaceS;
[D], class of linear equivalence of a divisorD;
D̃, proper transform of a divisorD after a blow-up;
D∗, algebraic (total) transform of a divisorD after a blow-up;
(ω), (f ), divisors of zeros of a formω and a functionf, respectively;
Aut(S), automorphism group of a surfaceS;
G(S), subgroup of Aut(S), generated by allC+-actions on a surfaceS;
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OG(S), a general orbit of the groupG(S);
Ā, a Zariski closure ofA (if another meaning is not specified).

“General” means “belonging to a Zariski open subset”. Asingular point of a
rational function is a point where the function is not defined.

3. Characterization of HypersurfacesS with AK(S)= C
Following [Ber; Mi; MiS], by a line pencilon a surfaceS we mean a morphism
ρ : S → C into a smooth curveC such that the fiberρ−1(z) for a generalz ∈ C
is isomorphic toC. ThenS contains a cylinderlike subset, that is, an open sub-
set that is isomorphic to a direct product ofC and an open subset ofC [B, III.4].
The pencils are different if their general fibers do not coincide. Any line pencilρ

over an affine curveC on a surfaceS corresponds to aC+-actionϕρ on S such
that the general orbit ofϕρ coincides with a general fiber of the pencil; moreover,
it corresponds to a locally nilpotent derivation (LND)∂ρ in the ringO(S) of reg-
ular functions onS such that∂ρf = 0 if and only if f is ϕρ-invariant [KM; M1;
Mi; Sn]. If there are two different line pencils inS thenρ(S) = C (indeed, in
this caseρ(S) is an affine curve containing the image of a fiber of the second line
pencil, and this fiber is isomorphic toC). Since we are looking for the surfaces
having manyC+-actions, we shall assume in the sequel thatC ∼= C.

For a pencilρ overC, one can find a closurēS of S such that the extension
ρ̄ : S̄ → P1 of the mapρ : S → C is regular and, in the commutative diagram

S ↪−→ S̄

ρ

y yρ̄
C ↪−→ P1,

(1)

the divisorB = S̄ \ S is connected and has the following properties.

(I) B = F +D + E, where:
(a) F ∼= P1 andρ̄(F ) = P1− C;
(b) ρ̄ |D : D→ P1 is an isomorphism; and
(c) E = ∑Ei +∑Hi, whereρ̄(Hi) ∈ C \ ρ(S) andρ̄(Ei) = zi ∈ ρ(S)

are points.
Moreover,ρ−1(zi) is a union of disjoint smooth rational curves, and each of
them intersectsB precisely at one point.

(II) B does not contain(−1) curves, except perhapsD.

The structure of fibers is described in [Mi, Lemma 4.4.1]. If there are two dif-
ferent line pencils inS, thenE =∑Ei.

Definition. We call a closurēS agoodρ-closureof an affine surfaceS if it has
properties (I) and(II).

Definition. Let Fz = ρ−1(z) = ∑ i=m
i=1 niCi, where theCi are connected (and

irreducible, owing to property (I)(c)) components. Ifm = 1 andn1 = 1, then the
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fiber is callednonsingular.The singular fiber is either nonconnected or hasm =
1 andn1 > 1. If Fz =∑ i=m

i=1 Ci (i.e.,ni = 1), then the fiber is calledreduced.

Proposition 1. Let S be a smooth affine surface with a line pencilρ. Let S̄ be
a goodρ-closure ofS. LetFz1, . . . , Fzn be all singular fibers ofρ, and letFzi =∑j=ki

j=1 ni,jCi,j be a sum of irreducible curvesCi,j with Ci,j ∼= C. Then there
exists a functionα ∈O(S) such that:

(a) α is linear along each nonsingular fiberFz, wherez 6= zi for i = 1, . . . , n
(i.e.,α|Fz is a nonconstant linear function); and

(b) α|Ci,j = αi,j = constfor all 1≤ i ≤ n and1≤ j ≤ ki.
Proof. Let ∂ρ be a nonzero LND corresponding to the line pencilρ. If there is a
nonsingular fiberFz = ρ−1(z) such that∂ρ(v)|Fz = 0 for all v ∈ O(S), then we
may consider another LND̃∂ρ = ∂ρ/(ρ − z) and repeat this procedure, if needed.
Hence we may assume that∂ρ does not vanish identically along the nonsingular
fibers ofρ.

Since∂ρ is a nonzero derivation, there exists a functionv ∈ O(S) for which
∂ρ(v) 6= 0, that is, the minimaln for which∂nρ (v) = 0 is not smaller than 2. Let us
takeu = ∂n−2

ρ (v). Since∂2
ρ (u) = 0, it follows that∂ρ(u) = f(z) depends only on

z = ρ(s) with s ∈ S. If f(z̃) = 0 (z̃ 6= z1, . . . , zn), thenu|ρ−1(z̃) = u0 = const,
and we consider a new function(u− u0)/(ρ − z̃).

