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Solving thed- andd-Equations in Thin Tubes
and Applications to Mappings
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1. The Results

Let C" denote the complex-dimensional Euclidean space with complex coor-
dinates; = (z1. ..., 2,). A compactC*-submanifoldM c C”" (k > 1), with or
without boundary, igotally real if for eachz € M the tangent spacé M (which

is a real subspace @ C") contains no complex line; equivalently, the complex
subspac&,“M = T.M +iT.M of T.C" has complex dimension = dimg M for
eachz € M. We denote by[;M = {z € C":dy(z) < §} the tube of radiug > 0
aroundM; here|z| is the Euclidean norm of € C" anddy(z) = inf{|z — w| :
we M}

For any open set/ ¢ C" and integery, g € Z, we denote b)CZ (U) the
space of differential forms of clagé and of bidegreép, ) onU. For each multi-
indexa € Z7 2n we denote by “ the corresponding partial derivative of orden
with respect to the underlying real coordinates@h

The following is one of the main results of the paper; for additional estimates
see Theorem 3.1.

1.1. THEOREM. Let M C C" be a closed, totally real¢'-submanifold and let
0 < ¢ < 1 Denote byT; the tube of radiug > 0 aroundM. There is asg > 0

and for each integef > 0 a constantC; > 0 such that the following hold for all
0<8§<68p,p>04¢g=>1andl >1 ForanyueC’ (75) with du = O there is
ave C pq—1(Ts) satisfyingdv = u in 7.5 and satlsfylng also the estimates

vl (725 < CobllullLoocTs);
o o 1—|«| (11)
0%Vl oo (7es) = CrBlIO%ullLoo(rsy + 87 “lulloecrs), el < L.

If g = 1and the equatiov = u has a solutionyg € C{7 (7). then there is a
solutionv eC(;lo)(T) of 9v = u on 75 satisfying

18;0%Vll (724 < Crra(@(®;8v0. 8) + 8 lull ()

forl<j<nand|a| =1.

In the last estimatey (f, §) = sup{| f(x) — f(¥)| : |x — y| < 8} is themodulus of
continuityof a function; wheny is a differential form orC”, w(, t) is defined as
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the sum of the moduli of continuity of its components (in the standard basis). The
constants”, appearing in the estimates are independent afids (they depend
only onM andc).

The solution in Theorem 1.1 is obtained by a family of integral kernels, depend-
ing oné > 0 and constructed specifically for thin tubes (and hence is given by
a linear solution operator on each tullg. Immediate examples show that the
gain of§ in the estimate fop is the best possible. Whenis a (0, 1)-form (or a
(p, D-form), the estimates for the derivatives oin (1.1) follow from the sup-
norm estimate by shrinking the tube and applying the interior regularity for the
d-operator (Lemma 3.2). This is not the case in bidegtgeg) for ¢ > 1. We
refer to Section 3 for further details.

Another major result of the paper is Theorem 5.1 on solving the equétien
u for holomorphic forms in tubegs with precise estimates. Theorem 5.1 is ob-
tained by using the solutions of tlleequation (provided by Theorem 3.1) in the
proof of Serre’s theorem to the effect that, on pseudoconvex domains, the de Rham
cohomology groups are given by holomorphic forms.

We now apply these results to the problem of approximating smooth diffeomor-
phisms between totally real submanifold=dr by biholomorphic maps in tubes
Ts and by holomorphic automorphism Gf'. The tools developed here give opti-
mal results without any loss of derivatives in these approximation problems.

The complex normal bundle,, — M of a totally real submanifolds c C”
is defined as the quotient bundlg, = TC"|,,/TM. It can be realized as a
complex subbundle df C"|, such thatf C"|,, = TM @ vy. Given a diffeo-
morphismsf: Mo — M, between totally real submanifolddy, M, C C", we
say that the complex normal bundles v; — M; are isomorphic ovey if there
exists an isomorphism @-vector bundleg: vo — v; satisfyingrio¢ = f omy.

1.2. THEOREM. Let f: Mg — M be a diffeomorphism of clagé between com-
pact totally real submanifoldafy, M, c C”, with or without boundaryn > 1,
k > 2). Assume that the complex normal bundlegtgand M, are isomorphic
over f. Then there are numbesg > 0 anda > 0 such that, for each € (0, o),
there exists an injective holomorphic magp 7sMy — C” such thatFs(7sMg) D
T.s M1 and the following estimates hold for< r < k as§ — O:

I Fslpo — fllermey = 05", IFy s — £ Hleromy = 08, (L.2)

TheC"(M)-norm is defined as usual by using a finite open coveriniy dfy co-
ordinate charts and a corresponding partition of unity. An important aspect of
Theorem 1.2 is the precise relationship between the rate of approximatitfy on
(resp., onM;) and the radius of the tube on which the approximating biholo-
morphic mapF; is defined. The condition that the complex normal bundles are
isomorphic overf is necessary because the derivative of any biholomorphic map,
defined nean, and sufficiently close tg in theC'(Mg)-norm, induces such an
isomorphism. IfMy and M; are contractible (such as arcs or totally real discs)
or if they are of maximal real dimension then Theorem 1.2 applies to ady-
diffeomorphismf: Mg — M;.
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When all data in Theorem 1.2 are real-analyffcextends to a biholomorphic
map F from a neighborhood o#/, onto a neighborhood a¥f; (see Remark (1)
after the proof of Theorem 1.2 in Section 4). In such case we saythand M,
arebiholomorphically equivalensuch pairs of submanifolds have identical local
analytic properties i€”. This is not so iff is smooth but non-real-analytic, for
there exist smooth arcs @" that are complete pluripolar as well as arcs that are
not pluripolar [DF], yet any diffeomorphism between smooth arcs can be approx-
imated as in Theorem 1.2.

We don't know whether in general there exist biholomorphic mgps afixed
open neighborhood af7y and satisfying (1.2) a8 — 0. However, in certain
situations we can approximate diffeomorphisms by global holomorphic automor-
phisms ofC”. Recall that a compact sé&f c C” is polynomially convexf for
eachz € C"\ K there is a holomorphic polynomid on C”" such that P(z)| >
sup{|P(x)| : x € K}. We denote by AuC” the group of all holomorphic auto-
morphisms ofC".

DEFINITION 1.

(a) A C*-isotopy (or a C*-flow) in C" is a family of C*-diffeomorphismsf;:
My — M, (t € [0, 1]) betweerC*-submanifolds\, ¢ C" such thatf, is the
identity on My and such that botlf,(z) and %f,(z) are continuous with re-
spect to(t, z) € [0, 1] x Mg and of clas€*(My) in the second variable for
each fixed €0, 1].

(b) The isotopy in (a) is said to hetally real (resp.,polynomially convexif the
submanifoldM, c C” is totally real (resp., compact polynomially convex)
for eachr € [0, 1].

(c) Theinfinitesimal generatoof f; asin (a) is the time-dependent vector fi&ld
on C” that is uniquely defined along, by the equatio%ﬁ(z) = X,(fi(2))
(z€e My, t €[0,1)).

(d) A holomorphic isotopyor holomorphidlow) on a domainD c C” is a fam-
ily of injective holomorphic mapg;: D — C" such thatFy is the identity
on D and such that the mags(z) and%Ft(z) are continuous with respect to
(t,2) €[0, 1] x D. Its infinitesimal generatok,, defined as in (c), is a holo-
morphic vector field on the domaiB, = F,(D) for eachr € [0, 1].

1.3. THEOREM. LetMy C C" be a compacf*-submanifold ofC” (n > 2, k >
2). Assume thatf,: My — M, C C" (t € [0, 1]) is a C*-isotopy such that the
submanifoldM, = f;(My) c C" is totally real and polynomially convex for each
t €[0,1]. Setf = fi: Mo — M;. Then there exists a sequenEes AutC” (j =
1,2, 3,...) such that

Im | Filpe = fllekaag =0, lim ||Fj_1|M1 - f_1||C"(M1) =0. 1.3)
J]—> 00 J—> 00
Combining Theorem 1.3 with Corollary 4.2 from [FR] yields the following.

1.4. CorOLLARY. Let f: Mgy — M; be aC*-diffeomorphismk > 2) between
compact, totally real, polynomially convex submanifold€dfof real dimension
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m. If 1 < m < 2n/3, then there exists a sequenEec AutC” (j =1,2,3,...)
satisfying(1.3).

Theorems 1.2 and 1.3 are proved in Section 4. A weaker version of Theorem
1.3 (with loss of derivatives) was obtained in [FL] by applying Hormandgf's
method for solving thé-equations in tubes. For a converse to Theorem 1.3 see
[FL, Rem. 2, p. 135]. Whelf is a real-analytic diffeomorphism asin Theorem 1.3,
the approximating sequenée e Aut C" can be chosen such that it converges to a
biholomorphic magF in an open neighborhood #f in C” satisfyingF |y, = f
[FRI.

We now consider the approximation problem for maps preserving one of the
forms

w=dzyANdzp A--- Ndz,, (14)
n=2n", o= Zdz2j_1/\ dzoj. .5)
j=1

A holomorphic mapF between domains i6" satisfyingF*w = » will be called

a holomorphicw-map. The form (1.4) is the (standardpmplex volume forran
C"; inthis caseF*w = JF- w, whereJF is the complex Jacobian determinant of
F, andw-maps are callednimodular.The form (1.5) is thestandard holomorphic
symplectic formand holomorphiw-maps are callesymplectic holomorphidNVe
denote the corresponding automorphism group by

Aut,C" = {F eAutC" : F*ow = w}.

For convenience we state the approximation result&faraps (Theorems 1.5
and 1.7 and Corollary 1.6) only for closed submanifolds; for an extension to man-
ifolds with boundary, see the remark following Theorem 1.7.

1.5. THEOREM. Let w be any of the form§l.4), (1.5).Let f: My — M, be a
C*-diffeomorphism between closed totally real submanifold€'in(k, n > 2).
Assume that there is@~*-mapL: My — GL(n, C) satisfying

L:\r.mo =df., Lio=w (z€My). (1.6)

Then for each sufficiently small > 0 there is an injective holomorphic map
Fs:TsMy — C" such thatFyw = w and (1.2) holds as5 — 0. If My, M1 and f
are real-analytic and if there exists a continuadluisatisfying(1.6),then f extends
to a biholomorphic mag on a neighborhood o/, satisfyingF*ow = w.

The notationL}w in (1.6) denotes the pull-back of the multi-covedigy;, by the

C-linear mapL, (which we may interpret as a mapC”" — Ty, C"). Clearly

(1.6) implies that the complex normal bundigs— M; are isomorphic ovey.

Denoting by Sl(n, C) the special linear group a@” and by Spr, C) the linear

symplectic group 02", we can express the condition in Theorem 1.5 as follows:

(*) There exists &~1-mapL: My — SL(n, C) (resp.,L: My — Sp(n, C)) such
that L, = df, on T, M, for eachz € M.
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The only obvious necessary conditions for the approximatior@éfdiffeomor-
phismf: Mo — M, by holomorphiav-maps are that the complex normal bundles
v; — M; be isomorphic ovelf and thatf*(ifw) = ijw, wherei;: M; < C”"
is the inclusion. Theorem 1.5 reduces this analytic approximation problem to the
geometric problem of finding an extensibrof df satisfying (1.6). The regularity
of L is not the key point; it would suffice to assume the existenceocofirtinuous
L satisfying (1.6), since an argument similar to the one in the proof of Theorem
1.5 for the real-analytic case then allows us to approxiniabg aC*—*-map sat-
isfying (1.6). We expect that such extension does not always exist, although we
do not have specific examples. Here are some positive results.

1.6. CoroLLARY. Letw be one of the formél.4), (1.5),and letk,n > 2. Let

f: Mo — My be aC*-diffeomorphism between closed totally real submanifolds
such that the complex normal bundlesit (resp., M1) in C" are isomorphic
over f and f*w = ifw. Then the conclusion of Theorem 1.5 holds in each of the
following cases

(i) dim My = dimM; = n;
(i) w =dz1 A - Adz, and My is simply connected
(i) @ =dzy A -+ A dz, andvg admits a complex line subbundle.

In cases (ii) and (iii) we haveg*w = ifw = 0 whenm < n. Finally we present
approximation results fap-flows. We first introduce convenient terminology.

DEeFINITION 2. Letw be a differential form orC” and letf,: My — M, c C"
(t €[0,1]) be aC*-isotopy with the infinitesimal generatdf; (see Definition 1).

(a) f; is anw-flowif the form f,*w on My is independent of € [0, 1].

(b) Anw-flow f; is closed(resp.exac) if, for eachr € [0, 1], the pull-back tav,
of the formea; = X;|w (the contraction o by X;) is closed (resp., exact).

(c) LetU c C" be an open set and a holomorphic form orC”. A holomor-
phic flow F;:U — C” (¢t € [0, 1]) satisfyingF*w = o for all ¢ is called a
holomorphicw-flow.

ReEMARK. If dw = O (this holds for the forms (1.4), (1.5)) then a flgw My —

M, is anw-flow if and only if the pull-back ofx, = X, |w to M, is a closed form
on M, for eachr € [0, 1]. This can be seen from the following formula for the Lie
derivativeLy, w [AMR, Thm. 5.4.1 and Thm. 6.4.8(iv)]:

d
E(f,*w) = f(Lx,0) = f(d(X,|w) + X;]dw) = f(da,).
Hencef*w is independent afif and only if d (i ;) = 0 onM, for eacty € [0, 1].

1.7. THEOREM. Letw be any of the form§l.4), (1.5).Assume thaMy C C" is
a closed totally real submanifold and thgt: Mo — M, c C" (t € [0,1]) is a
totally real w-flow of classC* for somek > 2. Then for each sufficiently small
8 > Othere is a holomorphie-flow F;3: TsMo — C" (¢t € [0, 1]) such that, for
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0 < r <k, we have the following estimates &s- 0 (uniformly with respect to
t €[0, 1)):

IF) — fillerane) = 0" ") INEH = £ lerany = 0(857).

If in additionn > 2 and f; is an exactw-flow that is totally real and polynomi-
ally convex, then for each > 0O there is a holomorphia-flow F; € Aut,, C" such
that, for allz € [0, 1],

-1 -1
| Fr — ft||ck(M0) <§é, \F—— f; ek, < e

Theorems 1.5 and 1.7 together with Corollary 1.6 extend to the following situation.
Let Mo be a compact domain in a totally real submaniféfg C C”, not nec-
essarily closed or compact. In particuldfp may be a totally real submanifold
with boundarydMy andM | a larger submanifold containingy. In the context of
Theorem 1.5 or Corollary 1.6, assume tifatM, — M, is aC*-diffeomorphism
between totally real submanifolds @ (k > 2) and thatL: My — GL(n,C) is
aC*~1-map satisfying (1.6) on4§. Then the conclusion of Theorem 1.5 holds for
My: There exist holomorphie-mapsFs: TsMy — C” for all sufficiently small
§ > 0 satisfying (1.2) ag — 0. Likewise, if the flow f; as in Theorem 1.7 is
defined onM|, then the conclusion of that theorem applies on the compact sub-
domainMy C M.

In our last result we consider the problem of approximating a diffeomorphism
fi My — M by holomorphicw-automorphisms o€”". Assuming thatM and
M are polynomially convex, we have two necessary conditions for such approx-
imation:
(1) ffw =ijw; and
(2) there is a totally real, polynomially convex floyy: Mg — M, C C" (¢t €

[0, 1]) with fo = Idy, and f1 = f.

The second condition is necessary because the group@&uts connected (see
[FR]). When dimM,, is smaller than the degree @f the first condition is trivial

(both sides are zero). We summarize some of the situations when such an approx-
imation is possible. Leg be a holomorphic form o” satisfyingd = w; when

w is given by (1.4) we may takg = % Z;:l(—l)j_ldzl A A JZJ Ao Adzy,

and wherw is the form (1.5) we may takg = Z;f;lzgj_ldzzj.

1.8. THEOREM. Letn, k > 2. Let My C C" be a compact connected-
submanifold of dimensiom and let f;: My — M, (¢ € [0, 1]) be a totally real,
polynomially convex*-flow. Assume eithg) that w is the volume forngl.4),
dB = w, and at least one of the following four conditions holds

(i) m<n-2,
(i) m =n —landH"Y(Mo; R) =0,
(i) m =n—1, Mois closed and orientable, anfl, B = [, fi'8 # 0,
(iv) m = n, My is closed and satisfigd"~}(Mo; R) = 0, and f*w is indepen-
dent oft;
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or (b)thatn = 2n’ (n’ > 2), w is the form(1.5),dB = w, and at least one of the
following three conditions holds

(V) Mypisan arc,
(vi) Moisacircleandf,, 8= [, fiB,
(vii) m = 2, My is closed and satisfigd'(My; R) = 0, and f,*w is independent
ofr €[0, 1].
Setf = fi: Mo — Mi. Then there is a sequenéé € Aut,, C" satisfying(1.3).

