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Dynamics of Polynomial Hamiltonian
Vector Fields inC2

RomMAIN DUJARDIN

1. Introduction

The main purpose of this article is to provide a dynamical study of a natural
class of holomorphic vector fields, namely polynomial Hamiltonian (or complex
divergence-free) vector fields . By “dynamical study” we mainly mean here
“real-time study”, in a situation where the complex orbits of the flow are well
understood: these are only level sets of a polynomi&l3nWe restrict ourselves
to the polynomial case, which is relevant for many approximation problems (see
Sections 4 and 5); this enables us to use the global geometry of level sets.

We also give a contribution to the study of Hamiltonian vector field§€ %
(k = 2), again by first studying polynomial fields.

We introduce now some terminology (see Section 6 for the higher-dimensional
case). Letp be an entire function i (with coordinatesz, w)). The holomor-
phic vector field

X — dp dp\ _dp 9 ap 0
P \ow™ dz) odwadz 9z 0w

is called theHamiltonianvector field associated to (the Hamiltonigmand the
symplectic formw = dz A dw. This terminology is justified, as in the real case,
by the relationy,« = dp. For further information, see [F] and [FS1]. One sees
readily that the flow ofX, preserves each level sigi = ¢}. We also recall from

[F] that the real-time flow of a holomorphic vector field has a holomorphic exten-
sion to a neighborhood i@ of its domain in the real axis.

The outline of this paper is as follows. In Sections 2—4 we give a rather com-
plete picture of the dynamics of a generic class of polynomial Hamiltonian vector
fields inC?2. Note that, in order to speak of generic properties, one needs to fix the
degree. We hope this can be used as an example for further study.

We also prove that the “quasi-ergodic hypothesis” is satisfied for polynomial
and entire Hamiltonian vector fields. This gives a new proof of a result of [FS3].

In Section 5, we use the preceding work to study exploding orbits of holomor-
phic Hamiltonian vector fields [FG1; FG2]. One says that an akjtlodesf
it reaches infinity in finite time. The following theorem is due to Fornaess and
Grellier [FG1].
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THEOREM 1.1 [FG1]. Thereisadense family c £ (vector space of entire func-
tions inC?) such that, for any* € G, there is a dense set of points with exploding
orbits for the vector fieldr.

With the help of a Fatou—Bieberbach domain we are able to prove a refinement of
this theorem (we also think our proof is technically much simpler) that replaces
“dense set of points” by “outside a union of real submanifolds”.

In Section 6 we prove a version of this theorentiff, again using a Fatou—
Bieberbach domain.

AckNOWLEDGMENTS. | would like to express my warmest thanks to N. Sibony
for his advice and careful observations.

2. Level Sets of Generic Polynomial Hamiltonians

In this section we study the geometry of generic level sets of polynomials (“Hamil-
tonians”) of two variables. L&®, be the affine space of holomorphic polynomials
of degree< d in (z, w), provided with the standard bagisw/, i + j < d}. The
following easy propositions show that, for a typiga& P;, X, has isolated zeros
and the generic level sé¢p = ¢} is irreducible and smooth up to the line at infin-
ity. For background on complex algebraic curves, see for example [M].

ProrosiTION 2.1. Letd > 2. There exists a Zariski dense open subset of Hamil-
toniansp € P, such that the Hamiltonian vector field, associated wittp has
isolated(and hence a finite number pferos.

Proof. Z(X,) is the intersection of two algebraic sets:
ap ap
Z(X,)={—=0;Nq{— =0;.
(Xp) { dw } { az }
A sufficient condition for this algebraic set to be of exact dimensionzy &

det(Grat(a—p>(ZO), Grad(a—p>(zo)) £ 0; @
0z w

that is, the determinant of the Hessian matitdessp)(zo) be nonzero.
Consider

f:Pax C? - 8,
d d
(p,z0) — <—p(Zo), —p(Zo), det(HeSSP)(Zo)>-
0z Jw

A Hamiltonian p satisfies condition (1) at all zeros if, for alh € C?, (p, zo) ¢
Zys; thatis,p ¢ n(Zy), wheren : Py x C? — P, is the natural map.

Sincep — (dp/3z)(zo) and p — det(Hessp)(zp) are homogeneous with
respect to the coefficients gf, it follows that Z; is a closed algebraic set in
PP, x C?; the main theorem of elimination theory (see gM]) asserts that
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7 (Zy) is a closed algebraic subset®f,. It only remains to show that(Zy) #
PP, take p(z, w) = ¢(z) + w?, with ¢ a degree polynomial such thay’ has
only simple roots. O

ReEMARK. Outside the zero seéf(X,), any{p = c} is smooth becausg is lo-
cally submersive.