Repeating this yields a situation in which:

(1) ∂ρu = f(z), wheref may vanish only at the pointszi, i = 1, . . . , n; and
(2) u is a linear function along each fiberρ−1(z̃), with z̃ 6= zi for i = 1, . . . , n.

We will show thatu = ui = const along each componentCi,j of Fzi , i = 1, . . . , n.
Indeed,u is linear along a general fiber, which means that the intersection

(Ūw, ρ̄
−1(z)) = 1 for the closureŪw in S̄ of a general level curveUw = {s ∈ S :

u(s) = w} and anyz.
If u|Ci,j 6= const, then(Ūw, Ci,j )≥1and(Ūw, ρ̄−1(zi))≥ ni,j . Thus, ifni,j >1

then(Ūw, Ci,j ) = 0 andu|Ci,j = const.
If ni,j = 1, then the fiber is nonconnected andu|Ci,j 6= const implies thatŪw

does not intersect̄ρ−1(zi) \ Ci,j for a generalw ∈C. Thus,u|ρ̄−1(zi )\Ci,j must be
regular and constant. On the other hand,uhas a pole alongD and sou|ρ̄−1(zi )\Ci,j =
∞. Sinceu has only regular points, it follows that alsou|Ci,k = ∞ if k 6= j. But
u ∈ O(S), so there are no components withk 6= j. Henceρ−1(zi) has just one
component of multiplicity 1, which contradicts our assumption.

Thus, we may takeα = u.
Proposition 2. Any smooth affine surfaceS with AK(S) ∼= C is quasihomo-
geneous.

Proof. Assume thatφ andψ areC+-actions onS having different orbits. Letρ
andκ be the corresponding line pencils, with∂ρ and∂κ the corresponding LND.
Let Rz = ρ−1(z) andKw = κ−1(w) for generalz,w ∈ C, and letR̄z andK̄w be
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their closures in a goodρ-closureS̄ of S. We will now show thatS \OG(S) is a
finite set.

If a point s is in S \OG(S) and if the fiberRρ(s) is nonsingular, thenRρ(s) ⊂
S \OG(S) as well. Indeed, as shown in Proposition 1, we can choose∂ρ and∂κ in
such a way that they do not vanish along nonsingular fibers; that is, there are no
fixed points in these fibers.

For the same reason,Rρ(s) does not intersect a general fiberKw; that is, it is
contained inKκ(s). But thenρ 6= ρ(s) along a general fiberKw. Henceρ|Kw =
const, and the fibers of these two actions coincide. Thus,s ∈ S \OG(S) implies
thats ∈Rz0 ∩Kw0 for singular fibersRz0 andKw0. If S \OG(S) is infinite, then
there exists a connected componentC ⊂ Rz0 ∩ Kw0 for singular fibersRz0 and
Kw0 of ρ andκ, respectively.

Let ρ̄−1(z0) = C̄ ∪E ′ ∪
(⋃

C̄i
)
, whereE ′ ⊂ S̄ \ S and theCi are other com-

ponents ofρ−1(z0). ConsiderKw ∼= C. The intersection(K̄w, R̄z) ≥ 1, so K̄w
intersectsR∞ = ρ̄−1(∞). Hence, the only puncture ofKw belongs toR∞, and
this means that̄Kw ∩ E ′ = ∅. Thus,κ has no singular points and must be con-
stant alongE ′. SinceE ′∩D 6= ∅,we haveκ|E ′ = κ|D (see diagram (1) and recall
thatE ′ is connected). Butκ|D = ∞ (if it were not, thenκ would be bounded and
hence constant along a general fiberRz).

We conclude thatκ|E ′ = ∞ and has no singular points. On the other hand,κ is
finite and constant alongC, which implies that the point̄C ∩ E ′ is singular. The
contradiction shows that no such curveC exists and thatS \OG(S) is a finite set.
HenceS is indeed quasihomogeneous.

Any goodρ-closureS̄ of S may be described by the graph0(S̄ ) in the following
way: The vertices of this graph are in bijection with irreducible components of
the divisorB̄ = S̄ \ S, and two vertices are connected by an edge if they intersect
each other.

Now we shall use the description of quasihomogeneous affine surfaces due to
Gizatullin and Bertin [Ber; G1; G2; GD].