For real-analytic data, Theorem 1.7 was proved in [F2] in the symplectic case and
in [F3] in the unimodular case. In the latter situation the sequéheeAut,, C"

can be chosen such that it converges to a holomoepim@p F in a neighborhood

of Mo.

The paper is organized as follows. In Section 2 we collect some preliminary
material, mostly extensions of certain well-known results. In Section 3 we con-
struct a family of integral kernels for solving theequation in tubes and prove the
stated estimates; we conclude the section by historical remarks concerning such
kernels. In Section 4 we apply Theorem 3.1to prove Theorems 1.2 and 1.3. In Sec-
tion 5 we solve the equatiotv = u in tubes, wherer is an exact holomorphic
form, and we find a holomorphic solutiarsatisfying good estimates. In Sections
6 and 7 we prove the results on approximatingliffeomorphisms by holomor-
phic w-maps ando-automorphisms. At the end of Section 4 we also include a
correction to [FL].
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2. Geometric Preliminaries

We denote byX |v the contraction of a forme by a vector fieldX. We shall use
the following version of Poincaré’s lemma [AMR, Deformation Lemma 6.4.17].

2.1. LEmma. Let M be aC?-manifold andw a closedC? p-form onl x M with
I =[0,1andp > 0. Fort €I leti,;: M — I x M be the injectionx — (¢, x).
Then the(p — 1)-formv = Olit*(%Jw) dt on M satisfiesdv = ifw — igw. In
particular, letF: I x M — N be aC?-map and: a closedC* p-form onN where
p > 0. Settingf; = Foi,: M — N andw = F*u, we havelv = fju — fiu.

We shall apply this to the case whéhis a deformation retraction of a tubular
neighborhood/s = 7sM of a submanifold c C”" onto M. This means thaf;
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is the identity on7s, f:|s is the identity for allr, and fo(75) = M. Setr = fo.
With u a closedC! p-form on7; andv as before, we obtaidv = u — 7*u in T;.
In the situation that we shall consider, we have the following local description

of the retractionF. Let M be aC*-submanifold inC". For U a small open neigh-

borhood inM of a pointzo € M there is aC*-diffeomorphismg: 0 — 7~ X(U),

whereO is open inR™ x R?"~" such that:

(l) F—l(U) =0nN (Rm x {O}Zn—m) — 0/ X {O}Zn—m;

(i) for x" € 0’, the setO,» = {y’ € R?"™™ : (x’,y’) € O} is star-shaped with
respect to fand

(iii) the map f; = F o i, is ¢-conjugate tax’, y') — (x/,ty’) foreachr € I =
[0, 1].

Letu = Z(”‘H\”:p ur, ;(x', y")dx'"" A dy" in these coordinates. Then

/
w= Y ur @ y)dx" nd@y')’
HI+J1=p

and it is easy to check that

’ " . 1
v Z (_1)IK\Z Z 8;Kyj/</o MI,J(x/,ly/)thdt)dx"/\dy”(

1+K|=p J=1 |JI=IK+1

WhereajK equals (ifjK is a permutation off) the signature of that permutation
and equals zero otherwise.

The retractionF' is constructed by retracting td along the fibers of a vector
bundle supplementary to the tangent buritidé. The normal bundle ta7 in C”
is an obvious choice but is only of cla§$~! whenM is aC*-submanifold. We
shall show that there ar& -subbundles of M x C” that are arbitrarily close to
the normal bundle. Wheh > 1, it is easy to see thdt + E,) N 7 is star-shaped
with respect tq; for all z € M whens > 0 is small enough and is sufficiently
close to the normal bundle. The m@pE — C”, G(z, v) = z+v, maps the zero
section @ diffeomorphically ontoM, and its derivative/G is an isomorphism at
each point of @; henceG is aC*-diffeomorphism of a neighborhood; ¢ E
of O onto7; for § > 0 small. We may assume thé§ N E, is star-shaped with
respect ta(z, 0) for eachz € M. When f; is G-conjugate to the maf, v) —
(z,tv) in Us for t € I, the mapF has the propertie@)—(iii) listed previously.

The local coordinateét’, y') are constructed as follows. LetO’ — U cCc M
be alocal*-parametrization and I8, .. ., s2,_,, be sections of — M overU
that form aC*-trivialization of E|;. We set

2n—m
o(x',y) =)+ Z y}sj((p(x/)) for x'€ O’ andy’ e R¥"™"™,
j=1
and we restrict it tad = ¢~%(7;). Then the fibeiO,. is star-shaped for all’ € O’
whens$ > 0 is small enough.

2.2. Lemma (Approximation of subbundles).LetM be aC*-submanifold ofC"
andE — M a(C'-subbundlgreal or complex of M x C" for some0 </ < k.
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Then there is a*-subbundleE’ of M x C" arbitrarily close to E in the C!-
topology. Moreover, i is totally real inC" and the bundleE is complex, then
E’ may be taken as the restriction 8 of a holomorphic subbundle é&f x C”
for some open neighborhodd of M in C".

Proof. A proof may be based on the following standard result.LifV —
Linc(C", C") is aC'-map such thaL, has constant rankindependent of ¢ M
(abusing the language we shall say thdtas rank), then

E;r ={(z,v) e M x C" ;v e L,(C") (2.1)

is a complexC!-subbundle of rank of the trivial bundleM x C", and every sub-
bundleE of M x C" appears in this manner—for instance, by settingo be
the orthogonal projection @&2” onto the fiberE, for z € M. The analogous result
holds for real vector bundles.

A more regular approximation to a subbundiemay then be obtained by ap-
proximating the corresponding mdpdefining E by a more regular map of rank
r. The problem is that the rank of a generic perturbatio. ahay increase. To
overcome this we use the following result (see [GLR]).

Let C be a positively oriented simple closed curvednand letL e
Linc(C", C™) be a linear map with no eigenvalues 6¢h ThenC" =
V. ®V_, whereV, (resp.V_) is aL-invariant subspace of" spanned
by the generalized eigenvectordahside(resp., outsidpof C. The map

1
P(L) = 5— /C @I —L)y*deg (2.2)

is the projection ontd’,. with kernelV_.

Note thatP(L) depends holomorphically ab; thus, if L depend€* or holomor-
phically on a parameter, so do£sL).
We now takeC to be a curve that encircles 1 but not O; for instance,

C={teC:|t-1=1/2). (2.3)

Let P be the associated projection operator (2.2). i$ a projection theP(L) =
L. Moreover, for each.’ sufficiently near a projectiohn, each eigenvalue df’
is either near 0 or near 1 and herR@.’) is a projection with the same rank As

Thus, to smoottE, let L, be the orthogonal projection onfo, for z € M; we
approximateL by aC¥-mapL’: M — Linc(C", C") and letE’ be the bundle
(2.1) associated t&(L). By (2.2), the difference equals

N _ _ i 2 ' _ -1
P(L')—L = 5 (N «l - L)y "de
Tt Jc

and isC’-small whenL’ — L is.

In the real case, we exterld R” — R”" to a complex linear map: C" — C”
and observe thak(L) is also real (i.e., it mapR” to itself) whenC is the curve
(2.3). Hence the restriction dt(L) to R” solves the problem.
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Let nowM be atotally real submanifold @” andE — M aC' rank+ complex
subbundle oM x C". Foreach; € M let L,: C" — E, be the orthogonal projec-
tion onto E,. By [RS] we can approximate th&@-mapL: M — Linc(C", C")
as well as we like in th€!-topology onM by the restriction toV of a holomor-
phic mapL’: U — Linc(C", C") defined on an open neighborhobdc C” of
M. By shrinkingU we may assume thdt, has exactly- eigenvalues insid€
in (2.3) for eachr € U, so P(L)) is a ranks projection. The map — P(L)) is
holomorphic inU and determines a holomorphic rankector bundleE’ overU,
with E’| close toM. O

Letd = 9 + 9 be the splitting of the exterior derivative on a complex manifold.

DEFINITION 3 (3-flat functions). 1fM is a closed subset in a complex manifold
X and ifu is aC*-function (k > 1) defined in a neighborhood & in X, then we
say that is 3-flat (to orderk) on M if 3%(du)(z) = O for eachz € M and for each
derivativeo of total order|«| < k — 1 with respect to the underlying real local
coordinates orX.

We shall commonly use the phrasei$ ad-flatC*-function” when it is clear from
the context which subsatf C X is meant.

2.3. LEmma (d-flat partitions of unity). LetM be a totally realC*-submanifold
of a complex manifol& wherek > 1. For every open covering of M in X there

exists aC*-partition of unity on a neighborhood af in X that is subordinate to
the covering/ and consists of functions that adeflat to orderk on M.

Proof. We may assume that consists of coordinate neighborhoods. iétbe
aC*-partition of unity subordinate |y, = (U N M: U € U}. We may assume
that the index sets agree, so s¢fipc U, for eachv. By passing to local coordi-
nates we may find a-flat C*-extensionp,, of ¢8 with suppg, C U,. Sincep =
>, $, =1onM, it follows thatp # 0 in a neighborhood of M in X. Itis im-
mediate thatp, = ¢, /p is aC*-partition of unity onV that isa-flat (to orderk)
onM. O

As a consequence of Lemma 2.3, we see that the usual results &aBatiex-
tensions of maps int&€" are also valid for totally real submanifolds in arbitrary
complex manifolds.

2.4. Lemma (Asymptotic complexifications). Let M be a totally realC*-sub-
manifold (k > 1) of C" of real dimensionn < n. Then there exists &*-

submanifold > M in C", of real dimensior2m, with the following prop-
erty: M may be covered bg* local parametrization&Z: U — Z(U) C M, with

U c C™ open subsets, such that(M) = U NR™ and Z is 3-flat onU N R™.

Moreover, there is &*-retraction of a neighborhood af7 in C" onto M that is
a-flat on M.
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Proof. By a theorem of Whitney [W2, Thm. 1], there exist€ & manifold Mg
and aC*-diffeomorphismG°: My — M. The manifoldM, has a complexifica-
tion Mo thatis a complex manifold containidy as a maximal real submanifold.
The mapG © has a-flat extensiorG: My — C” that is an injective immersion at
M. (To obtainG it suffices to patch local-flat extensions ot by ad-flat par-
tition of unity provided by Lemma 2.3.) Hen&2 maps a neighborhood af, in
M, diffeomorphically onto its imagéZ ¢ C". WhenZ% U — M, (U open in
C™) is alocal holomorphic parametrization witd °) (M) = U NR™, the map
7Z =G o Z7%U — M is alocal parametrization of the type described in Lemma
2.4. Note that,M = T,°M for eachz € M.

Next we prove the existence of a retraction omtdhat isd-flat on M. Letv —
M be the complex normal bundle &f in C". By Lemma 2.2 there is an open
neighborhoodO of M in C" and a holomorphic ranks — m) subbundleN C
O x C" such thatV |, approximates well. By shrinkingO we may assume that
N is transversal td/ in O. This means that the maj Niy — C" ¢(z,v) =
z+ v, is ac*-diffeomorphism from a neighborhod# of the zero section itv| ;
onto its image0y C O c C”". We may assume tha&’ N N, is star-shaped with
respect to 0 € N, for eachz € M. Now the deformation retractiotx, v) —
(z, tv) (r €[0,1]) of W onto the zero section iN|,;; may be transported Iy to
a retractionF’: [0, 1] x Og — Og of Og onto the submanifold? N Oy. Setr =
Fo: Og — MNOy. LetU c C™andletZ: U — M be alocalC*-parametrization
such thatZz(U NR™) ¢ M andZ is 3-flat onU N R™. Choose holomorphic sec-
tionssy, ..., s,_, Of N that provide a trivialization oV nearZ(U). Then

@ w) > Z@E@) + Y wjsi(Z())
j=1

is aC*-diffeomorphism of a neighborhod# of U x {0}~ in C" ontorr ~4(Z(U)),
and itiso-flat on(U NR™) x {0}"~™. In these coordinates the mapsare given
by (z', w') — (z/, tw’); henceF, is d-flat onz —1(M). O

2.5. Lemma (Rough multiplication). Let U be an open set iR", f e CX(U)
andg e C¥"L(U), wherek > 1. Let E be a closed subset &f such thatf(x) =
0 for all x € E. Then there exists a functidne C*(U) such that

(i) 18%(h — fg)| = o(dy ") for || < k, uniformly on compacts it/
(i) at points ofE we haved*h = Zo#ﬂsa(g) dPf 9% Pg for |a| < k; and

(i) if U c CN andif f andg as before aré-flat on E ¢ f~(0), then so ish.

Proof. The proof is similar to the better known “Glaeser—Kneser rough composi-
tion theorem”; the main point s to verify that the collection of functiodf&h) o<«

on E, defined by (ii), are a Whitney system (i.e., that they satisfy the assumptions
of the Whitney extension theorem; see [W1] or [T]). We shall leave out the de-
tails of this verification. Let be aC*-function, provided by Whitney’s theorem,
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whose partial derivatives are given by (ii) at pointsif Then (i) follows eas-
ily by comparing the Taylor expansions&th, #f, andd*~#g about the nearest
point in E. Case (iii) follows from (ii), which is seen as follows. From (ii) we
get, at points oft,

8°3h = 0°GOf &)+ Y (“) 3Pf 99=Pig
0#£B<a
for |a| < k — 1 If f andg ared-flat on E, then this expression vanishes when
x| < k —1and so we get (iii). O

The following lemma is needed in the proof of Theorem 1.4 and its corollaries.

2.6. LEmma. Let M be a totally real,m-dimensionalC*-submanifold ofC",
f:M — CP aCk-map, and: M — Linc(C", CP) a C*1-map such that, for
eachz e M, [, agrees withif, onT,M. Then there is a neighborhodd c C" of
M and aC*-mapF: U — CP? thatisd-flat on M and satisfies(z) = f(z) and
dF, =1, forall ze M.

Proof. It suffices to prove the result for functiog = 1); the general case then
follows by applying it componentwise. So we shall assyme 1.

We first consider the local case. Fix a paigte M. Chooseey, ..., e,_,, € C"
such that these vectors, together with the tangent spaaé span a totally real
subspace df,,C" of maximal dimension. If k: U — M is aC*-parametrization
of a small neighborhood afy in M with « (0) = z¢ and if V is a sufficiently small
neighborhood of 0 ilR"*~™, then the maw (x, y) = «(x) + Z’};i" yiej (x €U,

y € V) is ac*-diffeomorphism onto an-dimensional totally real submanifold in
C". Observe that, fox € U and(u, v) e R™ x R"~™, we have

lK(x) o dd)(x,O)(uv U) = de(x) o de(u) + Z vjlk(x)(ej)-

j=1

Sincel, (v (e;) is only of clas€*~1in x, we apply the rough multiplication lemma
to the pairsy;, lq(x(e;) for1 < j <n —mto getaC* functionh onU x V satis-
fying a%(x’ 0)=0 and%(x, 0) =Lyl forl<i <mandl< j <n—m.
With FO(x, y) = f(k(x))+h(x, y) itfollows thatd F o = L) 0 d(r,0). When
FO (resp.$) is aC*-extension ofF° (resp. ¢) that isd-flat onR", we see thap
is aC*-diffeomorphism of a neighborhood of0C" onto a neighborhood afy
C". Thus, neato, F = F%o0 ¢ 1is aCk 5-flat extension off. Whenz € M we
havedF, = I, on a maximal totally real subspace, so these two linear maps are
equal onT,C”. This establishes the local case.