Now we compactifyC? in P? (projective 2-space) and consider the closure
p~L(c) = = of a level set inP?. Let us first fix some notation: The homoge-
neous coordinates of a point IP? are denoted by : W : T], wherez =
Z/T andw = W/T are the affine coordinates i62; also, 5(Z, W,T) =
pa(Z, W) + Tpy_1(Z, W) + --- + Tpo(Z, W) denotes the homogenization of
p (we suppose of exact degred), and

ST =0} = (5 =0 N (T =0) = {[Z, W, 0], pa(Z, W) = 0.

These points at infinity are smooth pointsyofl(c) if the corresponding roots of
paq in Pt are simple (this is a transversality condition).

It is routine to check, as before, that the conditipnHas exact degre and
the roots ofp, in P* are simple” is valid on a Zariski open subsetijt

ProrosiTION 2.2. There exists a Zariski dense open subsePpfconsisting of
irreducible polynomials. For such a polynomigal p — c is irreducible for all but
finitely manyc € C.

Proof. Consider, for any & k < d, the mapf: Pr x P;_x — P, defined by

f(g,r) = qr. This map can obviously be given a projective sense; that is, one has

a factorizationf: PP, x PP;_, — PP,. By the proper mapping theorem, the

image of f is an algebraic set iR P, that has, of course, nonempty complement.
On the other hand, ip is irreducible then the sé¢t € C, p — c is reduciblé is

a proper algebraic subset@fand hence is finite. O

3. Real Orbits in a Generic Level Set

We wish to perform a study of the (real) dynamics of the vector fijd =
(dp/dw, —dp/dz) (d = degp > 4) in a single level sep~(c) that is invariant by
its flow. In this section we fix generip andc as in the foregoing propositions;
that is,p~1(c) is a smooth compact Riemann surface of geiaus 1)(d — 2)/2 >
1, so X, extends as a meromorphic vector field®r= p~(c) without any zeros
on its affine part. Throughout this article, the term “orbit” means the real orbit of
a pointxg and is denoted b@(xg) (O (xo) is the positive orbit).

We first study the behavior of the vector field near a point at infinitgof

ProrosiTion 3.1. There exists a holomorphic chart near any point at infinity of
¥, whereX, has the form:=@=% 3/3u.

Without any loss of generality we can assufif#, 0, 0] # 0 (with notation as in
the preceding section), and then we settle in the affine ¢Hagt 0}. We now put
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x =W/Zandy = T/Z ({T = 0} becomegy = 0} in the new chart). One easily
checks that, in this new chart, the vector field expresses as

op (1 x op (1 x d oap (1 x\ 0
Xp, ) =—xy— (== ) +y—( =2 )= 2= )=
ow\y vy oz\y y//)ox ow\y y/dy

if we let p(x, y) = p(1/y, x/y) (= p(z, w) whenever the two expressions make
sense), it becomes

ap d  dp 9
X, (x,y) =y =(x,y)— — = (x,y)— ).
p(X,y) =1y (ay (x y)ax ax(x y)3y>

We claim thatX, has poles of orded — 3 in y at the points at infinity of=.
Indeed we haved(x, y) =1/yps(1, x) + - - - + po(L, x), SO

9p —d —d+1
5(X,y)=yd—+lpd(lx)+ " pa-1L x)+---;

but the first termp, (1, x) vanishes at any point & N {y = 0}.

Proof of Proposition 3.1We have chosep, with simple roots in the line at infin-
ity; in coordinateqx, y), this means thap, (1, x) has only simple roots. Hence,
if xg is one of these the(d/dx)(ps (L x))(xo) # 0. By the implicit function the-
orem, y can thus serve as a local coordinate Yor= {y“p(x, y) = cy?} near
(x,y) = (x0,0). By virtue of the previous claim, in an appropriate chartsof
around this pointX, takes the formX(v) = v="“=3£(v)(9/dv), f(0) # 0.

It remains to reach the normal formt “~2(3/du); that is, we must find a local
holomorphic diffeomorphisniy of (C, 0) such that

9 d
Ve X(v) = (w’l(v))’(d*3)f(1/r1(y))1/,/(wfl(v))8_ _ -39
v dv
Letu = ¢ ~*(v). Then one has~“~3f(u)y'(u) = Y ()=~ thatis,

d (Y@ w1

E( d—2 )‘ fan " <W+>
LetG(u) = u?"?/((d —2) f(0)) +- - - be a primitive oft?~3/f (u). It suffices then
to takek(u) a branch of théd — 2)th root of

u—amm_<1 N )
w2~ \f0 )
andvy (u) := uk(u) gives the solution. O

A brief study of this vector field near O gives a picture like Figure 1. There are
2(d — 2) separatrices, that is, integral curves that attain the pole 0 in finite forward
or backward time. Those will respectively be called stable and unstable sepa-
ratrices (stable and unstable manifolds of the singularity).