Any such surfaceS is either isomorphic toC2 or may be obtained by the follow-
ing blow-up process, described in [G2]. LetS0 = P1× P1, and letρ̄ : P1× P1→
P1 be a projection onto the second factor. LetF0 = ρ̄−1(z0) andF1 = ρ̄−1(z1)

with z0, z1∈P1, and letD be a section; that is,̄ρ |D : D→ P1 is an isomorphism.
Let σ = σ1 B · · · B σn : S̄ → S0 be the sequence of blow-ups

S̄ = S̄n σn−→ S̄n−1−→ · · · σ1−→ S0,

where σ1 is a blow-up of a point inF1 and σi is a blow-up of a point in
(σ1 . . . σi−1)

−1(F1). Letσ−1(F1) = Z∪A,whereZ is a linear chain of smooth ra-
tional curves (zigzag) such thatZ ∩ D̃ is a point and whereA =⋃Ai is a union
of smooth rational curvesAi such thatAi ∩Aj = ∅ andAi ∩Z is a point for each
i. Then the quasihomogeneous surfaceS = S̄ \ (Z ∪ F̃0 ∪ D̃).

We useGi to denote allAi such thatA2
i = −1 and useMi to denote allAi

with A2
i < −1. We may assume that theGi were blown up at the last stage of the

process. Then the process consists of the following steps.
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Step 0is an initial step. We start with the divisor, which is described by the
following graph:

•
f

•
d

•
f1

,

where verticesf, d, f1 represent componentsF0,D, F1, respectively.
Step 1is the blow-upσ1: S̄1→ S̄0 of a pointw1∈F1 into an exceptional com-

ponentE ⊂ S̄1. We denoteF ∗1 = F̃1+ E asE0 + E1, whereE0 andE1 are two
rational curves; the graph ofF0 ∪D ∪E1∪E0 looks like

•
f

•
d

•
e1

•
e0

,

where the verticesf, d, e1, e0 represent the components̃F0, D̃, E1, E0, respec-
tively. PutZ1= E1∪E0.

Step 2is one of the following two procedures.
(a) The blow-upσ2 : S̄2 → S̄1 of a pointw2 ∈ Z1 into a componentE2 ⊂ S̄2

in such a way that a graph of̃F0 ∪ D̃ ∪ Ẽ1∪ Ẽ0 ∪E2 is linear. That is, we blow
up either the pointE1 ∩ D̃ or the pointE1 ∩ E0 or a point inE0. We putZ2 =
Ẽ1∪ Ẽ0 ∪E2.

(b) The blow-up of the pointE0 ∩E1 to obtain a curveE2. Then putE0 = M1

andZ2 = Ẽ1∪ Ẽ2. The graph ofF̃0 ∪ D̃ ∪ Z2 looks like

•
f

•
d

•
e1

•
e2

.

There are no other ways to obtain a linear graph.
For a generalm, let the graph ofF̃0 ∪ D̃ ∪ Zm−1 be

•
f

•
d

•
et1

. . . •
e1

. . . •
e0

. . . •
etm−1

,

(or perhaps withoute0), where a vertexeti represents the componentEti obtained
at the stepti .

Step mis one of the following procedures.
(a) The blow-upσm : S̄m → S̄m−1 of a pointwm ∈ Zm−1 into a component

Em ⊂ S̄m in such a way that the graph of the divisorF̃0∪ D̃∪ Z̃m−1∪Em is linear.
That is, a blown-up point is eitherZm−1 ∩ D̃ or Etj ∩ Eti with Ei,Ej ⊂ Zm−1,

or it is a blow-up of a point inEtm−1 (this point may happen to be the intersection
Etm−1 ∩Mj). PutZm = Z̃m ∪Em.

(b) If Etm−1 does not intersect anyMi (i = 1, . . . , s) obtained at a preceding
step, denoteEtm−1 = Ms+1 and blow up a point inZm−1\(Etm−1 \(Zm−1∩Etm−1))

to obtain a componentEtm in such a way that the graph ofZm = Em ∪
(⋃

(Ẽi)
)

(Ei 6= Mj ; i = 0, . . . , k − 1, j = 1, . . . , s + 1) is linear. IfE2
tm−1
= −1, then the

blown-up point should be an intersection ofEtm−1 with the adjacent component
(since all(−1) curves are added at the last step).

Stepk + 1 is the last step. Letα1 . . . αq be different points inZk such that
eachαi belongs to one component only, 1≤ i ≤ q. Let τ1 . . . τq be blow-ups of
the pointsα1 . . . αq into the curvesGi (1 ≤ i ≤ q), respectively, and let̄S be
(τ1 B τ2 B · · · B τq)−1(S̄k).

The desired surfaceS = S̄ \ (F̃0 ∪ D̃ ∪ Z̃k).
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Remark. This description of quasihomogeneous surfaces implies, in particular,
that there may be only one singular fiber for a line pencilρ.