For the global case lét = {U;} be an open covering o/ and letF® be a
d-flat extension off in U;, with dF" = I, for z € U; N M. By Lemma 2.3 there
is a partition of unity{¢;} by d-flat C*-functions on a neighborhood & subor-
dinate tol/. We setF = )", ¢;F ", where the term with indekis zero outside
U;. Whenz e M, dF. = Y, ¢i(2)dF" + Y, f(2)d(¢;).. Since)_, ¢; = 1, it
follows that) ", d¢; = 0 and we haveF, = [.. O



Solving thed- and 3-Equations in Thin Tubes and Applications to Mapping381

3. Solving thed-Equation in Tubes
around Totally Real Manifolds

In this section we construct a family of integral kernels, depending on a parameter
8 > 0, for solving thed-equation in tube§; M around compact totally real sub-
manifoldsM c C” of classCL. The main result is Theorem 3.1, which is identical
to Theorem 1.1 except that it contains additional Hoélder estimates (3.3) and (3.4).
We denote byi,, the Euclidean distance ®. If M is of classC*, it is well
known thatp = d2 is aC* strictly plurisubharmonic function in a neighborhood
of M whenk > 1, whenk = 1, there is a strictly plurisubharmonit-function p
suchthap = d% +o0(d2). As in Section 1, lef; denote the tubular neighborhood
of M of radiusé, that is, the set of points whose distance/as less thars.
For a domainD in R" (or in C"), a bounded functiom in D belongs to the
Holder classA®(D) for some O< s < 1if |uls, p 1= supf|u(z + h) —u(z)||h|~* :
h #0, z,z+ h € D} < oo; in this case the Holder-norm ofu is defined by
lullaspy = llull () + luls, p. Whens = 1 we set

luly,p = sup{lu(z +h) +u(z —h) —2u()||h| ™t h #0, z,z —h,z+h e D};

AX(D) is called thezygmund clasen D. WhenD is a tubular neighborhoaf M
of a submanifoldM, we write |u|; s for |uls, ;. Whens = k + o withk e Z ;.
and O< a < 1, we takellul ascpy = llullcrpy + |D*ul,, p. We sometimes write
C¥t(D) for A¥*(D)when O< o < 1.

We extend function space norms to vector fields or differential forms on open
sets inR"” as the sum of the norms of the components. Whelis a compact
C*-manifold, we define the norms on functions or formsMnas follows. Let
;U — V;, C M, j=1...,p, beacovering ofM by local parametriza-
tions, and let{¢, ..., ¢,} be aC*-partition of unity subordinate to the covering
{V1,..., V,} of M. Then we seflu| = ?=1||<I>j(¢ju)||, where|| - || is a Holder
or some other function space norm. Different choicesdaf and{¢,} give rise
to equivalent norms on the same space.

Letz = (z1,...,2,) be the complex coordinates and let;, ys, ..., x,, ¥»)
(z; = x; + iy;) be the underlying real coordinates 61 = R?*. For1< j <
2n, 9; denotes the partial derivative with respect to itie variable. Ifa =
(g, ..., a2,) is a multi-index of length &, thend® denotes the corresponding
partial derivative of ordefa| = a1 + - - - + a2, With respect to the real variables
onC" = R?",

If f is a function or a form nead, we shall say thatf vanishes to ordeft
onM if | f(z)| = o(dy(z)") andd®f = 0 on M when|«| < [. Recall that any
Ck-function f on M can be extended taG -function onC” such thabf vanishes
to orderk — 1 onM [HE6W, Lemma 4.3].

We call a continuous function: R, — R amodulus of continuityf it is
nondecreasing and subadditive andvifd) = 0. If /1A — C (A Cc R") is
uniformly continuous, we define the modulus of continuity foby w(f,t) =
sup| f(x) — fFM|:lx — y| < t}, t > 0, wherew(f, ) is clearly a modulus
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of continuity as defined previously. We say that a modulus of continwity a
modulus of continuity for a functiorf if w(f,7) < w(t) forallt > 0. If fisa
form on A, thenw(f, t) is defined as the sum of the moduli of continuity of its
components.

We denote b;Cll,’q(U) the space of p, g)-forms of classC’ on an open set
Uuccn.

3.1. THEOREM. LetM c C" be a closed totally reaf*-submanifold and led <

¢ < 1. Denote by7; the tube of radiug > 0 aroundM. Then there is &y > 0
and, for each integetr > 1, a constantC; > 0 such that the following hold for
0 < § < g with p > 0andg > 1. For eachu eCp”q(T(;) with du = 0, there is a
ve C(’p’q_l)(%) satisfyingdv = u in 7.5 and

10Vl oo (Top) < Cr(810%ull oo (7sy + 81 ull oo (73, el < L. (3.1)

In particular we have|v|| L7,y < C8|lullL=(;)- If ¢ = 1and the equatiov =
u has a solutionvg € C(’;}O)(E), then there is a solution € Cf;{»(ﬁ) of v =u
satisfying, forl < j < n,

18,0Vl 15(7zg) < Cr1(@(8;8%v0, 8) + 8 ullLo3)), || = 1. (3.2)

If we assume in addition tha*u € A*(7s) for somela| <l and0 < s <1, we
may choose as above satisfying also the following estimgteih constant<”;
independent of and §):

10,0Vl 100 (725) < Cus (8 110%ull asers) + 8 Null oo (75)), (3.3)
19;0%vl|as(Tog) < Crs(13%ull as(Ts) + 8 lutll oo (75)) (3.4)

REMARKs. (1) If u is of classC! then there is, in general, @** solutionv to
v = u.

(2) In (3.3) one may be tempted to deléteand use instead the™ (75)-norm
of 9% in the first term on the right-hand side. Yet that this proves false even
whenn = 1is a well-known phenomenon. Since the Bochner—Martinelli operator
used in the proof is a homogeneous convolution operator, it gains one derivative
in norms such as Hoélder, Zygmund, and Sobolev, but not in the sup-norm or the
C'-norm.

(3) Theorem 3.1 has the following extension to nonclosed totallyGtalb-
manifoldsM’ in C". Let K be a compact subset 8f’ and letK’ ¢ M’ be a
compact neighborhood & in M’. Foré > 0 we set

Us={zeC":dx(z) <8}, Uj={z€C" dy(z) <S5}

Chooser € (0,1). Given a formu € C}, ,(Uy) with ou = 0, we can solvé)v = u

in U.s; the estimates in Theorem 3.1 remain valid when the fipés replaced by

U.s onthe left-hand side arif is replaced byJ; on the right-hand side of each es-
timate. The proof can be obtained by simple modifications of the kernel construc-
tion that follows. This applies to compact totally real submanifolds with boundary
in C" since any such is a compact domain in a larger totally real submanifold.
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In this section,C denotes some constant whose value may change every time it
occurs but does not depend on quantities suach asetc.

For (0, 1)-formsu (and hence fot p, 1)-forms, 0< p < n), a large part of the
result comes from the interior elliptic regularity of theoperator and has nothing
to do with the particular solution.

3.2. LEmma. Let0 < ¢ < 1 There exist constants; > 0 (I € N) satisfying the
following. If K C C" is a compact subset witfy = {z : d(z, K) < 8} and ifv
is a continuous function iff; such thatov € Cfo,1>(75) for somel € N, thenv €

C!(Ts) and
0%Vl oo (7e5) < Cr(B110%0v] ooy + 87 Nwllzoe(73)): el <L

If dv = af for somef € C**1(T;), thenv is also of clas€!*! and satisfies
10;0% V| oo (7s) < Cran(@(3;09F,8) + 87 Ml oors)); el =1

Proof. We apply the Bochner—Martinelli formula
8(2) =/ 8 B(, z)—/ 98(5) A B(, 2),
a7Ts Ts

valid for g € CX(75), whereB(¢, z) is the Bochner—Martinelli (B-M) kernel

B2 = e Y (-0 dE ) A e
=1

which is a closed integrable:, n — 1)-form. Letz € 7.5 and letx:R — [0, 1]
be a cut-off function withy(r) = 1 when|¢| < % and x(r) = 0 whenjt] > 1
Forw e C", sety;s(w) = X((flf)‘s) It follows that the partial derivatives satisfy
|0%s| < C,8~ 1%l for all . Applying the Bochner—Martinelli formula tg(¢) =
x5(¢C — 2)v(¢), we obtain

v(2) = — /T 5, (s (¢ — V(D) A B, 2)

=— fT () A x5(¢ —2)B(L, 2) — /T v(§) 0 xs(¢ —2) AB(£, 2)

= I1(2) + I2(2). (3.5)

These are convolution operators and we may differentiate on either integrand. This
gives, for|a| <,

0%v(z) = 0%11(2) + 9%12(2)

= —/T 3%9v(¢) A xs(¢ — 2)B(L, 2)

- /T v(§) 9 (Axs(& —2) A B, 2)).
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Settingc’ = £¢ andc¢” = ¢’ and using B(¢, )| < Cl¢ — z|*~2", we can esti-
mate the integrals faw| < [ as follows:

19°I(2)| < C/ 19%v(¢)|- ¢ — 2|72 aV
[ —z]<c’$
< C13%Qv]| poo(75) / It —z|*2"dv
[{—z|=c’8

B ) r2n71 _
< C||8a8v||Loo(73)f W < C8||8aav||Loo(75),
0

0°12(2)| < cf ()] 87211 aV < Cllvl| oo (7387,
¢"8<|t—z|<c's
This proves the first estimate in Lemma 3.2. The estimat®fdp| also holds for
derivatives of ordefa| =1 + 1.
We now assume thaw = 3f for somef e C!*1(7;); thenv — £ is holomor-
phic and hence is alsoC/**. We wish to estimate the derivatives of order 1 of
I1(z). For|a| = [ we have

9°12) = =) [ 9500 A xs(c DB 2.
T

We now apply (3.5) tof, replacingdf by dv(= df) in the first term on the right-

hand side and differentiating under the integral, to get

8,0°(2) = f 3I(E) A x5(¢ — B, 2)

Ts
- /T 3j9°F(¢) A dxs(C —2) A B(L, 2).

Observe that the first term on the right-hand side eqal%/1(z) from the pre-
vious display. For a fixed € C" we also apply (3.5) to the constant function
0;0%f (2):
3077 == [ 00 Brste =9 A Be.).
8

Combining the three preceding formulas yields
9;0%I1(z) = /T(Bja"f(;‘) — 0;0°f(2)) 9xs(C —2) A B(Z, 2)
8
and hencegd;d°I1(z)| < Cw(3;0°f, 8). O

From Lemma 3.2 it follows that the estimates (3.1) and (3.2) in Theorem 3.1 will
be proved for p, 1)-formsu if we can find a solution that satisfies a sup-norm
estimate||v| Lo (1;5) < C8llullL=(7;). Such a solution is obtained by a linear oper-
ator given by an integral kernel that we now construct.
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Construction of the Kernel fof0, 1)-Forms

We shall use Koppelman’s formula, which we now recall. bow € C", let

(v,w) = X jviw;. LetV C C? andQ’ ¢ Q cc C” be open subsets

such thatQ has piecewis&€*-boundary and2 x Q@ C V. Let P = P(¢,2) =

(P, ..., P,):V — C" be aC'-map satisfying

(i) P(¢,z) =¢ — zinaneighborhood of the diagonal ©f x €’ and

(ii) the function®:V — C, ®(¢,z2) = (P(¢,2), ¢ — z), satisfiesd (¢, z) # 0
whenz € Q" and¢ € Q\{z}.

Any such mapP is called alLeray mapfor the pair2’ c @, and® is the corre-
spondingsupport function We shall use the notation

dg =diin--- NdEy,

—

Pl = PLA - APy A APy,

— —

OcPli, j1=0PLA -~ NPy A--- AP A=+ APy
Define the integral kernels
K@ 2) =, @)™ Y (DI 7P 3, P[j] A de,
j=1

L(£.2) = ca®(£.2)™" Y (=D'P; 0. P A3 Pli. j] Ads.
i#]
Note that the kerneK (¢, z) is locally integrable when € Q'. It is also important
to observe that, iéi(¢, z) is aC* function, then the kernels generated Byresp.,
aP) are identical outside the zero get= 0. For a suitable choice of the constant
¢ € R, we then have the following Koppelman—Leray representation formula for
d-closed(0, 1)-formsu e C{ ,():

u(z)=/ L(C,Z)Au(€)+5z/ K, 2) Au(@), zeQ. (3.6)
Q2 Q

This follows by applying the Stokes formula to the first integral on the right-hand

side to transfer the integration to arsphere around and using, K = —d,L; in

the limit ase — 0 we obtain (3.6) by a usual residue calculation. faearz, the

kernelL coincides with the B-M kernel fa0, 1)-forms; in fact, for the Leray map

P(¢,z) = ¢ — z, (3.6) is the classical Bochner—Martinelli-Koppelman formula.
We have a lot of freedom in the choice of the nfaphat determine& andL. If

we choose it such that(¢, -) is holomorphic inQ’ when¢ € 02, thenL(¢, z) =

0 for suchz andz (since each term il contains a derivative, P;) and hence the

function

v(2) = /Q K(.2) Au() (3.7)

solves the equatiobv = u in Q'
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We shall construct the integral kernel of our solution operatof;dsy combin-
ing the B-M kernel near the diagonalk= z of the smaller tub&_; with the Henkin
kernel whery is near the boundary 6f; andz € 7.s. This will give a family of
linear solution operators of the form (3.7) depending dor smalls > O.

Let p be the strongly plurisubharmonic function mentioned in the beginning of
this section. Sincép < (1—¢)8%} C Ts C {p < (1+ ¢)§?} for sufficiently smalll
§ > 0, we may replace the tulsB with the sublevel setfo < §2}, which we still
denote byT;.

The construction of the kernel will proceed through several lemmas. Firstwe re-
call from [HL] the following well-known result about the existence of the Henkin
support functionb and the corresponding Leray m&pmn a fixed strongly pseudo-
convex domain, which in our case is a tuhg.

3.3. LEmMma. There exist constants, R > 0 such that, for§g > 0 sufficiently
small, there are function® (¢, z) and A(Z, z) in CX(Ts, x Ts,), With @ holomor-
phic inz, and there is &*-function B(¢, z) defined forz, z € T, and |¢ — z] < R

that satisfies the following

() ©(,2) = A, 2)B(¢, 2),
(i) 1B(, )| = CandReA((, 2) = p() — p(2) +CI¢ —z|* when|¢ —z| < R,
(iii) 1®(£,2)| = C when|¢ —z| > IR, and
(iv) with @ as described here, there exists a m@p= P(¢,z) = (Py,..., P,)
suchthat, forallj, P; € CX(Ts, x Ts,), P; is holomorphicirg, and®(¢, z) =
(P(,2),¢ —2).

Proof. This follows from the proof of Theorems 2.4.3 and 2.5.5. in [HL]. Here
A(¢, z) is an approximate Levi polynomial ine C" of the form

n 8 n
A =2) ’a)f) @ —2) = Y ap(& — ) — 20,

j=1 J J k=1

where thez;, areC* functions that approximate the partial derivativés/d¢; ¢«
sufficiently well on7;, [HL, Lemma 2.4.2]. Infact, whep is of clas<C® or better,
we might simply taker;, = 3%p/9¢;3¢y.

The only small change from [HL] is that, in our situation, the mdpand P
may be defined globally far € 75,, and not only forz near the boundary ofs,,
provided thats, > 0 is sufficiently small. This follows from the thinness of the
tube7;, and can be seen as follows. Observe that;farM, the linear terms in
A(¢, -) vanish and we havB A(¢, z) < O for all pointsz € M \{¢} sufficiently close
to ¢. Hence for§g > 0 small we can choose > 0 (depending oidg) such that
MRA(L, z) < O whenever, ¢ € T5, ande < | — z| < 2¢. The proof of Theorem
2.4.3 in [HL] (which proceeds by cutting of lag on B(¢, 2¢) N 75, and solving
ad-equation orff;,) then gives a globally defined (and henceP). O

Letd, P, A, andB be as in Lemma 3.3, constructed on a fixed tije P is not
quite a Leray map because it does not equalz near the diagonal, and we shall
now modify it suitably on tubeg; for0 < § < §p. Let0 < ¢ < ¢’ < 1. Choose a
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cut-off functionis such that.s = 1in 7.5 andi; = 0 neard7;. We may assume
that its (real) gradient satisfigi¥1s|| < Cs~* for someC > 0 independent of.
We will show that, for a suitably chosen functigiz, z) on7; x 75, the condi-
tions in Koppelman’s formula (3.6) are satisfied for the pair of dom&ns 7
andQ’ = 7. if we define the Leray map by

P, 2) = A= 2P, 2P, 2) + As(0)E — 2,

with the corresponding support function given by
= (P,¢ —2) = (L= 2)D + Asl¢ —zI”,

We need to finds such thatd(z, z) # 0 whenz € 7.5 and¢ € T5\{z}. When¢ €
Tes, we haved (¢, z) = |¢ — z|, so the condition is satisfied for any choicegof
Hence it suffices to consider the poigtsvherep(¢) > p(z). Lety:R — [0, 1]
be a cut-off function such that(r) = 1for |¢| < R andy(t) = O for |t| > 2R.
Set

¢, 2) =YL —2DBE )+ Q- (L — )P 2),

whereB is as in Lemma 3.3. Thepd = A + (1— )| ®|? (sinceB~1d = A),
and we have the following estimates for the real paéit z) := Re¢p® (¢, z) when
p (&) > p(2).