This means in particular that only a finite number of orbitsSbreach infinity
in finite (positive or negative) time.
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Figure 1 Integral curves ofi=*3/du near 0

REMARK. Multiplying X, by aC* function with zeros of sufficiently high order
atthe poles yields@* field X, with the same trajectories & on . This enables

us to apply Poincaré—Bendixson theory for smooth flows on surfaces, where the
fixed points of the flow are the poles &,.

We now recall some basic ideas concerning the dynamics of holomorphic vector
fields on an abstract open Riemann surfacd=-S1; F; MV]. Let X be a holo-
morphic vector field without zeros a1(S will be the affine part of£). Suppose

the flow X (¢, x) of X is defined on an open intervdl C R; then it extends as

a holomorphic map on a neighborhoodbi {x} in C x S. The inverse of the

local diffeomorphismp: t — X (¢, x) is a “holomorphic flow box chart”, that is,
(. X = 3/3t. The flow box chart can be extended as soon as X(t, x) is
injective (“long flow box chart”). In this chart, the flow is a horizontal transla-
tion. Observe also that, by holomorphy, the vertical direction and length unit are
preserved under change of flow box charts (the horizontal direction is given by
the vector field); because the vertical Lebesgue measure is invariant under hori-
zontal translations, on each small transversal we have a measure preserved by the
Poincaré map, that is, an invariant transverse measure (see also [MV]).
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The following proposition follows then from Poincaré—Bendixson theory, the
absence of zeros on the affine partdfand the identity theorem (see [FS1]).

ProposITION 3.2. If a positive orbitO*(x) on ¥ is bounded inC?, then it is
periodic. Each periodic orbit is embedded in a ring domain where the flow is con-
jugate to a rotation. The corresponding maximal ring domain is bounded by a
cycle of separatrice@@ “graph” or “polycycle” ).

From the finite number of separatrices Brwe deduce the following corollary.

CoroLLARY 3.3. There are only finitely many annuli @ where the flow is con-
jugate to a rotation.

These results are part of the theory of quadratic differentials [Str]: if the vector field
X expresses ag(z)(d/9z) in the local coordinate, then the expression(z) =
(1/f ()% dz? is well-defined onx. By definition,q is a quadratic differential; its
trajectories are the leaves of the foliation tangent to the field of lines defined by
the condition(1/f(z)?)dz? > 0. As a foliation, the integral curves of are the
trajectories of;.

The flow of X preserves the measure

idz NdZ

1
|f(2)I?
associated tg. In the case ok, on X, this measure has finite mass since there are
no zeros and is compact. It is absolutely continuous with respect to Lebesgue
measure. Note thal/| f(z)|?)idz A dZ is only the coordinate-invariant writing of
the Lebesgue measure in flow box charts.

Recall that iff is a measure-preserving transformation of a finite measure space
M then the Poincaré recurrence theorem asserts that, for almost every pint
M, O*(x) intersects any set of positive measure infinitely many times.

The following proposition is a consequence of the theory of quadratic differen-
tials, but for the convenience of the reader we include here a proof that uses only
the theory of smooth flows of surfaces (see e.g. [PM; NZ]). Recall that an orbit
is said to bepositively recurrentif it is contained in itsw-limit set. Any periodic
orbit is recurrent and, by Poincaré—Bendixson theory and holomorphy, a honperi-
odic recurrent orbit orE must be unbounded (since it must cluster on a singular
point of the vector field).

ProrosiTioN 3.4. 1. All orbits of the vector field,, except stable separatrices,
are positively recurrent.

2. Thew-limit set of any nontrivia(i.e. nonperiodi¢ w-recurrent trajectory has
nonempty interior.

By reversing time, one obtains similar conclusionsddimit sets.

Proof of Proposition 3.41. We use the finite invariant measure introduced pre-
viously (Lebesgue measure in flow box charts). The union of stable separatrices
is a nullset and, in its complement, all orbits are defined in positive time. The
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Poincaré recurrence theorem then asserts that almost every orbit is positively re-
current (including unstable separatrices that are not saddle connections).

This would be sufficient for our purposes, but we want to show also that all non-
recurrent orbits are separatrices. Suppase X is notw-recurrent. Letl be a
small open interval transverse X, atxo, and let

D={xeT | O"(x) cutsT}

be the domain of the Poincaré first return map. Sibds an open subset df of
full measure, it follows thaD = | J,, 1, is a union of open intervals. Suppasg

is a boundary point of such an interval @n Then it is a classical result (see e.g.
[PM, pp. 145-146]; we sketch a proof shortly) thatx;) is a single saddle point,
that is,x; is on a stable separatrix. Becaudé(x;) does not cufl’ again, there
are only finitely many such points ang is one of them.