We want to choose the “minimal” way to obtainS by the described process, that
is, to obtain a goodρ-closure ofS. For this we want to replaceS0 = P1× P1 by
a minimal ruled surfaceFn (see [B]).

In the sequel, for simplicity of notation we will denotẽZk, Ẽj asZk,Ej, since
this cannot lead to confusion.

Proposition 3. The surfaceS 6∼= C2 obtained by the blow-up process described
previously may be obtained by a similar process: start with the minimal surface
S0 = Fn and end withS̄ such thatE2

j 6= −1 in S̄ for all Ej ⊂ Zk.
Proof. We prove the proposition by induction on the number of stepsk. We start
with the surfaceS0 = Fn and show that, by changingn, we may always eliminate
the(−1) components.

Assume thatk = 0. Sinceρ−1(z1) ⊂ S is singular (recall thatS 6∼= C2), there
are pointsαi ∈ F1 (1 ≤ i ≤ q) that are blown up at the first (and last) step into
the curvesGi. Thus, inS̄ this fiber has the form̃F1+∑ i=q

i=1 Gi (the multiplicities
are equal to 1), which implies that the fiber is not connected,q > 1, and(F̃1)

2 =
−q < −1.

Assume now that the proposition is true for allk < k0. LetEj be a component
of F ∗1 in S̄k0 such thatE2

j = −1. There are two possibilities as follows.
(1)Ej is a result of the blow-upσj . The points of this component are not blown

up at any later step, since doing so would makeE2
j < −1. Thus,Ej may be con-

tracted back and we may obtain surfaceS by the same process, omitting the step
numberj (i.e., as a complement to zigzag obtained by the blow-up process with
one less step).

(2)Ej is a proper transform ofF1. In this case we may blow it down after step
1 and obtain the same surface by the same process (with one less step), starting
with the surfaceS0 = Fn+1 or S0 = Fn−1.

By the assumption of the induction, it follows that the proposition is true
for k0.

Definition. We denote byA the class of all smooth affine surfacesS with
AK(S) = C. Let us denote byH ⊂ A the subset of those surfaces for whichk =
0 in a goodρ-closure obtained by the described process.

Theorem1. A surfaceS ∈A is isomorphic to a hypersurface if and only ifS ∈H.
Proof. The proof is based on a property of hypersurfaces, which was explained
to the authors by V. Lin and M. Zaidenberg. Although this result is classical, we
could not find a direct reference. We proceed as follows.

Lemma 1. LetX ⊂ Cn (n > 2) be a smooth hypersurface. Then the canonical
classK(X) ofX is trivial (i.e., the divisor of zeros of a holomorphic(n−1)-form
onX is equivalent to zero).
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Proof. By the adjunction formula, the canonical class of a complete intersection
in a projective space is a multiple of the linear section [H, p. 188]. Thus, for an
affine hypersurface, this class is represented by the divisor with support in the
hyperplane section at infinity.

Let S ∈A andS 6= C2. The graph0(S̄ ) has the form

•
f

•
d

•
et1

. . . •
e1

. . . •
e0

. . . •
etk

or (if e0 = M1)

•
f

•
d

•
et1

. . . •
e1

. . . •
etk

or (if k = 0)
•
f

•
d

•
f1

,

where the verticesf, d, f1, e1, e0 represent the components̃F0, D̃, F̃1, E1, E0,

respectively, and vertexeti represents the componentEti obtained at the stepti .

Definition. We say thatei < ej (Ei < Ej) if ei is on the left ofej in the graph
0(S). If Ej = Ms andEj ∩ El 6= ∅, then we say thatei < ej if ei ≤ el.
Lemma 2. The canonical class[K(S̄k)] of S̄k (k > 0) is the class of the divisor

K(S̄k) = αF̃0 − 2D̃ − E1+
k∑
i=2

εiEi, (2)

where
α ∈Z; εi < −1 if ei < e1; εi ≥ 0 if ei > e1. (3)

Let

F k
1 = F ∗1 =

i=k∑
i=0

niEi

be the algebraic(total) transform ofF1 in S̄k. If E0 6= M1, then

εi < ni − 1 if ei < e0; εi ≥ ni if ei > e0; n1= n0 = 1. (4)

If E0 = M1, then

εi < ni − 1 if ei < e2; εi > 0 if ei > e2 (i 6= 0);
n2 = 2, ε2 = 0.

(4′)

Proof. We prove first inequalities (3) by induction onk.
The canonical class ofFn is [αF0 − 2D] [B, Prop. III.18]. Consider the first

step: the fiberF1 ⊂ Fn is blown up into two rational curvesF ∗1 = F̃1+ E. Both
curves have self-intersection−1. Two cases are possible.