(@) Whenj¢ —z| < JR: 0 =ReA > C|¢ — z|%

(b) WheniR < |t —z| < R:

0=y ReA+ 1—y)|®f>>yCl¢ —z*+1—¥)C? > 0.

() When|¢ —z| > R: 6 = |®]? > C2.

This verifies the required properties, and hence (3.6) is valid wh@nz) and
L(z, z) are the kernels generated by the Leray niapFor ¢ neard7; we have

P = ¢P; since¢ + 0 there, the kernell is identical to the one generated by the
holomorphic Leray magP, and hence the first term in (3.6) is zero. This gives
us the solution formula (3.7) for the equatidn = « in 7.;. This completes the
construction of the kernel fqO, 1)-forms.

Proof of the sup-norm Estimates

It suffices to show that the sup-norm estimate holds in our situation whe3.

In casen < 3 we simply identifyC” with C" x {0} ¢ C2 and extendf indepen-
dently of the additional variables; the solution to the extended problem will satisfy
the estimates, and its restriction®@3 will be a solution to the original-problem.

3.4. LEmMA. The solutionv(z) = f% K (¢, 2) nu(¢) defined previously satisfies
the estimaté{v|| .~ (7;) < C8llullL=(7;) Whenn > 3.

Proof. Let P® = ¢P; PCis independent of andP = (1 — A)P° + A({ — 2).
This gives
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0P; = 0.5 — 23 — P?) + (1= WP + rdy;
= MG =2z = P+ . (3.8)

The terms ink (¢, z) are of the form®—"P;dP[ j] A d¢. Sincedr A dx = 0, this
is a sum of terms of the following two types:

S"Pljl Ads and dT"P(Gi — 2k — POIA Al k] Ade.

We shall estin]ate the integrals of these o¥gmwhenz € 7.5. We have already
shown that R&(¢, z) > C|¢ — z|*. For|¢ — z| < 3R we have

Y PG (g —2) = (P 2). ¢ —2) = A, 2)

j=1

"3
= ZZ gf)(fj —z;) +0(¢ —z?.

j=1

This implieSPjO(C, 7) = Z% + O(¢ —z|) = O@ + |¢ — z|). By choice ofx
this gives(1— A(¢, 2)) P2(¢. z) = O(|¢ —z|) and therefore?’; (¢, 2) = O(|¢ —z)).
Sinceln;| < C, we have

S Pnlj]Ade = O(Ig = 2™,
O (G — 2 — POI A nL Kl AdE = O — 272" + 674 — 2772,

which shows that the kern& (¢, z) has a singularity of the same type as the
Bochner—Martinelli kernel on the diagonal.

Locally we may straighterd/; that is, for eachp € M there is a neighbor-
hoodV, of p and aC*-diffeomorphism¥: U — V,, whereU is a neighborhood
of the origin inR?", such that¥ is nearly volume- and distance-preserving and
(U NR™) =V, N M, wherem is the dimension oM. We denote the points in
R?" by (u’,u") € R" x R¥"~™_ By compactness we may assume tfais cov-
ered by a finite number (independentspfof sets

K} =W({@',u"); '] < a, [u"] < 8})

for some constant. We keep the notation andz for the points in the new coor-
dinates also. We then have the estim@te= (u’, u”)):

/ K(C,Z)AM(C)‘

K;

< Cllull=c) / (¢ — 272" 4 57Y¢ — 222 av(g)

lu'|<a,lu"|<é

< Cllull 73 / (SIF2" + 87H¢ 172 av ().

lu'|=a,lu”|<é

Form <t < 2n we estimate these integrals as follows:
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1 V2§ 2n-1 a g2n—my,m-1
/ I = C(/ r t dr —I—/ —,rdr> < C52n—t' (39)
u'|<a,u"|<8 €] 0 r s ,

Hence

< Cllull (758 + 8728?) = 2C |lull 1 (75)

/ K¢, 2) Au(d)
K.
when 21 — 2 > m. Sincem < n, this holds fom > 2. O

Construction of the Kernel for Forms of Higher Degree

We consider the form
K¢, 2)=ca®(&, ™" Y (=D BIP[j1 Ad (¢ —2)

j=1

on7; x Tes, whered is now taken with respect to bothandz. We decompose

K@=) Y. K2,

p=n g<n-1

wherek, , has bidegreép, ¢) with respect tq and(n — p, n — g — 1) with re-
spect tog. If ¢ > 0 thenk, ,(¢, z) = 0 whenz € 7.5 and¢ is neard7;. (Recall
thatK (¢, z) = K%(¢, z) depends o# via the cut-off functions.) It follows that
the(p, ¢ — D-form

v(z) = / Ky q-1(82) Au(C) = (—1)””[ u(@) N Kpq-1(¢, 2)
Ts Ts
solvesdv = u in 7.5 for eachd-closed(p, ¢)-formu in 75, ¢ > 0. The precise
meaning of the integral is as follows. Write

Ko@) =Y D ks 2)de! ndz/,

Hl=p |JI=q—1

wherek; ;(¢, z) is an(n — p,n — g)-form in ¢ € 75 depending smoothly one
T.s. Then

v =Y Y (—1)P+q(/ u({)/\kIJ({,z))dz’/\dZJ.
Ts

lTl=p |Jl=¢—1

This completes the construction of the kernel. The reader may find some addi-
tional references and historical remarks about the solution formula at the end of
this section.

Before proceeding we make the following elementary comments.

Geometric observationd.et M be a compact:-dimensionat’*-submanifold
of RY. There exists a constalt > 0 such that, ik, z1 € 75(M) for sufficiently
smalls§, thenzy andz; may be joined by a path ifis (M) of length no more than
B|z1 — zo|. This is due to the fact that the tubes may be locally straightened, in a
uniform way, to tubes aroun@” x {0} in R".
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From this we obtain the following: Ifi € CY(T;M), lullpoo(r;y < A, and
lullerer;) =< At7tfort <land O< s < 1, thenlul,s < max2, B)At~".
We see this as follows. Ifz| < ¢, we can integratéDu from z to z + i to get
lu(z +h) —u)||h|~° < BAt7Yh|** < BAt=°. If |h| > t, the triangle inequal-
ity gives|u(z + h) —u(z)||h|™* < 2At75.

We also have a corresponding result for compact maniftddsf ||u||cray <
A and|lullcrypy < At~Yfort > 0, then||ul|cr+s) < CAt~, whereC is a con-
stant independent of.

Proof of the Estimates for Forms of Higher Degree

The proof of the sup-norm estimate, which we gave(fhd)-forms, carries over
almost verbatim to the general case. However, Lemma 3.2 fails and we must pro-
ceed differently to estimate the derivatives.

With ¢o = ¢’ — ¢ we introduce smooth cut-off functiong € C§*(B(0, cod))
with xs(w) = 1when|w| < cd/2 and|d%ys| < C,8~'*!. Then we decompose
asv’ + v”, with

V() = /T 156 = DK pge1(2.2) A (),

v'(z) = _ A= x5 —2)Kp -1, 2) Au(?);

we then estimate each summand separately.

Recall that ifz € 7.5 and|¢ — z| < coé then K(¢, z) equals the Bochner—
Martinelli kernel. Thusv’(z) is obtained forz € 7.5 by applying a convolution
operator ta:; hence

2v(2) = fT 056 = DK pge1(2.2) A 9°u(z).

Thus the components 6fv’(z) are linear combinations oftermsgz) = (kxg)(z),
wherek(w) = Xa(w)wj|w|‘2” and g is a component 0b%u. Since|k(w)|
|lw|*~2" and k is supported byB(0, cod), an obvious estimate gives (z)]
3| glleo, SO

IATA

199V | Loe( 72y < CIND“ull oo (75)-
In order to estimate the finer normsiofwe introduce the auxiliary kernels
ki(w) = x5 (w)w; (1 + [w|) ™", 1> 0.

This is a smooth function af, z) satisfying|k,(z)| < |k(z)| and lim,_¢ k,(z) =
k(z). Since eaclt, has compact support, it follows thﬁia,-Dﬂk,(w)dV(w) =0
for every(t, z)-derivativeD#. Thus, settingi,(z) = (k; * g)(z), we see that

DP;n,(z) = / 3 DPk,(w)(g(z — w) — g(2)) dV(w).

Ts

Observing thatd” xs(w)| < C, |w|~"I on suppys, a simple calculation gives

|DP3;k,(w)| < Cglw| P (t + |w])~2".
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Assume thad*u € A*(T;) for somes € (0,1). We haveg € A*(7s), and fort > 0
we can estimate in polar coordinates:

)] < Clels.s / (t + w2 dV(w)

lw|<cod

cod
< C|g|x,8/‘ ritdr = Cs8s|g|x,6~
0
For the first-order derivatives with respect(toz), in the same way we derive

D3;1(2)] < Clgls.s / w7 + w2 dV (w)

lw|<cod
cod
<Clels [ @40 2dr =Ci Mglus (310)
0
By the dominated convergence theorem we haye) — h(z) and

9hi(z) = hj(2) = fT dk(w)(g(z —w) — g(2)) dV(w)

ast — 0. We also have

t
9
[0;h(z) — h(jH(@D)| < / 3 0ih ()| dt < Clgls st’;
0

hence the convergence of the derivatives is uniform and therefgte) = 9;4(z).
Thus|d;h,(z)| < Cs8%|gls,s. and we conclude that

19;0%V | Loo(Tzy) < Cs8°[0%uls,s5.

We have also shown that
9;0%'(2) = /T 9 (xs(& = 2)Kp g-1(¢, 2) A (0%u(t) — (0%u).).
8
In order to estimate tha*-norm ofd;a*v’, we need the following standard.

LEMMA. Letg € C(T5) have an extensiope C{(R* x T;) satisfying D (z, z)| <
Ars~! for some0 < s < 1. Theng € A*(T;) and |¢|;.s < (B +2/s)A.

This is just a slight modification of [HL, Apx. 1, Prop. 2]. Applying this o=
djh ande(t, z) = 9;h(2), (3.10) givedd;hly s < C;(B + 2/s)|gls,s. Thus
|8jaav/|s,c‘5 < Cs|aau|s,8'

In order to study”, we setKl’;vqfl(g“, 72) = (L= xs(¢ — 2)K, 4-1(¢,2) on
Ts x T.s. This kernel has continuousderivatives of all orders, and it equals zero
when|¢ — z| < cod/2. It follows thatv” is a smooth form with

9@ = [ 9K, 2 Aulo)
Ts

We recall formula (3.8) and pointout thiat. ;| = O~ and|¢(¢, 2)| = Cl¢ —z[?
on7s x T.s; moreover, the quantitig®, ¢(¢, 2)|, [n;l. and|Pj°| are all bounded
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by C|¢ — z|, while their derivatives with respect toare bounded independently
of § (sincea;s is independent of).
An induction on|«| shows that the components @ng,q_l(g, z) are linear
combinations of terms of the type
¢ 8P~ Xxal¢ = D)ao(§, D) -+ ay(§, 2)

(with 8 < a, k < |a — 8|, andr > 2k +1— |« — B|) and terms of the type

- s(0)

§ a2,

(with k < |o| andt > 2k + 2 — |«|), where theq;(¢, z) have continuous-
derivatives of all orders that have upper bounds independesitasfd where
la;j(¢, 2)] < Cl¢ —zlwhent > Oand 1< j < . Becausg¢ — z| > c¢oé/2
whenk’ , # 0, it follows easily that

09K, _1(2.2) < Cu87Hg — 22721,
Thus

1090"(2)| < Co8 Hlull oo (Ts) / It —z[2 21 qv(g)
Ts\B(z,c08/2)

1—
< Co 81 Nul| oo 5

for z € 7.5 anda € Z”,_. The last estimate follows fae| > 2, |a| = 2, and|«| =
1, respectively, from the following three integral estimates:

/ It =21 dvV(©Q) =C87", 1> 0; (3.11)
[t—z|>6
/ It — 272" dV(¢) < Cler), z€Ts, (3.12)
T5\B(z,c18)
It —z*2"dV(r) < Cy8*, O<s <2n—m. (3.13)
Ts

Equation (3.11) follows immediately by a change of variable. Inequality (3.12) is
proved exactly like (3.9); in the sum in the middle of (3.9), the first integral has
lower limit ¢16 instead of 0. Finally, (3.13) follows by setting= 2n — s in (3.9).
Using the geometric observation following the construction of the kernel, we
have
190 as(7es) < Cays 85 utll oo 72y

This completes the proof of the Holder estimates in Theorem 3.1 for the case 0
s < 1 The proof fors = 1 follows the same lines, with certain small modifica-
tions; since that case will not be used in this paper, we omit the details.

Remarks on Constructions of Kernels

The first integral kernel operators with holomorphic kernels, those solving the
d-equation on strongly pseudoconvex domain€in have been constructed by
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Henkin and independently by R. de Arellano (see the references in [HL]). Henkin's
approach is to patch the Bochner—Martinelli and Leray kernels on the boundary
9$2. Our patching of the two kernels (by first multiplying lgy is the same as

in @vrelid [@1; @2]. The whole construction is similar to the one by Harvey and
Wells [HW].

It seems that the first really precig€® andC*-estimates for thé-equation in
thin tubes around a totally real submanifaldc C”, proved by means of integral
solution operators, are due to Harvey and Wells [HW] in 1972. In 1974, Range
and Siu [RS] used a more refined kernel construction to prove estimates for the
highest-order derivatives of their solution af and deduced *-approximation
of C*¥-functions on a*-submanifoldM c C” by holomorphic functions, a case
left open in [HW]. In fact, this approximation problem has been one of the orig-
inal motivations in proving such estimates. This approximation was later accom-
plished more efficiently (and in greater generality) by Baouendi and Treves [BT1;
BT2], who used the convolution with the complex Gaussian kernel. This latter
method does not seem to give the approximation of diffeomorphisms obtained in
this paper because we must work in tubular neighborhoods and not solely on the
submanifold.

As remarked previously, our construction of the kernel in this paper is close to
[HW] and our main contribution is the way in which we estimate the solutions.
We find it quite striking that this simple and seemingly crude construction of the
kernel gives rise to results that are essentially optimal for the applications to map-
pings presented in this paper. For the benefit of the reader we have given a fairly
self-contained presentation based on the text [HL]. Another closely related paper
is [BB], where Bruna and Burgués approximatelosed jets on a totally real set
X in Hélder norms by functions holomorphic in a neighborhoodkofit seems
likely that their method—making use of weighted integral kernels of Anderson
and Berndtsson type [AB]—may also be used to prove our results. However, we
believe that our approach is simpler and more elementary. Our results, suitably
reformulated, may also be proved for neighborhoods of totally real sets.

4. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2We consider first the case dibfip = dim M, = n. Letd(z)
denote the Euclidean distancezofo Mo, and let7; (resp.,7;’) denote the open
tube of radiug aroundM, (resp., around/,). TheC*-diffeomorphismf: My —
M; can be extended to@&-map onC”, still denotedf, that isd-flat to orderk
at My:

0% @) = 0(d(@)* 1), 0<|a|<k-1

In particular, the derivativ®f (z) is a nondegeneraté-linear map at each point
z € My (the complexification ofif,: T, Mo — Ty, M1) and hencef is ac* dif-
feomorphism in some neighborhoodMdf in C*. The (0, 1)-formu = df of class
C*k1satisfiesiu = 0 and

19%ul| ooy = 08512, 0< el <k -1,
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ass — 0. Applying Theorem 3.1 (specifically, the estimates (3.1) Withk —1 >
0 and a fixed constant @ ¢ < 1), for each sufficiently smali > 0 we obtain a
solutionv; to dvs = u in Ty satisfying the following estimates:

19%Vs | 2oe (725) < CB110“ull oo sy + 8 ull oo (7))
< C((So((sk—lf\ot\) + 317‘0”0(81‘*1))
=o(8* 1), o <k-1

Moreover, sincév = u has a solution of clagg*! = C* (namely, ), we can
choosey; to satisfy in addition the estimates (3.2) for the derivatives of top-arder

9% vsll oo (o) < Clwr (f58) + 8 Haf llpe(Ty) = 0, || = k.