We now sketch a proof of the fact that(x;) is a saddle point (see [PM] for
details). First, through any point of a nontrivial recurrent ogbthere is a circle
transversal taX,,: fix a small transversal, cover the segmentyobetween two
consecutive intersections by two long flow box charts, and then use straight lines
transverse td, in these charts. Since almost all orbits are nontrivial recurrent,
there is a transverse circle through any pointof

Now suppose there is a regular pairih w (x1), and letC be a transverse circle
througha. If x; € I as before and ify € I, then the number of time®*(y)
cutsC between two consecutive intersections withs a constantv on I, as it
is locally constant and is connected. BuO™(x;) cutsC infinitely many times
without cuttingT again—a contradiction.

2. Let A be the union of the annuli of periodic orbits. All orbits ¥\ A are
nontrivial (i.e. nonperiodicp-recurrent except stable separatrices; this is the first
part of the proposition. Let us show that the union of the unstable separatrices is
dense inz\ A (in fact we show this for stable separatrices, but it suffices to reverse
time to achieve the desired result). LLétbe an open subset af\ A and suppose
that no stable separatrix cuts ThenX (¢, x) is defined for alk > 0 andx € U,

U =J,.oX(, U) is a hyperbolic open set (recall that ge@$ > 1), U N A =
¢, and the flow is a holomorphic endomorphisniaf

Let us show that the time-1 mayy : &/ — U/ is not onto. Suppose itis; then the
time-(—1) of the flowis well-defined oi¥; thatis, the vector field, isR-complete
when restricted té/. We now consider the closur& of the 1-parameter group of
automorphisms generated by the flovidnSincel/ is hyperbolic and since orbits
do not tend uniformly to the boundary (by recurreneg)js compact (see [FS1]).

In particular, orbits are compactly containedinBy Poincaré—Bendixson theory
there is a periodic orbit or a critical point i, which is a contradiction.

Now the time-1 map?; is a contraction for the Kobayashi metric, and it is a
classical result [CG, Lemma 4.2.2] that all orbits tend to a single poinit dhus
no orbit inZ/ can be nontrivial recurrent, which is a contradiction.

Hence there arg unstable separatrice whose w-limit sets w(S;) have
nonempty interior and covex\ A. The S; are recurrent because they cannot be
saddle connections. Lete w(S;) be a recurrent point; Maier’s theorem [NZ,
p. 30] asserts that, if andy are recurrent and(y) > x, thenw(x) > y (you
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should be convinced by drawing a picture, but the proof is not that obvious). In
our casew(x) D §; and we are done. O

REMARK. We also quote the following result from [Str, p. 166], which we shall
use later: If theo-limit set w(x) has honempty interior, thei(w (x)) is a union

of saddle connections (orbits that are stable and unstable separatrices). Moreover,
except for at most countably masythe vector field:”® X, has no saddle connec-
tions and all orbits except possibly separatrices are den3e on

4. Neighborhood of a Periodic Orbit in C2. Generic Properties

We want first to link the dynamics between nearby level sets in the neighborhood
of a closed orbitD " (xq). We still take generip of degree> 4 as in Section 2,

and we supposgp = p(xo)} is smooth, irreducible, and does not carry any zero
of X,.

ProposiTION 4.1.  Letxq be as before, with perio@y for the flow ofX,,. Then,
either.

(a) there exists a neighborhood 6f*(x) in C? where the flow is conjugate to a
rotation with periodTg; or

(b) O™ (xp) has a neighborhood where periodic orbits with period n&gell lie
in{p = p(xo)}; or

(c) there exists a real-parameter familyS of values ot near p(xqo) such that
each periodic orbit nealO "(xo) with periodT near Ty lies in a{p = c},
ces.

Proof. Recall from Proposition 3.2 that, i is Ty-periodic, then it has an annular
neighborhood in {p = p(x0)} where the flow is conjugate to a rotation. Hence
there is a neighborhoadd of O*(xq) in C2 that is biholomorphic tad x D (unit
disc inC) and where, after a suitable change of coordinatelgs on thez-axis
and each nearby level set is a graph atekVe assume furthermore tha, does
not vanish on level sets intersectitig

The domain of the flowr, x) — X(z, x) is an open set ift x C? containing
R x O*(xg). By reducingU if necessary, we can assume that, x) is well-
defined onV x U, whereV is a neighborhood of [0Iy] in C. Any closed orbit
sufficiently close toO*(xg) with period nearTy is contained in/. Conversely,
we claim that each closed orbit that remaindjimas periodl’ near7y. This is a
consequence of the local pictureléfgiven previously: since any orbit contained
in U lies in annulus oveA, a closed orbit cannot wink > 1 times (this argument
isin [FS1)).

Let (with V(Tp) a neighborhood ofp in C)

v V(Ty) x U — C?,
(t,x) — X(t,x) — x.