Case 1: F̃1∩ D̃ = ∅, E ∩ D̃ 6= ∅. According to the formula for the canonical
class of a blow-up [H, Chap.V, Prop. 3.3], the canonical divisor
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K(S̄1) = σ ∗1(K(Fn))+ E
= αF̃0 − 2D̃ − 2E + E = αF̃0 − 2D̃0 − E.

In this case we denoteE = E1 andF̃1= E0.

Case 2: F̃1∩ D̃ 6= ∅, E ∩ D̃ = ∅. Then the canonical divisor

K(S̄1) = σ ∗1(K(Fn))+ E
= αF̃0 − 2D̃ + E = (α +1)F̃0 − 2D̃ − F̃1,

sinceF̃0
∼= E + F̃1. In this case we denoteE = E0 andF̃1 = E1. Thus, fork =

1 the formula is proved.
If E0 = M1, we check the second step. We havee2 > e1, ε1 = −1, ε2 = 0,

andε0 = 0.
Assume now that (2) and (3) are proved for allk < k0:

K(S̄k0−1) = αF̃0 − 2D̃ − E1+
k0−1∑
i=2

εiEi.

Then

K(S̄k0 ) = σ ∗k0
(K(S̄k0−1))+ Ek0

= αF̃0 − 2D̃ − E1+
k0−1∑
i=2

εiEi + εk0Ek0.

Consider the following cases.

(I) At stepk0 we blow up a pointwk0 that belongs only to the componentEs
and is represented by the vertex on the far right (maximal) or next to max-
imal (if we decide that the maximal one will beMj). In this case,es is on
the right ofe1. By the induction assumption we haveεs ≥ 0, andεk0 =
(εs +1) > 0.

(II) At stepk0 we blow up the meeting pointEs ∩ Es ′ , wherees < es ′ ≤ e1.

Thenεs < −1, εs ′ ≤ −1, andεk0 = εs + εs ′ +1< −1−1+1< −1.
(III) At stepk0 we blow up the meeting pointEs ∩ Es ′ , wherees > es ′ ≥ e1 (it

may be thates ′ > e1 andEs = Mj). Thenεs ≥ 0, εs ′ ≥ −1, andεk0 =
εs + εs ′ +1≥ −1+1≥ 0.

(IV) At step k0 we blow up the meeting pointEs ∩ D̃. Thenes ≤ e1 andεk0 =
εs − 2+1≤ −1−1< −1.

Since the graph0(S) is linear, we have exhausted all the possibilities.
Now let us prove the inequalities (4) and (4′). Fork = 1 we haveF 1

1 = E1+E0

andK(S̄1) = αF̃0−2D̃−E1; therefore,ε1 < n1−1. In caseE0 = M1, we check
k = 2: this yieldse1 < e2, ε2 = 0, andn2 = 2.

We prove (4) for anyk by induction. Assume that it is proved for allk < k0.

Then inS̄k0 we have
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F k0
1 = σ ∗k0

(F k0−1
1 ) =

i=k0−1∑
i=0

niEi + nk0Ek0,

wherenk0 = ns + nr if Ek0 appears as a blow-up of the intersectionEs ∩Er and
wherenk0 = ns if Ek0 is the result of a blow-up of eitherD ∩ Es or of a point of
the maximal (or adjacent) componentEs only.

Using the inequalities (4) fork < k0, we obtain the following relations:

nk0 = ns ≤ εs < εs + 1 = εk0 if Es is the maximal (or adjacent) component
ands 6= 0;

nk0 = n0 = 1≤ 1= εk0 if Es = E0;
nk0 = ns + nr ≤ εs + εr < εs + εr +1= εk0 if e0 < es < er;
nk0 = n0 + nr = 1+ nr ≤ 0+ εr +1= εk0 if e0 = es < er;
nk0 = ns + n0 = 1+ ns > 1+ εs +1= εk0 +1 if es < er = e0;
nk0 = ns + nr > εs +1+ εr +1= εk0 +1 if es < er < e0;
nk0 = ns > εs +1= εk0 + 2> εk0 +1 if Es is the minimal component.

Assume now thatE0 = M1. SinceE2 < Ms for all s, the inequalities (4) still
hold for es < e2 (the process is the same in this interval). Any componentEs >

E2, s 6= 0, is obtained fromE2 by sequence of blow-ups. Sinceε2 = 0 and since
we add positive integer each time, we can obtain only positive values fores; hence,
this part of (4′) is evident.

Lemma 3. Denote the transform ofF1 in S̄ by

F k+1
1 = F ∗1 =

∑
Ei⊂Zk

niEi +
i=q∑
i=1

giGi +
i=t∑
i=1

miMi,

where sums include(respectively) all the componentsEi ⊂ Zk, Gi, andMi and
wheren1= 1, gi > 0, ni > 0, andmi > 0.