Herew, (f; 8) denotes the modulus of continuity of thih-order derivatives of.
SetF; = f — vs in T5. ThendFs = 0 and the estimates ag imply

h—
1Fs = fllerrs) = llvsllercryy = 0", 0<r <k,

which gives the first estimate in (1.2). It remains to prove fhas biholomorphic
and satisfies the inverse estimates in (1.2) for all sufficiently stnalD. To sim-
plify the notation we replacé by ¢§/2, so thatF; is holomorphic in the tub&;s

and satisfies

IFs — fllerrsy = 085", 0<r <k, (4.1)

ass — 0. Sincef is a diffeomorphism nea¥l,, so is any sufficiently closé! ap-
proximation of f; hence (4.1) withr = 1implies that, fos > 0 sufficiently small
(say, 0< & < 8¢ < 1), the mapF; is diffeomorphic (and hence biholomorphic)
in 72s. Decreasing if necessary, there is a numher- 0 such that

|f(2) = f(Z)] = 2alz = 2|, z,2'€Ts,.

Since f(Mo) = My, this implies thatf (7;) contains the tubg, ;.

Fix ane > 0. By (4.1) applied with- = 0, we obtain a constaid = §1(¢) with
0 < 81 < 8o such that| F5 — f||1oo (7 < aed® for0 < § < §;. Fix a pointz € T;
and letw = f(z). For eachy’ with |z’ — z| = &8*, we have

|F3(z") —w| = [(F5(z) — f() + (f(z") = f(2))
> [f(@) = f@| = |Fs(z) — f(2)]
> 2ae8* — ags* = aesk.
This means that the image 5 of the sphereS = {z’ : |z’ — z| = &6} is a
hypersurface containing the bal(w; ass*) = {w’ : |[w’' — w| < aes¥} in the
bounded component of its complement. By degree theoryFiHenage of the
ball B(z; £6%) contains the balB(w; as8*). Hence there is a poirgt e B(z; £8%)

such thatFs(¢) = w = f(z), and we haveF; {(w) — f X(w)| = |¢ — z| < e8*.
Since this applies to any poiat € 7, ;, we conclude thafs(72s) O 7,5 and
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I = iy, S o8, 0<6 < 816e) “2)

Sincee > 0 was arbitrary, this gives the inverse estimate in (1.2) ferO.

We proceed to estimate the derivatives of the inverse maps. Dengig|he
spectral norm of a linear map € GL(R, 2n). Note thatDf ~Y(w) = Df(z)~%
wherew = f(z). Fix a pointw € T, and letz = fY(w) andz; = F, *(w)
(these are points iffz5). By (4.2) we havez — z;| < e8%. Writing A = Df(z)
andB = DF;(z;), we get

IDFE; ™ w) — Df Yw)| = |A™ — B7Y|
=[|A™B - A)B7Y|
<A - 1A= Bl -1B7Y.

Since f is a diffeomorphism ands is C'-close to f, the eigenvalues of and
B are uniformly bounded away from zero, and this gives a uniform estimate on
| A% and| B~Y|| (independent o). The middle term is

A = Bll = [|1Df(z) — DFs(z5)|l < [IDf(2) — Df(zs) |l + | Df (z5) — DF5(zs)-

The second term on the right-hand side is of si@¥ 1), according to (4.1). As

8 — 0, we havez; — z, and hence the first term on the right-hand side goes to
zero (by continuity ofDf). Hence sup||DF5‘l(w) —Df Yw)| :we 5.5} goes

to zero as$ — 0. This completes the proof whén= 1. If ¥ > 1, we can further
estimatd| Df (z) — Df (zs)|| < Clz — z5| < Ces*, whereC is an upper bound for
the second derivatives gf This gives

sup{|| DF; (w) — Df w) | 1 w € Tols} = 0(8*™H,

as required by (1.2) for derivatives of ordes= 1. To obtain the estimates (1.2) for
the higher derivatives oF{l — £~ we may apply the same method to the tan-
gent map—that is, the induced map on tangent bundles over the tubes that equals
the derivative of the given map on each tangent space. We leave out the details.
This proves Theorem 1.2 when divfy = n.

Suppose now that = dim My < n. We are assuming that there is an isomor-
phism¢: vg — vy of the complex normal bundleg — My (resp.,v; — M)
over f; by approximation we may assume tieis of clas<C*~. For eachy € M
we haveT,C" = T.°*Mq @ vo, .. Letl, be theC-linear map orC" that is uniquely
defined by takind, = df; onT,°Mq andi, = ¢, onvg . Clearlyl, € GL(n, C)
for eachz € M. Applying Lemma 2.6, we obtain @ -extensionf of f that is
d-flat on Mo. Now the proof may proceed exactly as before. This proves Theo-
rem1.2. O

REMARKS. (1) If fo: Mg — M is areal-analytic diffeomorphisrand if the com-
plex normal bundles ta/, (resp.,M;) are isomorphic ovef, then f extenddo
a biholomorphic magF from neighborhood oM, onto a neighborhood af7;.
We see this as follows. Let: vy — vy be the continuous isomorphism (ovgy
of the complex normal bundles M (resp.,M1). There exist complexifications
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M; C C" of M; (i =0, 1) such thatf extends to a biholomorphic maf1 Mo —
M, and such that the complex normal bundles— M; extend to holomorphic
vector bundles?, — M;. We define a continuous map: My — GL(n, C) by
V(z) = df. ® ¢.. SmceMo C M is totally real,y may be approximated by
a holomorphlc mapb Mo — GL(n, C). We now defingp: 9o — M; x C" by
$.(v) = (f(2), ¥.(v)). Clearly ¢ is a holomorphic vector bundle isomorphism
betweenio and a holomorphic subbundie c M; x C” that is an approxima-
tion of 9. In particular,¢ is a biholomorphic map between neighborhodgef
the zero sections adf;. These neighborhoods map biholomorphically onto neigh-
borhoods ofMq (resp., M1) under the projection maps (the Docquier—Grauert
theorem). This gives the desired biholomorphic extensiofi of

(2) If instead of Theorem 3.1 we use Hérmandér’sestimates when solving
dvs = u (= df) in Ty, the resulting holomorphic mags = f — vs can be shown
to satisfy the weaker estimalieFs|y, — fllcrag = 08" for0 < r < I,
wherel is the smallest integer larger thérmlim M. This approach had been used
in [FL].

Proof of Theorem 1.3The proof can be obtained by repeating the proof of Theo-
rem 1.1in [FL] (or of its more technical version, [FL, Thm. 2.1]), except that one
applies our Theorem 3.1 whenever solving-aquation. This gives the improved
estimates in (1.3) with no loss of derivatives. We leave out the details. O

A correction tgFL]. We take this opportunity to correct an error in the proof of
Lemma 4.1 in [FL]. (Equation numbers in the balance of this section refer to that
paper.) The lemma is correct as stated, but the proof of the estimate (4.5) is not
correct. Using the notation of that proof, we have the higher variational equations

%D”dh(X) = DX(¢4(x)) o DP¢,(x) + Hy(t, x)

for p < k, whereD?f denotes theth-order derivative of a map: Q2 c R" —
R", soD?f € LP(R", R"). Here Hy (t, x) is a sum of terms involving derivatives
of the vector fieldX, and derivatives of order less tharof the flow¢,, andH}( =
0. We use the same notation figf and its flowy;.

Choose unit vectorsy, ..., v, € R" and set

y(6) = [DP¢(x) = DY (0] (vy, ..., vp).

It will be sufficient to show thally(#)|| = o(e*~7) uniformly for 0 < ¢ < tg, x €
K (e), and unit vectors, ..., v,. Now y () satisfies the differential equation

y'(t) = DY (¢ (%)) y(t) + (DX (¢:(x)) — DY (¥ (x)) o DPp(x) (v, ..., V)

+ (H§(t, x) — Hfg (t, x)(vy, ..., vp).
This is a linear system’ = A(t) o y + b(t), y € R". Suppose the matrix norms
satisfy||A(#)|| < A and|b(@)| < bfort €]0, to]. The functionu(z) = ||y(2)]l is

differentiable outside the zeroesmfwith u'(t) = y'(t)- y@®)/ Iy < Iy’ @],
sou'(t) < Au(t) + b outside the zeroes of. Since¢go = ;5 = Id, we have
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y(0) = 0. We shall first show that (1) < % (e — 1) for ¢ € [0, t]. If u(t) =0
then there is nothing to prove. If not, lgtbe the largest zero afon [0, ¢]. Thus
u'(s) < Au(s) + b for s € (1, t]. Settingu(s) = u(s)e 4 yieldsv'(s) < be™4
for s € (11, £]. Integration fromyy to  givesu(s) < 2(e=4" — e~4"). Thusu(r) <
%(eA(t—tl) -1 < %(eAt —1.

In our situation, by (4.4) the matrix norm a@f(r) = DY (yf(x)) is bounded
independently ot > 0, x € K(¢), andt. It is therefore sufficient to prove that
b = o(¥=P) uniformly in x, z, and unit vectors, ..., v,. It is shown in [FL]
that the matrix norm| DX, (¢, (x)) — DYE(WF(x)) | L=k () = o(e¥71). Since the
flow ¢,(x) is of clasC*, it follows that the matrix normi D?¢,(x)|| is uniformly
bounded forx € K(¢) andt € [0, #5]. Applying (4.4) and (4.5) inductively as in
[FL], we obtain|| Hy — H}. |1~k = o(e*~P) uniformly inz, which proves the
claim. O

5. Solving the Equationdv =u for
Holomorphic Forms in Tubes

Letd denote the exterior derivative. In this section we solve the equdtioa u

with sup-norm estimates for holomorphic forms in tuligs= 7; M around totally

real submanifold#/ c C". We denote by\* the Hblder spaces as in Section 3.
We first state our main result for closed submanifolds; for an extension to compact
submanifolds with boundary, see Remark (3) following Theorem 5.1.

5.1. THEOREM. Leti: M — C" denote the inclusion of a closed;dimensional,
totally real submanifold of clasg? in C”. Let a positive constant < 1 be given.
Then there exist positive constantség, andC; for all s € (0, 1) such that, ifx is
a d-closed holomorphig-form in the tube7; = T;M for some0 < § < §p and
1< p <n,then

(a) if p > m, the equationiv = u has a holomorphic solution in 75 satisfying
[Vllzoe (7o) < Collull ooy (5.1)

(b) if p < m and the form*u is exact onM, then for any solution afvy = i*u
of classA*(M) (0 < s < 1) there is a holomorphic solution of dv = u in
Ts satisfying

vl (s < Cs(Sllull o3 + llvollzemry + 8 lvollasm))s (5.2)

(c) if p <m andi*u is exact onM, then there is a holomorphic solution @ =
u with
vl (s < Cllullzoc(rs)- (5.3)

Remarks. (1) If  is a Stein manifold, then the Rham cohomology groups
HP?(2; C) can be calculated by holomorphic forms in the following sense: Each
closed form is cohomologous to a closed holomorphiform, and if a holo-
morphic formu is exact (i.e., ifu = dvo for some not necessarily holomorphic
(p — D-form vg) then alsa: = dv for a holomorphia p — 1)-formv on Q. (See
[H6, Thm. 27.10].)
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(2) On ac?-manifoldM, theC*-forms and the/-operatok: C;%fl(M) — C[?(M)
are intrinsically defined. By duality, the notiety = u (weakly) is well-defined
on M. The condition in Theorem 5.1 thét be exact onM need only hold in the
weak sense.

(3) Theorem 5.1 has an extension to nonclosed totallytealibmanifolds\/’
in C". Let K be a compact subset 8f’ and letK’ ¢ M’ be a compact neighbor-
hood ofK in M’. (For instanceK = M may be a compact totally real submani-
fold with boundary inC".) For§ > 0 we set

Us={zeC":dx(z) <8}, Uj={zeC":dyx(z) <3}

Chooser € (0,1). Assume that: is ad-closed holomorphig-form in U; with

i*u exact onU; N M’ (wherei: M’ — C" is the inclusion map). Then there is
a holomorphic solution offlv = u in U,s such that the estimates (5.1)—(5.3) are
valid whenT;, is replaced byU.s and7; is replaced byJ;.

Proof of Theorem 5.1

We give the details in the case whahis closed (compact and without boundary);
for the nonclosed case, see Remark (4) following the proof.

SinceM is a strong deformation retraction of the tulg the equationiv =
u has a differentiable solution dfy under the previous assumptions. The strat-
egy is to first find a good differentiable solution and then successively get rid
of its (p — ¢ — 1, g)-components foy > 0. The second part, Lemma 5.2, fol-
lows the proof of Serre’s theorem [H6, Thm720], which amounts to solving a
d-equation at each step. We use the solution provided by Theorem 3.1; it is here
that we need the sharp estimates (3.3) and (3.4) for the Holder norms.

5.2. LEmMa. LetO < ¢ < ¢; < 1. Letu be a closed holomorphip-form on
Ts for 0 < § < 8¢, as in Theorem 5.1. Suppose that there exists a differentiable
(p — D-formvy on 7.5 satisfyingdv, = u and

villzeo(7es) < Ass lvallasrey,) < Asd™, (5.4

whereA; depends od andu. Then there exists a holomorphip — 1)-formv in
Tes satisfyingdv = u and |[v||Le(7;,) < CoAs for 0 < § < 8o, whereCy is an
absolute constant.

Proof. Letvy = ZMO v(q), Wherev, is of bidegred p —1—g, ¢). By compar-
ing the terms of bidegre€p — 1 — go, g0 + 1) in the equation/v, = dvy + dvy =
u and taking into account thatis holomorphic, we see thab, = 0. If go > 0

then we have (by Theorem 3.1) a foimon 75 solvingdw = v, and satisfying
the following estimates for some fixed< ¢, < 1and for all 1< j < 2n:

10wl (7s,5 < Crlllvge llz=(Tis + 8  Vgoy llas(Tis) < 2C1As,

9wl as(7,s = Colllvge) las(Teys + 8 Vo) (7)) < 2C1A587°.

Thus the formv, = v; — w solvesdv, = dvy = u, has only components of bi-
degree(p — g — 1, q) for g < go, and it satisfies
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lvallzeo(r,y < C'As, lvallas(Ts,y < C'As87".

Repeated use of this argument gives a holomorphic solution of the eqdatien
u satisfying||v|| L7, < CoAs. O

To prove Theorem 5.1 it thus suffices to construct a good differentiable solution
satisfying Lemma 5.2, witid s as small as possible. L&t = {F,}:[0, 1] x 75, —

Ts, be ac? deformation retraction of a tulsB, onto M, with F; the identity map
andrwr = Fy: T, — M a retraction ontaVf. Leti,: M — [0,1] x M be the
mapx — (¢,x). By Lemma 2.1, the formd = Olit*(%JF*u)dt solvesdi =

u — m*u in Ts,. In the special local coordinates provided by Lemma 2.4, 4

>\t 1s1=p U1,7dx" A dy”’ then the components af are linear combinations of

termsy; f()lt""lu,J(x, ty)dt for j € J. Since the variables; are transverse
to M, we have|y;| = O(5) onTs and hencé|v||L~¢7;) < C8llullp=(r;), With C
independent of. Replacing by c16 and changing” in each step below if neces-
sary (but keeping it independent &f, it follows from Cauchy’s inequalities that
||Du||L00(7;15) < C871||M||LOC(7§) and thus

~ ~ 17
| DV Loo(7s5) < CllullLoe(7s)s 101l as(Tz,5) < €8 *llull Lo (T3 -

In part (a) of Theorem 5.1 we haye> m and sor*u = 7*(i*u) = 0 by de-
gree reasons; hence the form= v satisfiesiv; = u and the estimate (5.4) with
As = C8||lul| Lo (75 Lemma 5.2 now completes the proof in this case.

To prove case (b) we setf = v + 7m*vo, Wherevg € A*(M) solvesdvg = i*u.
We obtain

lvillLe (s < C@llullLeocrs) + llvollLean),

1-s
lvallasere,) < CE lull () + lvollasen))-

Lemma 5.2 then provides a holomorphic solutiondof= u satisfying the esti-
mates (5.2).

Finally, to prove part (c) in Theorem 5.1 we shall construct a good solution of
dvg = i*u on M belonging toA*(M) and then apply (b). In order to circum-
vent problems caused by low differentiability &f, we use the following result
of Whitney [W2]: If M is a compac€* manifold (k > 1), possibly with bound-
ary, then the underlying topological manifold may be given a structuredsf a
manifold, denotedV,, such that the set-theoretical identity mgpMo — M is
aC*-diffeomorphism.