The foregoing discussion shows that any periodic orbit contain€dsrin Z (y) =
{¥» = 0}, which is an analytic set. Sinc&@*(xg) C Z(v), it follows that
dmZz@) > 1
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If dim Z(y) = 1, thenU N {p = p(x0)} is isolated within annuli of periodic
orbits of period neafy.
If dim Z(y) = 2, as

oV - (3, 6) = TX, (X (1, X)) + (df, X —id) - &

and X, is nonvanishing, one sees readily ti#t)) is smooth(y/ is submersive
nearO™(xq)) and the projection on the-coordinate is locally onto nea*(xo).

If Z(y) C {t = Ty}, then O™ (xp) has a neighborhood df-periodic orbits. If
not, it means that, fat € U andx = #(T(x), x) with (T'(x), x) € Z(y) and by
reducingU again, we can suppose thHatx) is holomorphic and depends only on
p(x), because if has ar'(x)-periodic orbit(7(x) € C) then it is surrounded on
{p = p(x)} by T(x)-periodic orbits. It remains to note that#f(x) € C\R then
O*(x) spirals outsidé/. O

ReMaRrk. If a point has a complex and nonreal period, its real orbit can still be
closed—that is, have another real period. For example, on the @§], for
anyk € 7 we have that any point id + ki )-periodic for the flow of the (complete)
vector field induced by/du.

We are now in position to prove the main theorem concerning the behavior of
generic polynomial Hamiltonian vector fields.

THEOREM 4.2. Letd > 4. There exists a sdf of zero measure if?; such that,
for any p € P,\ E, the set of points with bounded positive orbit ¥ is con-
tained in an at most countable uniahof real hypersurfaces ift?. If x e C?\ X,

then either

(a) the flowd (¢, x) does not exist for € R™, that is, ® (¢, x) tends to infinity in
finite positive timgx belongs to the set of separatrigesr

(b) the flowd (¢, x) exists forr € R*, in which caseO*(x) is recurrent and the
limit set ofx has nonempty interior ifip = p(x)}.

Moreover, this latter set has full measureGf\ .

Proof. Propositions 2.1 and 2.2 show that there is a Zariski closed subset (hence
of zero measurefq C P, such that, forp € P,;\ Eo, X, has finitely many zeros

and such thap is irreducible, of exact degreé and has only simple roots on

the line at infinity. Hence, for all but finitely manye C, the results of Section 3

are valid on{p = c}. For pg € P,\ Eo we want to show that, for all but at most
countably many e S, we have:

(i) epoe P\ Eo; and

(i) X.i,, has no open set of boundeée periodic orbits.

The first point is obvious, and the second is a theorem of [FS1] whose proof goes
as follows. Let> g be the (finite) set of nongeneric (i.e., reducible or critical) level
lines and le(A,),-1 be a neighborhood basis 8f\ Xo. Let ®4(z, x) be the flow

(0 _ .
of e X,y = X,is,,, and set

I, ={e" € SY|Vx € A,, Vi e R*, ®y(t, x) € B(O, n)};
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if O € I,,, thendy, (¢, x) is conjugate to a rotation on the open Aetsaturated of
A, by the flow. Then, for O< 6 < &, the orbit of points inA,, underX,ive-0,
spiral outsideB(0, n); that is,6p + 6 ¢ I,. Hencel, andl J,., I, are at most
countable.

Fubini’s theorem then asserts that there is afset Eq U E; of zero measure
in P, such that, forpg € P\ E, there are no open sets of bounded periodio
orbits. We claim that for such gy the conclusions of the theorem are valid.

Let pg € P,\ E as before. Le#A,, = {periodic points inB(0, n) with periodT
[1/n, n]} (we avoid zero because there may be fixed point8(® n)). ThenA,
is contained in a finite union of real hypersurfaces. Indeed, sigcee E, there
is no open set of periodic orbits and hence (by Proposition 4.1) fgrally) €
B(0, n) x [1/n, n] there existsVy x V, € Neigh(x, Tp) such that either:

(i) no point of V4 is T-periodic for allT € Vy; or
(i) all points of V4 that areT’-periodic(T € V) are contained in a real hypersur-
face, possibly a single level set.

Compactness a8 (0, n) x [1/n, n] then implies the desired result. We deduce that
bounded orbits are contained|iy, A,,, which is a countable union of real hyper-
surfaces. The behavior of unbounded orbits on generic level lines was detailed in
Section 3 (see esp. Proposition 3.4). O

n>1

REMARKS. 1. Byreversing time, one obtains similar conclusions for negative and
total orbits.

2. The proof shows that, iV is the dimension of?;, then E haso-finite
(N — 1)-dimensional Hausdorff measure.

3. Inthe case of degree 3, generic level sets are complex toX ahds neither
zeros nor poles. Thus,, is induced by a constant vector field, and its dynamics is
well known: orbits are all periodic or all dense. The dynamics in the genus-0 case
is described in [MV].