Then[K(S)] = 0 if and only if the divisorK(S̄) is equivalent to a linear com-
bination ∑

Ei⊂Zk
αiEi + fF̃0 + dD̃ +m

( i=q∑
i=1

giGi +
i=t∑
i=1

miMi

)
(5)

for somem∈Z.
Proof.

K(S̄) = K(S̄k)∗ +
∑

Gi

= αF̃0 − 2D̃ − E1+
k∑
i=1

εiEi +
q∑
i=1

δiGi, (6)

whereδi = εs + 1 for eachGi intersectingEs and where allMj are included in
the first sum.

If [K(S)] = 0, thenK(S) is the divisor of a rational functionh that has zeros
and poles inS only along componentsGi andMi. But thenh does not vanish and
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has no poles in any fiberFz, z 6= z1. Since general fiber is isomorphic toC, it fol-
lows thath is constant along each fiber, that is,h(s) = (ρ(s) − z1)

m. But then
δi = mgi andεi = mmi.
Definition. We call componentEs essentialif there is a componentGis of the
fiberF ∗1 ⊂ S̄ such thatGis ∩ Es 6= ∅.
Remark. We see from Lemma 3 that [K(S)] = 0 impliesεs +1= mns for any
essential componentEs. At least one essential component should exist, since the
fiber contains at least one(−1) curve.

Lemma 4. If k > 0, then[K(S)] 6= 0.

Proof. Consider the graph

•
f

•
d

•
et1

. . . •
e1

. . . •
etk

.

Assume that [K(S)] = 0; that is,εs + 1 = mns for an essential component and
mmi = εi . Several cases are possible regarding the place of essential components
in the graph.

(I) E0 6= M1 and there is an essential componentEs such thates ≥ e0. Then,
according to Lemma 2,ns ≤ εs +1= mns and som ≥ 1.

(II) E0 6= M1 and there is an essential componentEs such thate1 < es < e0.

Then, according to Lemma 2,ns > εs + 1 = mns > 0 and hence 1>
m > 0.

(III) E0 6= M1 and there is an essential componentEs such thates ≤ e1. Then,
according to Lemma 2, 0≥ εs +1= mns andm ≤ 0.

(IV) E0 = M1; sinceε0 = 0, it follows thatm = 0.

We may thus have only one of these cases.
Let us assume thates ≤ e1 for any essential componentEs and thatE0 6= M1.

Let t0 = max{t : et > e1, t ≥ 0}. By construction,(Et ′0)
2 = −1 in S̄k (it is

the result of a blow-up). Hence it should contain a point that is blown up at the
last(k +1) step. But thenEt ′0 is essential, which is impossible in this case (since
e1 < et ′0).

The casees ≥ e0, E0 6= M1, for all essential components can be treated analo-
gously, since the last component to the left ofE0 also must be essential.

Case(II) is impossible, sincem∈Z. In case (IV),m = 0 and thusεs = −1 for
any essential componentEs. By Lemma 2, there is only one such componentE1.

But thenZk = E1∪E2 andE2
2 = −1, which is impossible.

Therefore, (5) can be true only if the graph has three components:

•
f

•
d

•
f1

.

Lemma 5. If k = 0, thenS is a hypersurface.

Proof. Let ρ : S → C be a line pencil inS, let ρ̄ be its extension to a good
ρ-closureS̄ of S, and letϕρ and∂ρ be the correspondingC+-action and LND re-
spectively. Letρ−1(0) be the only singular fiber. All the multiplicities are 1 in this
case, so the fiber cannot be connected. Letu∈O(S) be a function such that:
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(1) ∂ρu = ρn;
(2) u is a linear function along each fiberρ−1(z), z 6= 0; and
(3) u = ui = const along each componentGi of ρ−1(0), i = 1, . . . , q.

Such a function exists, by Proposition 1. We will show that we can chooseu

such thatui 6= uj wheni 6= j and such that the rational extensionū of u to S̄ is
finite and nonconstant along̃F1. Indeed,u is linear along a general fiber, which
means that the intersection(Ūw, F̄z) = 1 for the closure of a general level curve
Uw = {s ∈ S : u(s) = w} and the closurēFz of a general fiberFz = {s ∈ S :
ρ(s) = z}.

There are three possibilities, as follows.
I. ū|F̃1

= u0 ∈ C andu0 6= u1 = ū|G1. Then the intersectionG1 ∩ F̃1 = α1

is a singular point, and a general level curve passes throughα1. Another singular
point α2 = D ∩ F̃1, sinceū|D = ∞. Thus, a general level curveUw must pass
throughα2 as well. But this contradicts(Ūw, F̄z) = 1.