Letig: My — M be as before. We choose a smooth Riemann metridgand
refer to Wells [We] for what follows. Let#* denote the Hilbert space adjoint of
the exterior derivative with respect to the corresponding inner product on forms.
The Laplace operatorA = d*d + dd* has a correspondinGreen operator
G: L(Zp)(Mo) — H(ZI,)(MO)) with the property thag = d*G(«) is the solution of
dp = « with minimal L2-norm (orthogonal to the null-space 4, provided that
the equationig = « is (weakly) solvable. For further details, see [We, Sec. 4.5].

The Green operator is a classical pseudodifferential operator of e/@eso
it induces bounded operatofs® — A? andA* — A**2fors > 0. (See [S,
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Sec. VI, 5.3.) Nowju is ac'-form onMy, andvg = (igl)*(d*Gigu) is aCl-form
on M with dvg = i*u, satisfying

lvollasy < Colli*ull ooy < Cllull oo ;).

Substituting this into (5.2) gives (5.3). O

REMARks. (1) In general the constaidt = C;s in the estimate (5.3) cannot be
chosen so that lim,oCs = 0. To see this, let*u # 0 and choose a form
¢ € C(lmfp)(M) with [, u A ¢ # 0. If vs solvesdvs = u in ;5 and satisfies

lims_o [lvsllz=(7;) = 0, we get

/M/\(f):fdl)g/\(]ﬁ::l:/ vg/\d(f)—>0
M M M

ass — 0, a contradiction.

(2) If M is only of classC?, the operatot is not well-defined onM. Instead,
we call ap-form « on M exactif there exists an integrablep — 1)-form g on
M such that, for each smootim — p)-form ¢ on a neighborhood af7, we have
[ B Ai*de) = (=D? [, @ Ai*p. Then itis not hard to verify that(i5 ) =
ijo (weakly) onMo and also that/(z*8) = 7*« on Ts,. Using this, the proof
carries over with only minor changes to the case wiiis of classC*+¢ for some
¢ > 0, whendvg = i*u is interpreted as above.

(3) If M is of classC?*¢ for somee > 0, a more refined argument gives a holo-
morphic solution of/v = u that also satisfiepv||c1r,) < C 109(1/8)|lullL=(7;)
wheneveri*u is exact. This reflects the fact that one expects to “gain almost a
derivative” in the interior estimates for tlieequation. We cannot establish such
estimates with a constant independend ofin fact, whenM = {z e C":|z;| =1,

1 < j < n}, this would lead to the estimaif8||c1,, < constla|r=us for a
solution ofdB = «, a contradiction.

(4) Small changes are needed to prove Theorem 5.1 WhenK is a compact
subset of a larger totally regP-submanifoldM’ ¢ C” (see Remark (3) follow-
ing the statement of Theorem 5.1). We follow the same proof as before, using the
appropriate version df-results given by Remark (3) following Theorem 3.1. Dur-
ing the proof we shrinkk” > K ands > 0 several times. In the proof of (5.2),
we observe that thé2-minimal solution ofdvg = i*u in Ui N M' also satisfies
d*vg = 0 whenp > 1, and we may apply the interior elliptic estimates to obtain
Holder estimates forg in a neighborhood oK. There are also arguments to se-
cure the necessary control [pfg|| ;. 2, for instance, the Hodge decomposition in a
manifold with boundary.

6. Proof of Theorem 1.5

In this section we prove Theorem 1.5. We shall adapt a method of J. Moser [M]
to the holomorphic setting.

Let w be either the holomorphic volume forax, A --- A dz,, or the holo-
morphic symplectic forn{j;;l dzoj—1 N dzzj, n = 2n’. Write M = Mo and let
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fiM = My — M be aC*-diffeomorphism as in Theorem 1(6 > 2), satisfying
condition (1.6) for som&€**-mapL: M — GL(n,C). Leti: M < C" denote
the inclusion. We assume in the proofs tivais compact and without boundary.
As usual, we denote by; = 7s M the tube of radiug aroundM.

By Lemma 2.6 there is a neighborhotid— C" of M and aC*-diffeomorphism
f1U — f(U) c C"extendingf such thaif is d-flatonM and satisfiesf*w). =
w, at all pointsz € M. The proof of Theorem 1.2 then gives, for each small
0, a holomorphic maFy: 7; — C” of the form

F{ = f+Rs, IRslcim =0@7); 0<j<k (6.1)

In order to prove Theorem 1.5, we must construct biholomorphic migps be-
fore but which in addition satisfy;'w = w. We need the following two lemmas.

6.1. Lemma (Existence of a good-flat extension). If f is anyd-flat C*-exten-
sion of f satisfying(f*w), = w, for all z € M, then there exists anotherflat
Ck-extensionf of f satisfying| f*w — w| = o(dl{f,_l) near M anddf, = df, for
allze M.

6.2. LEmma (Approximation of a good-flat extension). Assume thaf is any

d-flat C*-extension off satisfying| f*w —w| = o(d}, ). Then, for all sufficiently
small§ > 0, there exist biholomorphic map&: 7; — C” with F;'w = w and

IFs — flicirmy = o(8*/)for0 < j < k.

We postpone the proof of Lemmas 6.1 and 6.2 for a moment.

Proof of Theorem 1.5 in the Smooth Catet f: M = Mg — M, be aC*-
diffeomorphism as in Theorem 1.5. By Lemma 2.6, theredidlat extensionf of

f satisfying f*w = w at points ofM. By Lemma 6.1 we can modify this exten-

sion, still denoting itf, such that f *w — w| = o(d}; ). Finally we apply Lemma

6.2 to derive biholomorphic map& in tubes7s aroundM satisfying Fy'w = w

and the estimates (1.2). This proves Theorem 1.5 in the smooth case, granted that
Lemmas 6.1 and 6.2 hold. We postpone the proof in the real-analytic case to the
end of this section. O

Proof of Lemma 6.2Let f be as described in the lemma andAet7s — C” (for
smalls > 0) be holomorphic maps of the form (6.1) obtained as in the proof of
Theorem 1.2. From the estimates Bpin (6.1) and the assumptidif *o — w| =
o(d}™, it follows that

I(F) o = olleir, = 06" 7™, 0<j<k-1

Setw’ = (F{)*w; this is a holomorphig-form on7; that is close tav. Choose
constants O< a < ¢ < 1. Using Moser’s method [M] we shall construct a holo-
morphic mapG;: 7,5 — 7s that is very close to the identity map and satisfies
G}w® = wonT,s. The holomorphic mags = Fy o Gs: T,s — C" is then close

to Fy (and hence tgf), and it satisfies;w = G} (0’) = o.
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We first outline Moser’s method, postponing the estimates for a moment. Set
) = (F))*o ando! = (1 - ) + twf for t € [0, 1]. Thendw? = 0, andw? is
close tow for eacht ands. Our goal is to construct &-family of holomorphic
mapsG, = G, T,s — Ts satisfyingGo = Id andG[*wf =wforallt€]0,1];
the time-1 mapG; = G, 1 will then solve the problem.

To simplify the notation we suppressfor the moment, writingo’ = w, and
G5, = G,. Suppose that such a flo@ exists. Denote by, its infinitesimal gen-
erator; this is a holomorphic time-dependent vector field on the imagg tifat
satisfies(%G,(z) = Z,(G,(z)) for eachr € [0, 1] and eacly in the domain ofG,.
Differentiating the equatio*w, = w ont and applying the time-dependent Lie
derivative theorem [AMR, Thm. 5.4.5], we have

0= j—t(G;‘w,) =G/ <Lz,a), + %w,) =G/ d(Z|w) +w1—w). (6.2)
We have also used the Cartan formula for the Lie derivaliyay,, as well as
dw, = 0. This shows thaG;w, = w holds for allr € [0, 1] if and only if the gen-
eratorZ, satisfies the equatiaf(Z; |w,) + w1 — w = 0 for all r € [0, 1].

At this point we observe thab is exact holomorphic o&”, w = dg; in fact,
whenw is the volume form (1.4) we may takge = %Z';:l(—l)”ldz[j], and

whenw is the symplectic form (1.5) we may takge= Z?/:lzz_,-_ldzzj. Hence the
differencew; — w = F{*dp — dB = d(F;*p — B) is exact holomorphic off;. By
Theorem 5.1 we can solve the equatibn= w; — w to get a small holomorphic
(p —D-formv = vs in T.s. Let Z, be the unique holomorphic vector field @y
solving the (algebraic!) equatidf; |w; + v = 0. IntegratingZ; yields a flowG,
that satisfie$5; w; = w on its domain of definition.

For this approach to work we must choagen 7.5 to have as small sup-norm
as possible; this will imply thatz, | is small and hence its flo&,(z) will not es-
cape the tubg.s (on which Z, is defined) before time = 1, provided that the
initial point Go(z) = z belongs to the smaller tul§g;. (In particular, the solution
vs = (Fy)*B — B may not work becausg] is not close to the identity map.)

In order to apply Theorem 5.1 efficiently we must first show thay =
i*(w1—w) has a solution o with small norm. Considerthe ma&p[0, 1] x M —
C", h(t,z) = f(z) + tRs(z), and setw = h*w. Also leti,; M — [0, 1] x M de-
note the injection,(z) = (¢,z) (z € M, t € [0,1]). It follows from Lemma 2.1
thatvo = [, i7 (2 w)dr solvesdvy = ifw — ifw. We haveifw = i*w; and
iw=i*f*o = i*w, S0dvg = i*(w1— w). It follows from the preceding formula
thatvo = "7, rfvj, whereri, ..., r} are the components df; andvy, ..., v,
are(p —1-forms onM with ||v; | ¢x-1r) bounded independently 8f This gives
lvollciary = 0(8%=") for 0 <1 < k — L It follows that |[voll asuy = 0(85*) for
a givens € (0,1). Sincellw; — o||1=(7;) = 0(8571), it follows from Theorem 5.1
that, for all sufficiently smal > 0, we have a holomorphic solution @bs =
w1 — win 7.5 that satisfiedvs || . (7-,) = 0(8%).

Let Z? be the holomorphic vector field ify; satisfyingZ? |w® = vs. The pre-
vious estimate omw; implies || Z8 || =7,y = o(8%) uniformly in ¢ € [0, 1]. The
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standard formula for the rate of escape of the flow shows that we can chipsse
0 sufficiently small such that, for all € (0, §o) and all initial points; € 7,5, the
flow G; ,(z) of Zf remains in7.; for all r € [0, 1]. At 1 = 1 we have a mas =
Gs.1: Tas — Tes satisfyingGi ol = w and|G;(z) — z| = o(8*) for z € Tas.

SetF; = G; o F{. Since the map#’; have uniformly bounded!-norms on
Ts. we see thall Fs — Fy || o7 = 0(8%). Replacing: by a smaller constant and
applying the Cauchy inequalities, we also get

IFs — flicicr,) < 1 Fs — Fillcicr.y + 1Fy — flicicry = 08, j <k.

By construction we havé;w = w, so Fs solves the problem. O

REMark. This method applies on any domdncc C” on which we can solve

the 3-equations with estimates (e.g., on pseudoconvex domains); it shows that,
for any holomorphic mag’”: D — C” for which |F"*w — w| is sufficiently uni-
formly small onD, there exists a holomorphic map. D’ — C” on a slightly
smaller domainD’ cc D such thatF*w = w and F is uniformly close toF’

on D’. We obtainF in the formF = F’ o G, whereG: D’ — D is a holomor-

phic map close to the identity and chosen such &atF'*w) = w. The precise
amount of shrinking of the domain depends||df*» — w|| .~ (p) and on the con-
stants in the solutions of tHe equations; we do not know if there is a solution to
this problem on all ofD.

We now turn to the proof of Lemma 6.1. We shall need the following.

6.3. LEmmMa. Letu be ad-closedp-form of clas*~1in a neighborhood oM,
with p > 1, such that the p, 0)-componeni’ of u is 3-flat on M andu” = u — u’
is (k — 1)-flat on M. Assume*u = 0, wherei: M — C" is the inclusion. Then
there exists &p — 1, 0)-formwv in a neighborhood o#/ such that = Zj.vzl gjvj,
where eacly; is ad-flat C*-function vanishing o, eachv; is aa-flat C*~1-form,
and |u — dv| = o(d}; Y. If u = 0 on M, we may take; = 0 on M for all j.

REMARK. Using rough multiplication (Lemma 2.5), we see that thereddflat

(p, 0)-form v of classC* that also satisfieslv — u| = o(d}, ). However, the
version stated here is often technically more convenient, since we may wish to
postpone the use of rough multiplication.

Proof of Lemma 6.3In the casen = n we may take» = 0, which can be seen as
follows. We haver' = 3", _, u;dz’, where the coefficients; areC*-functions
that ared-flat on M; hencei*u = 0 means that; = 0 on M for all I (since the
coefficients ofu” vanish onM). It follows from the Cauchy—Riemann equations
that each; is flat onM, so we may choose = 0.

Whenm < n, we use the asymptotically holomorphic extensighof M
(Lemma 2.4) and the-flat retractionF to M . Recall that a neighborhood &f may
be covered by *-chartsG;: U; — V; (Gi(z) = (z(/i)(z), w(/i)(z)) eCm x Ccr—m,
1< <) satisfying:
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(@) G; is da-flat on M, G;(M N U;) = V; N (R™ x {0}), and G(MNU) =
Vin (C™ x {0});
(b) theretractiorF is giveninthese local coordinatestay (z', w')) — (z/, tw’).
Leti: M < C” be the inclusion. Arguing as in the case= n and making
use of thed-flat local parametrizations a7, we see that*u is flat onM and so is
7*u = 7*i*u, wherer = Fo. WhenF:[0,1] x W — W is the retraction tdV/,

the form L
0
D = ¥ F‘>,< .
0 /0 i <_8tJ u) dt (6.3)

solvesdd = u — 7*u on a neighborhood a¥, according to Lemma 2.1. Express-
ing u in the G,-—coordinates{z{,-)(z), w(/[)(z)) (which ared-flat on M) yields
w= Y ars widzdh A dwg + gy
1+1J1=p
onU;, where thez; ; areC*~1-functions that ar@-flat onR™ x {0} and Wherer(’i)
is aC*~1-form that is flat onM. Using the formula following Lemma 2.1, we see
thato in (6.3) is a linear combination of terms

1
’ / / K /1 'K
w(l)’j<A a]"](Z(i), tw(l))tl d[) dZ(l)/\dw(l),

where|/| +|K| = p—1and 1< j < n—m, plus aremainder termy;, satisfying
0%rl})| = o(dy; *") onU; for |a| < k —1 Herewy, ; denotes thgth component
of w(;,. SinceGy;, is o-flat, it follows that

n—m

L f0) oL

=) Y w8 dt e
=1 |Ll=p-1

in U;, where eacrg;f)L is ad-flat C¥~1-function and where;, behaves like:;,.
Choose &-flat partition of unity{y;}/_, subordinate to the covering/;}/_,.
and choos@-flat cut-off functionsy; € Cg°(U;) with x; = 1 near supg,; N M for
i=1...,r. Let¢y, ..., ¢y (With N = r(n —m)) be some enumeration of the col-
lection of functions{wiw{i)vj:i <vr, j <n—m}. Furthermore, levy, ..., vy be
the corresponding enumeration of the formsy",, _,_; ¢’} dz*. prolonged by
zero outsidey;. Setv = Y"'; ¢;v;. Clearly|dv — u| = o(d}; ™). Furthermore, if
u = 0onM, we also see theyfola,,,(z’, tw)t'Kldt = 0onV; N (R™ x {0}) and
hencevy=.-.- =vy =00nM. O

Proof of Lemma 6.1In the unimodular casey = dz; A - - A dz,, we could
successively increase the order of vanishing@f— » on M by adding certain
correction terms tgf. This seems harder to do in the symplectic case, so we shall
instead present an argument that works uniformly in both cases. Itis a modification
of Moser’s method: withw, = (1—1)w + 1/ *w, we shall construct & -family of

d-flat C*-mapsg, on a neighborhood afZ, with go = id and| £ g*w,| = o(d); )
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uniformly inz. Given such a family, integration ingives||g;w1— |l = o(d,’([l).
We will also show thag; is 3-flat on M. Hence the mag = f o g1 will satisfy
Lemma 6.1. Furthermore, we shall see thatz) — z| = O(dy(z)?), S0 Dg1 =
Id on M and hencef and f have the same differential ov.

We shall obtaing, by integrating a certain real time-dependent vector field
X, of classC*. Differentiating %g;“a}, as in (6.2), we see thaf, must satisfy
[d(X; o) +w1—o| = o(dj{‘[l). We shall now construct such a vector field. More
precisely, we shall construct a continuous familyCéfreal vector fieldsx,, on a
tube7o = 75, satisfying the following properties for eaclz [0, 1].