With the terminology of [FS3], we say that the quasi-ergodic hypothesis is satisfied
if, in generic level sets, there is a dense orbit. We prove here that the quasi-ergodic
hypothesis is valid for polynomial Hamiltonian vector fieldsdA.

THEOREM 4.3. Letd > 4. Then there exists a dense subSedf full measure of
P, with the following property: for any € G, there is a densé; subsetC, C C
such that, forc € C,, there is a dense orbit ofp = c}.

ReMARK. It follows from the proof of Corollary 4.4 that is aGs.

Proof of Theorem 4.3We first exhibitthe sef. Let p be a generic degre¢ poly-
nomial as in Theorem 4.2, and IEtbe as in this theorem. Pick a dense sequence
{c,, n € N} in C. We know (see the remark after Proposition 3.4) that for each
p~Xc,), except for a se®, consisting of at most countably mafythe vector
field e’ X, has all orbits except separatrices densg@otc,) (this is a matter of
breaking all saddle connections).

Thus we have that, for eaghe P,\ E, there exists a countable setsuch that,
foro ¢ ©:
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(i) on each level ling p = c,}, n € N, all orbits X,», except separatrices are
dense; and
(i) ep e Py\E (i.e.,ep is generic in the sense of Theorem 4.2).
By Fubini’s theorem, the sef C P,\ E of polynomials with dense orbits on
{p = cu, n e N} is of full measure.
It remains to show that ip € G then the set

{x eC?| O*(x) is dense inp = p(x)}

is aGs; this easily implies the same property for valuesC. First we claim that
there exists a family of (honconnected) open gétstransverse” to the singular
foliation { p~X(c), ¢ € C} in the following sense:

(i) for each noncritical value e C of p and for alln e N, p~(c) N U, # @;

(i) foreach noncriticat, { p~X(c)NU,, n e N} is a neighborhood basis pf(c).
We now sketch the construction of this family. Above each noncritical valfe
p (there are finitely many critical values by Bezout’s theorepmis a topological
fibration with fiber isomorphic to a genyssurface minug points. Hence, above
a small neighborhoo# of ¢ we easily get a family/, (V) satisfying the desired
assumptions. Then it suffices to cov&x{critical value$ by a countable number
of suchV.

Next, let/; be the open set of such thatO*(x) hits U,. We know that

uk D {P = Cp, HEN};
thereforel{, is dense anfl), U, is the desireds;. O

Let€ = O(C?) be the space of entire functionsGs. The following corollary was
proved for entire Hamiltonian vector fields in [FS3] with quite different methods.
Theorem 4.3 allows us to provide a new proof of this result.

CoRroLLARY 4.4. There exists a dengg; and aG’ of Hamiltonians inf satisfy-
ing the quasi-ergodic hypothesis. In other words, ¥be G’ there is a densé;
subseCy c C such that, folc € Cy, there is a dense orbit ofp = c}.

Proof. We know by Theorem 4.3 that the quasi-ergodic hypothesis is valid on a
dense subset &f; we need only check that it is valid onG.

For this, takep € P, satisfying the quasi-ergodic hypothesis andlet p~(c)
with a dense orbit. Covex N B(0, N) by a finite number of ball$U; }1< j<qv)
of radius< 1/m (m andN are positive integers). Lét = U(p,c,e,m,N) C £
be the open set of Hamiltonia#s such that:

() lp = Hllz=Bo.n)) <&
(if) there exists a neighborhodd(c) of ¢ such that’ € Vi(c) implies
q(N)
H)nBO.N) c | U
1

and
(iii) there exists a neighborhood,(c) of ¢ such that, fore’ € V,(c) and for all
Jj1, j2, there is an orbit o ~1(c") intersectingl;, andU;,.

Itis clear that/ is a neighborhood gp in £.
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Now the union—of thesé{(p, ¢, e, m, N) for p in J,.,P. satisfying the
quasi-ergodic hypothesis ardsuch that there is a dense orbit pn'(c)—is an
open dense subskf(e, m, N) of £. The intersectiorG’ = (), myUE,m, N)
provides the desired; (we pick a sequencg, — 0). ’

Indeed, ifH € G/, letV,, y be the set ot € C such that there is a covering of
H~(c) N B(0, N) by finitely many balls of radius/lz and an orbit ofX; that in-
tersects all these balls. Th&h y is open and dense . Andif c € (), y Vi, v,
then the flow ofX is topologically transitive o ~X(c). O

5. Exploding Orbits

First, we need to recall well-known facts concerning Fatou—Bieberbach (F.B.) do-
mains. An F.B. domain is an op&a c C2, biholomorphic toC? and such that
Q # C2. Such domains frequently arise in holomorphic dynamics of automor-
phisms ofC?2.