Thus,ū|F̃1
= u0 ∈ C impliesu0 = u1 = u2 = · · · = uq, and we can consider

a new function(u − u0)/ρ instead ofu (becauseF ∗1 = F̃1+∑Gi, i.e.,ρ has a
simple zero along each component).

II. ū has a pole along̃F1. Then each pointαi = F̃1∩Gi (i = 1, . . . , q) should
be a singular point of̄u, andŪw should pass through eachαi. From(Ūw, F̄z) = 1
it follows that there is only one componentG1, and the fiberρ−1(0) is connected
in this case.

ThenS ' C2 (see e.g. [S]) and is evidently isomorphic to a hypersurface.
III. ū is not constant along̃F1. Because(Ūw, F̃1) = 1 for a generalw, it takes

every value only once along̃F1. FromGi ∩ Gj = ∅, it follows thatui 6= uj for
i 6= j andi, j = 1, . . . , s.

Now consider a polynomialp(u) = (u − u1) . . . (u − uq) and v̄ = p(ū)/ρ.

Sinceū is finite alongF̃1, v̄ is regular and finite at all points ofS and has a simple
pole alongF̃1.

LetAj = Hj + Ḡj be the divisorū = uj . Since(Ūw, F̃1) = 1 for a generalw,
we have(Aj, F̃1) = 1 and(Hj, F̃1) = (Aj, F̃1)− (Ḡj, F̃1) = 0. Thus,F̃1 does not
intersect zeros of function̄v. In particular, the intersection pointssj = Ḡj ∩ F̃1

are not singular for̄v; the restriction̄v|Ḡj has simple poles insj and is linear along
eachGi, i = 1, . . . , q (i.e., it takes every valuez∈P1 at precisely one point of̄Gi).

The restriction ofv̄ on S we denote byv, v ∈ O(S). We define a regular map
φ : S → C3 asφ(s) = (ρ(s), v(s), u(s)). We want to show thatφ is an isomor-
phism ofS onto a hypersurface

S ′ = {(x, y, t)∈C3 | xy = p(t)} ⊂ C3.

(A) φ is an embedding. Indeed, the functionsρ andu divide points in
(
S \(⋃

Gi
))
, sinceρ divides fibers of a line pencil andu is linear along each fiber

ρ−1(z), z 6= 0.
The valuesu|Gi = ui provide the distinction between the componentsGi of

ρ−1(0), sinceui 6= uj wheni 6= j. The functionv is linear along eachGi, so its
values are different in the different points of eachGi.
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(B) φ is onto. Lets ′ ∈ S ′ and s ′ = (x ′, y ′, t ′). If x ′ 6= 0, then in the fiber
ρ−1(x ′) there is a point such thatu(s) = t ′. (Indeed,ρ−1(x ′) ∼= C andu|ρ−1(x ′ ) is
linear.) Now,v(s) = p(u)/ρ = p(t ′)/x ′ = y ′, soφ(s) = s ′.

If x ′ = 0, thenp(t ′) = 0 and sot = uj for some 1≤ j ≤ q. The functionv
is linear along the componentGj, so there is a points ∈Gj such thatv(s) = y ′.
Thenφ(s) = (0, y ′, uj ) = (0, y ′, t ′) = s ′.
Proof of Theorem 1 (cont.).Any surfaceS ∈H is a hypersurface by Lemma 5. If
S ∈A butS /∈H, then (by Lemma 4) [K(S)] 6= 0 and (by Lemma 1)S cannot be
isomorphic to a hypersurface.

An example of a surfaceS ∈A \H was given in Section 1:S ⊂ C4 is defined by
the system of equations 

xy = (z2 −1)z,

zu = (y2 −1)y,

xu = (y2 −1)(z2 −1).

We will show that this surface is not isomorphic to a hypersurface. On the other
hand, there are two locally nilpotent derivations defined in the ringO(S), namely:

∂1x = 0,

∂1z = x 2,

∂1y = (3z2 −1)x,

∂1u = 2z(y2 −1)x + 2y(z2 −1)(3z2 −1);
∂2u = 0,

∂2y = u2,

∂2z = (3y2 −1)u,

∂2x = 2y(z2 −1)u+ 2z(y2 −1)(3y2 −1).

It follows thatAK(S) = C.
Corollary to Lemma 1. The surfaceS ⊂ C4 defined by equations

xy = (z2 − 1)z,

zu = (y2 − 1)y,

xu = (y2 − 1)(z2 − 1)

is not isomorphic to a hypersurface.