(1) X,, considered as a mdfy — C", is d-flat on M. (Here we identify a real

tangent vectoX = Z;?:l ajaixj + bj% € T,C" with the corresponding com-
plex vector(a; + iby, ..., a, + ib,) € C".)

(2) |X,(z)| < Cdy(z)? for someC > 0 independent of € [0, 1].

(3) 1d(X,]w,) + w1 — o] = o(d}; Y uniformly inz € [0, 1].

Let us first show that this solves the problem. We must showXhatn be in-
tegrated fromr = 0 tor = 1 for all initial values in a smaller tube. Recall that,
after shrinkings if necessary, the functiod,, is differentiable in7o\ M, with a
gradient of length 1. Let(¢) be an integral curve oX, in 7o\ M, t €0, to], and
setu(t) = dy(z(¢)). Then

w'(t) = Vdy (2(1))- X,(2(1) < 1X,(z(0))] < Cu(r)?.

Here we denote by- w the real inner product of the vectarsw € C”. Integrating
the inequalityu’(t)/u(t)?> < C from 0 tot gives Yu(0) — 1/u(¢) < Ct and thus
u(t)(1— Cru(0)) < u(0)for0 <t < to. Letthe initial valuez(0) € T, \ M, where
81 < min(8g/2,1/2C). It follows thatu(r) < u(0)/(1 — Ctu(0)) < 2u(0) and
hence the integral curve extends to all valueg0, 1]. Since|X,(z(t))| < Cu(1)?,
we see thalz (1) — z(0)| < 4Cu(0)?¢. In other words, the time-diffeomorphisms
g: are well-defined oy, for all t € [0, 1] and satisfylg;(z) — z| < 4Ctdy (z)?.
In particular,g;(z) = z andDg,(z) = Id for z € M andr € [0, 1].

To show that the&*-mapsg, ared-flat on M, we consider the variational equa-
tion 2 D,g(z) = D.X,(g(2)) o D,g(z) with the initial conditionD,go = Id.
Decomposing the differentiaD¢ as the sum of &-linear partD’¢ and aC-
conjugate parD”¢, we get

0 ” Y E N
5ngr(z) =D, (atgt(z)> = D_(X:(&(2)))

= (D;X)(8:(2)) o D8:(2) + (D X,)(8:(2)) © D;8:(2).

We apply both sides to a unit vectoe C" and sety(r) = D]g;(z)v € C". We ob-
tain a linear differential equatioyi(z) = A(#)y(¢) + b(¢z) with the initial condition
y(0) = D/go(z)v = 0. The functionu(r) = |y(¢)| is differentiable whem (1) #
Oandu'(r) = y'(t)- y()/ly(®)] < |y'(t)]. Thus, if|[A(t)| < A and|b(?)| < b then
u'(t) < Au(t) + b, whereu(t) # 0. We shall prove that(¢) < %(ef” -1, te
[0,1]. If u(z) = O then there is nothing to prove. If not, gtbe the largest zero of
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u on the interval [Q¢]. Thenv(s) = u(s)a—** satisfies the differential inequality
v/(s) < be~4 for s € (to, t]. Integration fromrg tos givesv(r) < £ (e~A0 —e=41)
andu(r) < Z(eA=10 —1) < LA —1).

We know that| D, X,(z)| and|D.g,(z)| are bounded uniformly in € 75, and
t €[0,1], while |D!X(2)| = o(du (z)*1. Thus we may choose the upper bound
A for |A(r)| independently of € 75, and the unit vectop, and we may choose
the upper bound of |b(1)| to be of sizeb = o(dy (z)*1) uniformly in v. Since
u(t) = |D!/G,(z)v, it follows that|D/g,(z)| = o(du(z)*™1), so eachy, is 3-flat
onM.

By assumption we havel (X, |w,); + (w1 — wo);| = o(du(z)*Y. Since
dy(g:/(2)) < 2dy(z) and the normsD_g,(z)| are bounded uniformly ia € 7,
andr € [0, 1], we have| 2 (g7w,).| = o(dy(2)*~?) uniformly in . By integration
in r we obtain|(giw1 — )| = o(dy(z)¥ Y. Settingf = f o g1, we see thaff
is ad-flat C*-extension off, Df = Df on M, and|(f*w — w).| = o(dy (2)* ).
Thus f satisfies Lemma 6.1.

It remains to construct the vector fieXd. Applying Lemma 6.3 tew — w; yields
a(p — 1, 0)-form v nearM with |dv — (w — w1)| = o(d}; ") andv = 0 onM. We
decompose; asw, + w;, wherew; is the(p, 0)-component oty,. Thenw; =
o+ t(w]—w), andw, = w on M for eachy. Hence the map: Z — Z]w;, taking
the (1, 0)-vectorsZ € T*9C" to AP~29T*C", is an isomorphism for nearM
andt € [0, 1]. Hence the equatiof; |w, = v uniquely defines a time-dependent
(1, 0)-vector fieldZ; onC" nearM.

With respect to the basig-, ..., ;- for (1, 0)-vectors and the basi&[1], ...,
dz[n] (resp.,dz, ..., dz,) for the (p — 1, 0)-covectors, the map is represented
by an(n x n) matrix—valued functiom(z, z) = Ao+t B(z), whereAy is constant
and invertible and where the entriesB(z) ared-flat C*~-functions that vanish
on M. It follows that the entries of\(¢, z) 1 are rational functiona(t, z) in ¢ with
coefficients that aré-flat C*~1-functions. From the properties ofas given by
Lemma 6.3, it follows thaZ; = 37, ¢; "4_; rix(t, 2) 52, wherezy, ..., ¢y are
C*-functions that vanish oM and ared-flat on M and where each is a ratio-
nal function ins with coefficients that aré@-flat C*~*-functions withr (¢, 2) =0
forze M.

We next apply the rough multiplication lemma to the p&irgz), i« (¢, z)) with
respect to the compact subdétx [0, 1] in C" x R. We thus obtairC*-functions
ai(z, 1) (1 <1 < n), d-flat on M with respect taz, such that

N
Y g, ) —an(t, )| = o(dfy)

j=1

uniformly in ¢. (Note: Use of the parametrized version of rough multiplication
gives a smooth family of *-functions, but we do not need this.)
We setZ, = 31_ a(t, z)a% andX, = Z, + Z,. Writing a; = u; + iv;, with
u; andv, real, we haveX, = Y u;(z, t)% + v(z, I)%. If we considerX, as
a mapTo — C”, this means thak, = (a1(¢, z), ..., a,(t, 7)) and iso-flat on M.
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Furthermore, since;(z) andr; (¢, z) both vanish when € M, we see that the(,
vanish to the second order a.

Finally, we must show that (3) is satisfied. Writig = Z, + (Z, — zZH+ 7,
we see that

d(XJo) + 01— 0 =d(Z,Jw]) +d(Z, — Z)]®)) + (dv + w1 — ).

The first term on the right-hand sidedi&},), sincew!’ vanishes to order— 1 and
Z, vanishes to the second order &h FurthermoreZ, — Z; vanishes to théth
order, so the second termaed 1y and the third term iglv + w1 — | = o(d b.
Thus, (3) holds uniformly in, since the derivatives are continuougiin:). O

Proof of Theorem 1.5 in the Real-Analytic Ca8y assumption, there is a con-
tinuous mapyo: My — SL(n, C) (resp.,vo: Mg — Sp(n, C)) such thaty .
agrees withd, f on T, M, for eachz € My. By Remark (1) following the proof
of Theorem 1.2 in Section 44, may be approximated by a hoIomorphlc map
from a neighborhood o#/y to GL(n, C) with ¢1 , = d. . f onT. M, for eachz €
M. Sincey; 0 = o for z € Mo and sincey; approximates)o on Mo, it fol-
lows that the formy; .o = (detyr ;)w is close tow for all z € M, sufficiently
nearMo.

We may think ofy; as a holomorphic automorphism of the trivial bundle
My x C" — Mo. We claim that there is another holomorphic automorphism
g of My x C" such thatg|,;;, = ld andg*¥jo = w. In the unimodular case,
we letg act as the identity offM, and as multiplication bydetyr,)~¥=™ on
7o (the holomorphic extension of the complex normal bungléo My); the root
is well-defined because the function gat, is close to 1In the symplectic case,
g is a reduction to symplectic normal form with holomorphic dependencesn
Mo. In both cases the mafy = 1 o g is an automorphism of the trivial bundle
Mg x C" satisfyingy*w = .

Let F1 be a biholomorphic extension ¢f, constructed fromy = 10 g as in
Remark (1) (Section 4), that satisfiés;, = . at pointsz € Mo. ThusFow = w
at points ofMy. Applying Moser’s method as before, we can construct a biholo-
morphismaG in a tubular neighborhood dit, that equals the identity oM, and
satisfiesG*(F;'w) = w. ThenF = F; o G is a biholomorphic map neak, that
extendsf and satisfieF*w = w. O

7. Proof of Theorems 1.7 and 1.8

We need to consider maps that have different degrees of smoothness with respect
to the time variable and the space variable. We use the following terminology.

DEeFINITION 4. LetU be an open subset of,[0] x R”. A mappingf:U — R”"
is called aC!-family of C¥-mapsif 3/(3%f) is continuous iU for 0 < j </ and
|| < k. There is an obvious extension of this notion to mgpf, 1] x M — N
whereM andN areC* manifolds. If in additionf, = f(z, -) is a diffeomorphism



408 FrRANC FORSTNERIC, ERIK Lgw, & NILS @VRELID

(of its domain onto its image) for eacke [0, 1], we call f = {f,} aC!-family of
Ck-diffeomorphisms.

Thus, ac*-family of C*-diffeomorphisms is the same ag’4-isotopy (or aC*-
flow) in the sense of Definition 1 in Section 1. We remark that iis aC’-family
of diffeomorphisms on domairtg, ¢ R” for ¢ € [0, 1], then the family of inverses
f, " are not necessarily@-family if / > 0; the reason is that thederivatives of
the (derivatives of the) inverse map will involve higher ordederivatives of the
original map.

In the situation of Theorem 1.7 we shall say that a time-dependent family of
C*-forms on submanifold8f, c C", o, = Y ir=p @rdz! witha; € CK(M,), is
acontinuous family ot *-formsif «; , o £; is a continuous family of *-functions
on M for all multi-indices!. Recall that7; = 7sM is the open tube of radius
around a submanifold/ c C”".

The main step in the proof of Theorem 1.7 is the following result.

7.1. THEOREM. Let /M = My — M, C C" (¢t € [0,1]) be aC -family of
C*-diffeomorphisms between compact, totally i€&isubmanifolds ofC”, with
fo the identity onM. Byi,: M, — C" we denote the inclusion map. Let (t €
[0, 1]) be a continuous family ofp, 0)-forms of clas€* on M, such that*«, is
closed onV, for eacht. Then there exists an extension®gfto a continuous fam-
ily &, of (p, 0)-forms of clas€* on a neighborhood off = U,E[Ovl]{t} x M, in
[0,1] x C" such that, for all sufficiently sma#l > 0, there exists a continuous
family of closed holomorphip-formsu? on Us = Ute[o,l]{f} x TsM, satisfying

5 A k-
lu; —é:lleremmy = 0@ "), 0<r <k,

uniformly inz € [0, 1]. If i*«, is exact oM, for eachr € [0, 1] then we may choose
u? exact for every; in this caseu? can be chosen to be entire if eath is poly-
nomially convex.

In the simplest case, whe¥l, = M and«, = « for all ¢ € [0, 1], the main steps
in the proof of Theorem 7.1 are as follows (we wrffe= T;M ).

(i) We construct & p, 0)-form & on a neighborhood a¥ such thati« is flat on
M. In particular,é is 8-flat on M.

(if) We approximate the coefficients afby holomorphic functions to obtain a
holomorphicp-form u’ in 75 with ||du’|| .75y = o(8*71).

(i) We solvedv = du’, with v holomorphic and|v|| .« 7; = 0(8%), and seu =
u —v.

(iv) If i*a is exact, the norm of the de Rham cohomology clasgwis o(5%),
and this class may be represented by a holomorpHiarm uq on 75 of size
0(8%). Thenuy = u — ug is exact and approximatesto the correct order
onM.

In the parametric case we perform these steps such that the solutions are contin-
uous with respect to the parameteBefore giving the proof of Theorem1, we
summarize (slight extensions of) certain well-known results that we shall need.
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We begin by considering thgarameter dependence in Whitney's extension the-
orem. Instead of a general compact subget- R” (or K ¢ C"), we consider
the case whek is a compact*-submanifold, with or without boundary. This is
a so-called 1-regular set, so we have the following more precise results (see [T,
Chap. IV, Secs. 1and 2, esp. p. 76).

(i) Let A = {a € Z" : |a| < k}. The collectionsF' = (fy)eea € C(K)* satis-
fying the Whitney condition form a closed subspa?¢K) of C(K)# with
respect to the sup-norm; we shall call such coIIecthmTtney functions.

(i) The Whitney extension operatdw: £X(K) — CA(K'), whereK’ c R" is a
closed neighborhood &, is linear and norm-continuous. Tha$W(F) =
f«OnK for eache € A and

IWE) ek < CsUplll fallexy: lal < kY.

(iii) There exists a constart > 0 such thatCw is a modulus of continuity for
*W(F), |a| = k, whenevet is a modulus of continuity for alf,,, || = k.

From this it follows immediately that if,, , (o« € A) areC’-families of continu-
ous functions oK and if F; = (f4.1)aca IS @ Whitney function for eache [0, 1],
then their Whitney extensiond’(F,) are aC'-family of C*-functions and we may
bound the andx derivatives oW (F;) in terms of F;.

Using these results, the proof of Lemma 2.5 gives the following lemma.

7.2. Lemma (Parameter-dependent rough multiplicationl.et K ¢ R” be a
compactC -submanifold, with or without boundary. Lgtbe aC’-family of C*-
functions, and leg; be aC’-family of C*~-functions on a neighborhood & in
R" such thatf, = 0 on K for eacht € [0, 1]. Then there exists &'-family of
C*-functionsh, on a neighborhood ok such that/, — f,g:| = o(d%) uniformly
inre[0,1]. If K c C" and if f, andg, are d-flat on K, then so i, .

We next prove an extension lemma.

7.3. LemmMA. LetM C C" be a compact, totally reat*-submanifold. For any
C'-family of C*-mapsf,: M — CV (t € [0, 1]), there exist an open sét ¢ C”"
containingM and aC'-family of C¥-mapsf,: U — C" such that eacly; is 3-flat
on M and restricts tof, onM. If N =nand f;:M - M, = f,(M) Cc C"isa
diffeomorphism for eache [0, 1], we can choosd, as before to be &'-family
of C*-diffeomorphisms ow.

Proof. Let m = dimg M < n. We consider first the case whed = V is a
smoothly bounded compact domairRff ¢ C™ C C". Write z; = x; + iy; with
xj,yi €eR. Given f Ck(V), we consider the following Whitney function dn
for the real coordinates,, ..., x,;, y1, ..., ¥ in C™:

F: faran =i 8"‘”’"”(]‘) a',a"eZ™, || + "] < k.
From the Cauchy—Riemann equatm}is_ z— (1 < j < m) forafunctiong in
a neighborhood o¥ in C”, it follows that the Whltney extensiofi = W(F) of
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F toC™is d-flatonV. If m < n then we extendV(F) trivially in the variables
Zm+1, ---» Zn 10 get a Whitney extension dd”. Moreover, if{ f;:7 € [0,1]} is a
C!-family of C*¥-functions onV and if F, is defined as before, then the Whitney
extensiong/V (F,) are aC'-family of C¥-functions that ar@-flat on V.

Next we consider a local*-parametrizationy: U — M around a poinivg €
M, whereU is an open set ilR”. Let zg = ¢ Y(wo) € U. Choose a smoothly
bounded domaiV cc U containingzo and setW = ¢(V) C M. Let$ be an
extension ofp to C” (as constructed previously) thatdsflat on V. If m < n,
we also choose a baais, ..., v,_, of the complex nhormal spac(%coM)L toM
atwg. The map®(z) = ¢(z) + 321" zmy jvj is then aC*-diffeomorphism in a
neighborhood of that isd-flat on V; hence its invers@ ! is well-defined in a
neighborhoodV ¢ C” of wg and isd-flatonwW N'W c M.