Consider a so-called Hénon mapping

f: C? — C?,
(z, w) = (aw +¢q(2), az),

with |a| < 1and wherg is a polynomial of degree at least 2. Suppose that 0 is an
attracting point; then its immediate basin of attractipis an F.B. domain, which

is Runge and has the following remarkable property [BSintersects each alge-
braic curve on a nonempty relatively compact set.

This fact can be used to construct vector fields with many exploding orbits (see
[F]); we recall here a basic example. Lgt C? — Q be the F.B. map, and con-
sider for instance a constant vector fié¢ldn : all real orbits are real lines and
so cutd in finite time. Thus, all real orbits ofp 1),V (where(.), denotes the
usual push-forward on vector fields) explode.

Let £ be the space of entire functions@?, which is seen as the space of holo-
morphic Hamiltonians.

THEOREM 5.1. There is a dense subs6t C £ such that, for every € G, the
set of points with nonexploding orbits f&ty is contained in an at most countable
union of real hypersurfaces.

Proof. With notation as before, the operatpt: O(Q) — O(C?) =&, ¢*(g) =
g o, is acontinuous (topology of uniform convergence on compact sets) isomor-
phism. LetP be the space of holomorphic polynomials of two variabfes=
U4-1Pa. SinceQ is Rungeg*(P) is a dense subset éf and if P’ is dense in
P then so isp*(P’) in €. Take as @’ the union ford > 4 of the full measure
subsets of Theorem 4.2; of courg®,is dense irP. We claim thatG = ¢*(P’)
satisfies the assertion of the theorem.

First, note that if the eigenvalues of the Hénon mapgirag O are nonresonant
(e.g.,0< |r1| < |A2| and|Az)? < |A1]) thenthe F.B. map is lim,,_ oo (do f) " f"
and is of constant Jacobian determinant 1 (this is also true without the nonreso-
nance assumption [RR; Ste]), g@reserves the symplectic form*(dz A dw) =
dz A dw.
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Henceg preserves Hamiltonian vector fields [AM]; that i, (X.) = X, .4-1.
In particular, ifL = po¢ € ¢*(P’) theng.(X.) = X,. This means that the (real)
integral curves, of X; are thep— o o,, whereo, are the integral curves of,.
Then we are doney, explodes if and only i&; reache9$<2 in finite time, and be-
cause{p = c} N Q is bounded for any, this happens i#, is unbounded and so
the theorem follows from Theorem 4.2. O

REMARK. We cannot expect to obtain (Baire-) generic properties iowing to
Corollary 4.4.

6. Exploding Orbits in C%

Here& denotes the space of entire functionsdff. We want to give a proof of
the following theorem.

THEOREM 6.1. There exists a dense subggtc £ such that, ifH € G, then the
set of points inC2* with exploding orbits fotX is a denses;.

We recall thatirC?* (coordinateszy, ..., zx, w1, ..., wi)) provided with the sym-
plectic formw = )", dz; A dw;, the holomorphic Hamiltonian vector field asso-
ciated with the Hamiltonia®/ is

o0H oH oH oH
Xg=\—, ..., —, ———, ..., ———|;
ow, owy 071 0z

hereXpy is tangent to the hypersurfacgd = c}.
The following theorem is due to Fornaess and Sibony [FS2].

THEOREM 6.2. There exists a denge; subsetG’ C £ such that, ifH € G/, then
the set of points i 2* with unbounded orbits fok ; is a denseG;.

It is an easy exercise to see that in this theorem one can reflagehe space

P, of holomorphic polynomials of degree d in C?* (d > 3, d fixed). Indeed,

the main argument of the proof is that bounded open sets of bounded orbits are
unstable under small perturbations (replack)gby X,,) of the Hamiltonian.

Proof of Theorem 6.1.

Step 1: A Fatou—-Bieberbach domaifhe technique of proof is the same as in
Section 5. Letf be the following polynomial automorphism 6

i@y 2wy we) = (awi+ q(21), -, awg + q(2k), azy, - .., AZk),

with |a| < 1, ¢ a polynomial of degree- 2, and 0 as an attracting fixpoint. Note
that f is a regular automorphism [S] and the basin of attraction of 0 is a Fatou—

Bieberbach domaif. In homogeneous coordinatesii*, [Zy @ ---: Z; : Wy :
- Wi 1 T, we have
QNT=0=I7(f)=[0:---:0:Wy: - W;:0]=:1"

[S]; itis a (k — 1)-dimensional linear subspace @f = 0} = P?*~1, If for each
d > 3 we find aG; dense subset,; C P, such that, forp € G,, the generic real
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orbits of X, cut 92 in finite (positive and negative) time, then Theorem 6.1 will
be proven (see Section 5).

Step 2: The complex orbit¥Ve study here the leaves of the singular holomor-
phic foliation by curvesF onP2¢ generated by the vector field, for genericp €
P,;. In what follows, L, denotes the leaf af throughx; if x € Q, thenA, is
the connected component bf N Q containingx and O *(x) is the real-time pos-
itive orbit throughx. We want to show that, nedrt, F has a nice behavior for
genericp.