Proof. Consider the 2-formw = (dx ∧ dz)/x. It is regular in the Zariski open
subsetU0 = {(x, y, z, u)∈ S | x 6= 0}, where(x, z) are the local coordinates.

The fiber{x = 0} consists of four components:

G1= {x = 0, z = 1}, G2 = {x = 0, z = −1},
G3 = {x = 0, z = 0, y = 1}, G4 = {x = 0, z = 0, y = −1}.
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We consider the respective Zariski open neighborhoodsU1, U2, U3, U4 of these
components as follows:

U1 = {(x, y, z, u)∈ S | z 6= 0, z 6= −1} with local coordinatesϕ1 = (z− 1)/x
andψ1= x;

U2 = {(x, y, z, u) ∈ S | z 6= 0, z 6= 1} with local coordinatesϕ2 = (z + 1)/x
andψ2 = x;

U3 = {(x, y, z, u) ∈ S | z2 6= 1, y 6= 0, y 6= −1} with local coordinatesϕ3 =
(y −1)/z andψ3 = z;

U4 = {(x, y, z, u) ∈ S | z2 6= 1, y 6= 0, y 6= 1} with local coordinatesϕ4 =
(y +1)/z andψ4 = z.

Rewritingω in these coordinates, we obtain:

ω = dx ∧ dz
x

in U0,

ω = dψ1∧ dϕ1 in U1,

ω = dψ2 ∧ dϕ2 in U2,

ω = −ψ3dϕ3 ∧ dψ3

ϕ3ψ3+1
in U3,

ω = −ψ4dϕ4 ∧ dψ4

ϕ4ψ4 −1
in U4.

Sinceϕ3ψ3 + 1= y 6= 0 in U3 andϕ4ψ4 − 1= y 6= 0 in U4, this form is holo-
morphic everywhere onS. However,ω|G3 = ω|G4 = 0 and the divisor(ω) =
G3+G4 is not equivalent to zero onS, by Lemma 3. Therefore, by Lemma 1, the
surfaceS cannot be isomorphic to a hypersurface.

4. Corollaries for Cylinders and C+-Actions

Theorem 2. LetS1 andS2 be smooth affine surfaces such thatS1∈H andS2 ∈
A \H. ThenS1× Ck 6' S2 × Ck for anyk ∈N.
Proof. Assume, to the contrary, thatS1× Ck ' S2 × Ck = W.

SinceS1 ∈ H, by Theorem 1 it is isomorphic to a hypersurfaceS ⊂ C3, and
W ' S×Ck is a hypersurface inCk+3 as well. Hence the canonical classes ofW

andS2 are trivial. But then, by Lemma 5,S2 is a hypersurface and, owing to The-
orem 1,S2 ∈H.
Theorem 3. A surfaceS ∈A admits a fixed-pointC+-action with all the fibers
reduced if and only ifS ∈H.
Proof. Let S ∈ A and letϕρ be a fixed-point–freeC+-action. Letρ be a corre-
sponding line pencil and letρ−1(0) consist ofq componentsG1, . . . , Gq. Consider
another surfaceSq = {xy = (z − 1) . . . (z − q)} ⊂ C3. This surface is smooth,
affine, and has twoC+-actions:
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ϕλx (x, y, z) =
(
x,
(z+ λx −1) . . . (z+ λx − q)

x
, z+ λx

)
;

ϕλy (x, y, z) =
(
(z+ λy −1) . . . (z+ λy − q)

y
, y, z+ λy

)
.

Thus,Sq ∈ A. The actionsϕλx andϕλy have no fixed points, because the corre-
sponding LNDs,

∂x : ∂x(x) = 0, ∂x(z) = x, ∂x(y) = p ′(z)
and

∂y : ∂y(y) = 0, ∂y(z) = y, ∂y(x) = p ′(z),
never vanish.

The fibers of the line pencilρx in Sq corresponding to∂x are the curves{x =
const}. All of them are connected except the fiberx = 0, which hasq connected
components. The fibers of the line pencilρ in S have precisely the same structure.

By the theorem of Daniliewski and Fieseler [D; F], the cylindersS × C '
Sq×C. ButSq is a hypersurface and soSq ∈H, by Theorem 1. By Theorem 2, we
also haveS ∈H. Therefore, ifS admits a fixed-point–freeC+-action thenS ∈H.

Now assume thatS ∈H. As shown in Lemma 5,S is isomorphic to the surface

S ′ = {(x, y, z)∈C3 | xy = p(t)} ⊂ C3.

SinceS is smooth, all the rootst1, . . . , tq of p(t) are simple. That is why the LND
∂, defined as

∂ : ∂(x) = 0, ∂(t) = x, ∂(y) = p ′(t),
does not vanish onS ′. But then theC+-action defined by∂ has no fixed points.
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