The first part of the proof also provides an extensjowf the mapf; o ¢: V-
C"toa nelghborhood oV in C” such thaty, is 3-flat on V. The composmon
¥, 0o @1 W — C" is aC*-extension of the mayp, thatisd-flatonw N W c M.

This gives us a local-flat C*-extension off, in a neighborhood of each point
wo € M. We can patch these local extensions byfat partition of unity along
M (as in Lemma 2.6) to obtain a desir€tfamily £, satisfying Lemma 7.3.

It remains to consider the case whgnM — M, is a diffeomorphism for each
1€[0,1]. LetM = Usepo.git} x M; C [0,1] x C", and letf:[0,1] x M — M
be the mapf(r,z) — (¢, f,(z)). Let v denote the complex normal bundle &f
andv’ the complex normal bundle a, in C". Then = (o {t} x v' is, in
an obvious way, a vector bundle ovéf, and [Q 1] x v is a vector bundle over
[0,1] x M. By standard bundle theory (see [Ati, Lemma 1.4.5]) there exists a
bundle equivalence:[0,1] x v — ¥ over f. Thus we have continuously vary-
ing isomorphisms, — ‘N)},m (z € M, t €[0,1]) that we extend to a continuous
mapA’: [0, 1] x M — Endc(C"). Then we approximatd’ by aC’-family of C*-
mapsA: [0, 1] x M — Endc(C") so thatA(z, z)v, is a supplementary subspace
to (Df).(T.SM) for each(, z) € [0,1] x M. Let L(z, z) equal(Df,)¢ onT*M
and A(z, z) onv,. SinceT,C" = T.°M & v., it follows that L(z, z) belongs to
GL(n, C); itis not hard to check thdt, = L(z, -): M — GL(n, C) is aC!-family
of C¥Y-maps extendingf,. Using Lemma 7.2, it is easy to see that Lemma 2.6
has a parameter-dependent version that gives the desired conclusion. [

Proof of Theorenm7.l. SetM = My andi = ig;:M — C". We first apply
Lemma 7.3 to find a neighborhodd c C" of M and a continuous family of
Ck-diffeomorphismsf,: U — U, c C" that ared-flat on M. The family of in-
verses{f,)‘l: U, — U isthen a continuous family @f*-diffeomorphisms ot/ =
Uieo,1y{7} x Ur which ared-flat on M, and which extend, ™% M, — M.

Leta, =3 1, oy dz! beasin Theorem.1,with o, , € C¥(M,). Our assump-
tion is thate; , o f; (¢ € [0, 1]) is a continuous family of *-functions for each.
Applying Lemma 7.3, we can extend it to a continuous family of C*-functions
on[0, 1]x U thatared-flatonM. Seta,,_oz,to(f,) landa, = Zm ar dz’;

this is a continuous family at* (p, 0)- -forms onU, anda;, is o-flat onM,
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The next step is to modify, so as to make its differential flat dd,. We observe
that bothf*a, andg, := df*@, = f*(d&,) are continuous families ¢F*~-forms
onU. By assumptiondi;"a, = 0 and hence*g, = 0.

It is clear that the proof of Lemma 6.3 producedaamily of solutionsv, for
any C!-family u, satisfying the assumptions in that lemma. Applying this to the
formsu, = B, constructed here, we obtain a continuous family @f 0)-forms
vl =000 vi, (t €[0,1]) such thady, — p, is (k — D-flat on M, where the
1, ..., ¢y ared-flat C*-functions vanishing o/ and where the//, are continu-
ous famllles ofC*1 (p, 0)-forms that aré)-flat on M.

Then(f,” 1)*th > iti=p @104z’ 4 1 wherea; ; , are continuous families

of C*~L-functions that aré-flatonM, andx; , = o(d}; %) uniformlyinz. Applymg
parameter-dependent rough multiplication (Lemma 7. 2) @nda; ;; o f, gives
continuous fam|l|esb, It of Ck-functions nearM that ared-flat on M. Setting

== pZ _1(b;, e o fhdz! and&, = & — y,, we haved, |y, = o, (t €
[0 1) and|da;| = o(d )umformly int.

The nextstepisto approxmafewell by biholomorphic maps in tubular neigh-
borhoodsT; of M. Note thatf, mapsM onto M, and is a diffeomorphism from a
neighborhood/ of M on a neighborhood; of M,, with estimates on derivatives
that are valid for alk € [0, 1]. It follows that, for some: > 0 and all sufficiently
smalls > 0, we havef,(Tz;sM) C TsM, andf,"X(TzsM,) C TsM forallt [0, 1].

If we apply the solution operator of Theorem 3.1 to the equatidh= 3f, in
Ts = TsM and seth® = = f, — R®, we obtain a continuous family of holomorphic
mapsh? on T satlsfymg||h‘S ff||c/(7—M) = o(8* /) for j < k, wherek > 2. It
follows that, for smalb > 0, the maph? is a biholomorphism of; onto its image
andg? := f 1o h! is aC*-diffeomorphism of the tubg; onto a small perturba-
tion of 7.

Sinceh? is close tof,, it is not hard to see (using the argument in the proof
of Theorem 1.2) that, if 0< a < a ande > 0 are given, then fo > 0 suffi-
ciently small (depending om ande) we have the inclusions(7y M) D T,y M,
fored <8’ <6 and(hf)‘l(T/Mt) D T.9M for ed < 8’ < aé. For allt, we also
haveT, oM C g (TyM) C Tz M for e§ < §' < 6.

The next step is to approximadg by a continuous family of holomorphip-
formsu) (= u®) on tubesTs M,. Suppose thai, = Zm ch, ;dz!. For small
s >0, we haveh “(TsjaM) D TsM, for t € [0,1]. Letu] . be holomorphic ap-
proximations t, ; o h;'“, constructed as; in Section 4. Set; , = u// ;o (hy'*)™%
Then thep-formu; = 3", _ u; ;dz" is holomorphic in7; M, and satisfiegu! —

& llcicrsm,) = 0(8¥7) uniformly in 7. We also see thaldu, || .7,y = 0(8*71),
and if we seto, = i'(u, — &) thendvo, = i*du,.

We wish to prove the existence of a continuous family of holomorppie 1)-
formsv, (= v?) on7,s M, for someb > 0, with ||v, || o (7;50,) = 0(8%), uniformly
in ¢, and solvingdv, = du/. Thenu! = u, — v, would be a continuous family of
closed holomorphig-forms with [lu, |y, — a/llcig,) = 0(8%=7), uniformly in ¢,
as required.
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A parameter-dependent version of Theorem 5.1 for the faMijlyvould yield
that result. The following argument will give this for a sméalt 0, but we shall
restrict ourselves to the special case we need. Choeseé ande = a/2. For§ >
0 small,w; = f*(du)®) areC* -forms onTzs M With |w] || Lo(Tzsm) = 0(8FY)
and||w/||cs(Tzsay = 0(8*1%), uniformly inz.

Furthermore, withvg , = fi*vo,,, we havedvy , = i*w; onM, with [lvg , [|~ =
o(8*) and|lvg,lles = o(8¥*), uniformly in 7. Then the first part of the proof of
Theorem 5.1 and the remarks on continupulependence give a continuous fam-
ily of Ck¥-1-forms w, on TzsM solvingdw, = w,, with ||o/|.~ = o(s*) and
o llcs = o(8¥7*), uniformly in 7. Thenw, = (g’)*w, are defined orVzs/2M
and satisfy the same kind of estimates, a@ad = (h°)*(f, Y)*w/ = (h?)*du is
holomorphic. Since < a, the second part of the proof of Theorem 5.1 gives the
existence of a continuous family of holomorphieforms v, on 7,52 M satisfy-
ing dv] = (hd)*du, and v/l Lo (7o50m) = 0(8%) uniformly in ¢. By assumption,
h2(Tasj2M) D To25/2M, for eachr and sow? = (h?) v/ is a continuous family
of holomorphicp-forms on7,z;,, M, with dv} = du; onT,25/,M; and||v} ||~ =
0(8%) uniformly int.

We now show that if;, is exact for every then the holomorphic forms?
described here may be chosen to be exact. We recall that the de Rham cohomol-
ogy groupH”(M, C) is finite dimensional and*: H?(M,,C) — H’(M,C)
is an isomorphism for every. We have thatH”(M,C) ~ {a € C(,(M) :
da = 0}/(exact forms), where derivatives are taken in the weak sense, and we
may equipH? (M, C) with the quotient norm.

For eachry € [0, 1], there exist closed holomorphie-forms iy, ..., iy on
an open neighborhood of M,, such that{;i;], 1 < j < N, is a basis for
H?(M,,,C). Thent — [f*u?’] is a continuous map [A] — H?(M,C), and
t — [f*i4;] A < j < N)is continuous for nearto. It follows that {[ f,*i;] :

Jj < N}is abasis folH?(M, C) for ¢ in a neighborhood c [0, 1] of ¢, and we
may write [f*u’] = Z?’zl )] f*a;] with ¢! continuous on. Each formf*a;
is exact onM, so

ILAAulTl < 15 @?) — @l ooy = 0(8%).

This means that, fof; cC J, we have ma;g,1|cj‘3(t)| = o(8%) forall j < N. For

8 > 0 small and € J; we haveTs M, C U; u® = u? — Z?’zlcf(t)ﬁj is exact on
TsM, (since [7u®] = 0) and approximates, well enough. We can now patch
these together with a partition of unityiro obtain a solutiom? for ¢ € [0, 1] that
satisfies Theorem.1.

Finally, assumeV, is polynomially convex for alt € [0, 1] and letu? be the
exact solution onUs. For § > 0 sufficiently small we may also assume that
TsM, is Runge inC” for all r. Givena < a’ < 1 ande > 0, there exist;
[0,1], j =1, ..., N, and (relatively) open intervals C [0, 1], #; € I;, such that
Uss C UjLs Ty x TusMy; C Us; for all 1 € I; we havellu? — uf llcxr,,,um,) < &
and|&é — &fj lekr,,m,) < ¢ Letp; be a holomorphi¢p — 1)-form on7;M,
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such thatdg; = u’. By Oka’s theorem there is an entit@ — 1)-form v; such
that||8; — v,||Lw(TM,) < &. The Cauchy estimates imp|y8; — villerer, smy) =
go(8~") and hencdiu;, —dv; |7, ,m,) = £0(8~"*Y). Choosing: = 0(5"*1), we
obtain||dv; —&} l|cr(7.sm) = 0(8*~") whenever € I;. If x;(¢) is a partition of unity
on [0, 1] subordinate to the coverind;} and if we definev, = Zj.v:l X (O (2),
thenu, = dv, is an entire form for eachthat satisfies Theorefl. O

Proof of Theorem 1.7By assumptionf,: M — M, is C1-family of C*-diffeomor-
phisms andv is one of the forms (1.4), (1.5). Lét, be the infinitesimal generator
of f;, thatis,d, f,(z) = X,(f;(z)) for z € M andr € [0,1]. Thena, = X, |wis a
continuous family of( p, 0)-forms onM,, with p = n — 1 whenw is the volume
form (1.4) andp = 1 whenw is the symplectic form (1.5). Sincg is anw-flow,
i*a, is closed oM, for eachr (by the remark after Definition 2).

By Theorem 7.1 there exists an extensionxpfto a continuous familyy, of
(p, 0)-forms of clasC* on a neighborhood aff = Usepo.y{t} x M, such that,
for all sufficiently smalb > 0, there exists a continuous family of closed holomor-
phic p-formsu; on Us = U,cjo {1} x TsM; with [luy — a;llcrrm) = o(8F 1),
uniformly inz, for0 < r < k.

The equation! = Y |» uniquely defines a time-dependent holomorphic vec-
tor field ¥,> on Us. Sinceu! is closed, the flowr? of ¥, is a holomorphiey-flow
wherever itis defined (see Definition 2). If we It denote the extension &f, to
Us defined byé, = X, o, then||Y,? — X,llcr73m,) = 0(8*~") uniformly inz. We
may apply [FL, Lemma 4.1] to see that, for smat- 0, the flow F*(z) exists for
all t € [0,1] andz € ;Mo and thatl| F? — fillc 7m0 = 0(8*~") uniformly in z.

In fact, it follows from the proof of this lemma (see Section 4 and [FL]) that the
same approximation also holds for the flow from tinte times; if we let f; ; =

fio 75 TsM, — C" denote the flow ok, from ¢ tos and letF?, = Fdo (F?)™?
denote the flow of® from ¢ to s, then for smalls > 0 the rowF‘s exists for

all s, €[0,1] and we havé{ F, — f; sllcrrsm,) = 0(8*7") unlformly ins andz.
Sinceft‘l = f1.0, the second estimate in Theorem 1.7 follows.

Finally, if f; is an exacto-flow (i.e.,i*«, is exact onM, for eachr) and if each
M, is also polynomially convex, then by (the proof of) Theorem 7.1 above we may
choosel’(z) = Z?’Zl x5(1)dv;(z), wherev; () are entireg p —1)-forms onC" and
X? (1< j < N) areC* functions with compact support R that form a partition
of unity on [0, 1]. We may even assume thatare(p — 1)-forms with polynomial
coefficients. This means that the polynomial vector fisfg®n C”, uniquely de-
fined by the equatiodv; = X; |w, are divergence-free (resp., Hamiltonian). By
[F4, Prop. 4.1] these can be written as finite suf&) = ZkNil X; «(z), where
X; « are complete divergence-free (resp., Hamiltonian) polynomial vector fields
on C” (in fact they are shear fields). “Completeness” means that the figlds
may be integrated in time for alke C (and initial points € C"). ThenYj (¢, z) :=
X SHX ik (2) is also a complete vector field whose integral curves are reparametriza-
tions of the integral curves of .. Hence we may writ&,? = >« Yi(t, 2); thatis,

Y is the sum of complete, divergence-free (resp., Hamiltonian), time-dependent,
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polynomial (inz € C") vector fields. For the rest of this proof it is more conve-
nient to write this sum ag?’:l Y;(t, z), where eacly; is one of theY;, above.

Let G/, be the flow ofY,(z, z) from timet to time + s. This means that
G!,(x) =zand 4G/, (z) =Yi(t +5,G/,, (2). DefineG, ,,(z2) = (G, o

0 G )@). We can regard this as the flow of a t|me dependent vector field

X' defined fortlmes betweerr andr+s; forr + 2t < 1" <t + s we de-
fineX; () = 1Y (t+ N(¢'— i1 5). 7). lfwe reparametnze time such that the
joints are passed atzero speed, we may even assun:}e’,tﬁdtis smooth and van-
ishes near the endpoints. We denote this smooth roW,’tfff’(z). By definition,
Gi45(2) = Gr';ff‘v(z). Since the vector field$; are complete divergence-free
(resp., Hamiltonian) entire vector fields, it follows tlﬂﬁ”“ is a holomorphic
w-flow; thatis,(G/;'"*)* o = @ whent <t' <t +s.

For eachn € N we define the concatenatioR§'(z) = (Gl_%ylm oGy, %)(z).

Then (by [AMR, Suppl. 4.1.A]) we have ligL. o, F"(z) = F{(z) uniformly for
z € TsMy. As before, we can wevsFl’”(z) as the time-1 map of the flow of the

vector field X, defined byX, = X wom fort e [’71 ’] 1< j<m Let
F"(z) be the flow of this vector fleld It is easy to see that we can arrange for
lim,,_ . F" = Ff uniformly in [0, 1] x 7sMg and that the Cauchy estimates
imply |[F™ — F?llckag < € forall z € [0,1] and all sufficiently largen € N.
Similarly, (F;")~! is a concatenation and hence J,imoo(F’”)*l = (F)7 uni-
formly on 75 My; it follows that lim,,_, . (F/") ™ = (F?)~ Ey on M, and thus the
result follows by the Cauchy estimates. O

Proof of Theorem 1.8We shall see that, in all cases except (iii) and (vi), the
pull-backi e, of the forma, = X, to M, is exact for each; hencef; is an
exactw-flow and the result follows from the second part of Theorem 1.7.

In case (i) we havé‘a, = 0 by degree reason. In cases (ii), (iv), (v), and (vii),
we first see that the foriif«, is closed on,, either by degree reasons or by the
comment after Definition 2 in Section 1; hence the cohomological assumptions
imply, in each of these cases, thiak, is exact oni/,.

For the two remaining cases (iii) and (vi) it is shown in [F3, pp. 439, 441] that
the initial family f; may be altered to an exact, totally real, and polynomially con-
vex w-flow without changing the mapg = Id and f1; hence the result again
follows from Theorem 1.7. O
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