We compute the expression &f, after a change of coordinates ng¢@r= 0},
for example, in the chaft; # 0}. One has

z21=21)T,...,2k. = Z;)T and wy= Wy/T,...,w =W, /T,;

set

The generic point is
M= (21 -y 2> Wiy -, W) = (X2/01, ., Xi /10, Yo, yo/ta, -5 Y /1),

where the two expressions make sense. The expressiog(af) in the new chart
is
k

a 9 9
Z[tl—(m)+th (m)}a— Z[ t1—(m)+y,t1—(m)}

i=1 —2 9y

t —_ —_
* l ( )al]_
To obtain a holomorphic vector field neftf = 0}, we need to multiplyX, by
tld_z for genericp (outside a proper algebraic subsetRyf. Then the singulari-
ties of 7 in {T = 0} are the solutions of the homogeneous system of generically
independent 2 — 1 equations

1 dpa 10ps _ 1 0pa 1 0ps

71 3w1 Zk 3wk w1 071 Wy 0Zk ’

wherep, is the highest-degree term pf
As a consequence we get that, for (Zariski-) generi¢see Section 2 for
methods):

(i) {T =0}and{T = 0} N {p = O} are F-invariant;
(ii) Sing(F) is 0-dimensional and Sirig) N I+t = ¢; and
(iii) there are no tangencies betwegrand/*.
For the last property, note that is the(k — 1)-dimensional subset ¢f" = 0} =

P?k=1 parametrized by [0 :-- : O : Wy : --- : W, : 0]; moreover, in an affine
chart of{T = 0}, F is generated by a vector fiekl = (X3, ..., X,_1) as before.
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Now the set of points wher¥ is parallel to/ * is {X; = - - - = X, = 0}, which is
again(k — 1)-dimensional. These two sets generically do not intersect.

REMARK. It is possible to show that the indeterminacy étf) of the projec-
tivization of a polynomial automorphism @ preservings has dimensior>
k-1

Step 3.There exists a neighborhoddof 7+ in C2* such that, for Baire-generic
p, there is an opefr; dense inV such that all real orbits of, starting atV; N @
cutd in finite positive and negative time.

Take p Zariski-generic satisfying the conclusions of step 2, and fix a neighbor-
hood of I+ free of singular points. I € I+ thenL, is transverse td*; we
can straighter in a neighborhooaV of x in P2*, In the straightened chart;*
is a submanifold nowhere tangent to the foliatignjs parallel to{T = 0}, and
QN{T =0} = I*. This ensures that if € Q is close enough t® then the con-
nected component, of L, N Q satisfiesA, cC N andA, N{T = 0} = ¢;
henceA, is bounded irC?* and biholomorphic to a bounded domainGn

Because the leaves gf are straightened iV, we can use the methods of Sec-
tions 3 and 4 here (beware that, in the foliated chart, the vectorXigld tangent
to a set of straight lines but not constant). If the positive orbjtaf A, does not
cut 9% in finite time then it is periodic, sinca, is biholomorphic to a bounded
open setirC (remember, there are no critical pointslin. Also, for all but count-
ably manyé, X,», has no open sets of periodic orbits Whand periodic orbits
remain in a union of real submanifolds of codimension.

The complement of this union of submanifolds is not open a priori, and it re-
mains to check that the dense set of point® of 2 with orbits leaving® contains
an openVy: just note that the condition0*(x) leavesQ” is open. We can do the
same for negative orbits. This proves step 3.

To conclude the proof of Theorem 6.1, take (Baire-gengrisatisfying steps
2 and 3. Letx € C?!; thenA, cc C?F. Indeed, ifL, N Q had an unbounded
component then it would reach any neighborhood bf which contradicts the
local picture given in step 3: nedr", the leaves are parallel to the hyperplane at
infinity and the connected componerits are bounded. Hence, & *(x) is un-
bounded then it cutd< in finite time. So ifp is taken in the Baire-generic family
of Theorem 6.2—which comes down to breaking open sets of periodic orbits by
multiplying by ¢?—then we are done. O

ReMarks. 1. Following these techniques, one can easily show the same kind of
results for volume-preserving vector fieldsGri.

2. AsintheC* case [AM], itis possible to find an invariant measure on generic
level sets for a polynomial Hamiltonian vector field (at least for generiéndeed,
assumgX, = 0} N {p = 0} = @; then, by Hilbert's Nullstellensatz, there exists
a polynomial holomorphi¢2k — 1, 0)-form o such thav A dp = (1— Ap) o,
where A is a polynomial. One then easily checks thdif_o is an X ,-invariant
form (this is a local condition) and that A & is an invariant volume form on
{p =0}
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