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Almost Periodicity and the Remainder
in the Ellipsoid Problem

MANFRED PETER

1. Introduction

Let & e R"™™ (m > 2) be a positive definite real matrix, I€[z] := ‘t&; be the
associated quadratic form, and @t'[z] := 't& . Fora e R™, define

No(x) =#reZ" | Qr—al =x}, x=1
which is the number of lattice points in the ellipsaid+ /xE, where E =
{reR™ | Q[r] < 1}. A simple lattice point argument shows that

Aq(x) = No(x) — VOI(E)x™? « xm=D/2,

where
n,m/2

(det&)Y2I'(m/2 + 1)
is the Euclidean volume af. Landau [18] improved this estimate to

Vol(E) =

using the functional equation of the Epstein zeta functio¥okKratzel and Nowak
[17] derived (in the more general case of a convex body with smooth boundary of
strictly positive Gaussian curvature) the better estimatéx) < x™/2~1* with
B o
C6m+2 ~ 14m +8

They used exponential sum estimates. Inthe special case of arational ellipsoid (i.e.,
when there is some > 0 with a& € Q™*"™), Landau [19] proved the estimate

for m > 8, A for 3<m<T.

Ag(x) € x"?1 (m >5).

In this case the theory of theta series can be applied, giving better results. Re-
cently the same estimate was proved by Bentkus and Gétze [1] for an arbitrary real
ellipsoid E andm > 9. For rational ellipsoids, the bound(x"/?~1) is optimal.

For irrational ellipsoids ang: > 9, Bentkus and Gétze [2] showed that (x) =
o(x™?71), which has important applications to conjectures of Davenport and
Lewis and of Oppenheim. In [2] the authors used techniques from probability
theory that they originally invented to obtain optimal rates of convergence in cen-
tral limit theorems.
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For small values af: (i.e.,m < 8), ho optimal remainder estimates are known.
Hardy’s conjectureAg(x) <, xY4*¢ for m = 2 and E the unit circle is still
unproved, and the best result in this directionig(x) <, x2¥ 73+ due to Hux-
ley [15]. For numerical results on the oscillatory behavior/af(x), see [12]
and [7].

Heath-Brown [14] was the first to ask for limit distributions of error terms. For
m = 2, a = 0, andE the unit disc he proved thadt(¢) := 1 Y?A(¢?) has a limit
distributionvg on the Borel sets dR in the sense that, for all continuous bounded
functions¢: R — C,

1 X
)Jinooifl ¢(F(t))dt=/R¢(X)de(X)-

Herevg is absolutely continuous with respect to the Lebesque measure and de-
creases at infinity faster than polynomially. A key step is to show Ha} is
B?-almost periodic in the sense of Besicovitch. A functifn|[0, c0) — C is
calledB7-almost periodidl < g < o) if, for everye > 0, there is a trigonomet-

ric polynomialp(x) = >"7_; cje™* (c; € C, aj € R, 1< j < J) such that

: 1 x Y
I f—plly = (“m SUIOE [f(x) = p)|? dx) <e.
X—00 0

For the theory of these functions, see Besicovitch [3] or Maak [20]. Bleher and
colleagues [9] extended Heath-Brown'’s result to gereaald proved that the den-

sity of the limit distributionv, with respect to the Lebesque measure decreases at
infinity roughly as exg—|x|*). Bleher and Dyson [10] showed that the variance

of v, as a function of: is continuous but otherwise very irregularly behaved (see
also [11]). Bleher [4] generalized parts of these results to the case where the circle
is replaced by a smooth convex curve with positive curvature. In [5] he general-
ized the tail asymptotics of the density function to this general situation under a
suitable condition of linear independency of frequencies. If the curvature of the
boundary vanishes at isolated points, the asymptotics of the remainder depends on
the arithmetical nature of the slope of the boundary at these points. This situation
was investigated in [6].

Results about the limit distribution of the error term in lattice point asymptotics
are of interest in mathematical physics because the spectral function of certain
integrable quantum mechanical systems can be related to lattice point counting
problems (for an overview, see [7]).

In the present paper, the function

A
Mpax) i=TC+DT Y (1_ M)

X
rezZm:Qr—al<x
nm/me/Z
(det&) Y20 (m/2 + » + 1)

x>1
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is investigated, wherg > 0 is an additional parameter. Af= 0, thenAg 4(x)

is just the error in the ellipsoid problem. The introduction of the weight>
(1—a/x)* smoothes the behavior of; ,(x) so that almost periodicity results can
be obtained. Of course, one is interested in takirag small as possible.

THEOREM 1.1. LetE be rational,m > 3, anda arbitrary. Assumé&m — 3)/2 <
A < (m—1)/2. ThenF, 4(t) := t*~"=D/2A; (t?), t > 1, is B -almost periodic.

THEOREM 1.2. Let E anda be rational andn > 3 or let E be real,a arbitrary,
andm > 8. Assumém —3)/2 < A < (m—1)/2. ThenF,_, is B?-almost periodic.

In the proof for arbitraryE andm > 8, the results of [1] play an essential part.
Since almost periodic functions have limit distributions [4, Thm. 4.1], the exis-
tence of a limit distribution fotF;_, follows immediately under the assumptions
of Theorem 1.1 or Theorem 1.2.
Let0 < u1 < uo < --- be the values taken b9t onZ™ \ {0}, and let

by = > e(ar), neN (1.1)
reZ™: Q0 xl=pun
(e(x) := e?"*). The next theorem gives the Fourier coefficient¥pf, in a weak
sense (whether or nd%, , is almost periodic).

THEOREM 1.3. If m > 2, E anda arbitrary, ¢ € C°(R"), 0 < A < (m —1)/2,
andy € R, then

. 1 [
c(y.¢) = lim < /1 Fx,u(r)e(yrw(%) dt

exists. Ify = +./u,, for somen e N, then
b +7i(m+1421)/4 *
— n wi(m4+14
c(y, 9) = 27T)‘+1(det6)1/2/,L§,m+1+2)\)/4e /;) d(x)dx.

For all other values ofy, c(y, ¢) = 0.

For rationalE, Theorems 1.2 and 1.3 give a characterization of those values of
for which F; g is B2-almost periodic.

COROLLARY 1.4.

(1) LetE be rational andn > 3.
(a) If 0 <X < (m—3)/2then| F, ol = oo. In particular, F; o is not 32-
almost periodic.
(b) If (m —3)/2 <1 < (m—1)/2thenF, ois B?-almost periodic.
(2) LetE berealandn > 3. If A > (m —1)/2thenA; o(x) < logx.

Corollary 1.4(1)(a) hinges upon the fact that, for ratioAadnda = 0, |b,|? can
be sufficiently well estimated in the mean from below such that
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D le(Vim ¢)[ = o0

n>1

follows. On the other hand, Bleher and Bourgain [8] announced that they could
prove theBt-almost periodicity of7 , under certain diophantine conditions for

For E rational andn > 3, Fyo is not 32-almost periodic becauggFool> =
oo. One could imagine that multiplying it by a decreasing funcjarould render
Fyo almost periodic. The following result shows that, for reasonably well-behaved
functionsp, the only almost periodic functionsFyg that can be obtained in this
way are zero functions.

CoroLLARY 1.5. Letm > 2, E and a arbitrary, and0 < A < (m —1)/2. Let
o' [1, 00) — R* be continuously differentiable and decreasing, and|jef?)| «

p(t) ast — oo andlim,_, . p(r) = 0. Assume thapF; , is B?-almost periodic.
Then”pFA,a”q =0.

Examples forp arer~* and(logt) ™ (« > 0).

Assume thats € Z"*", m > 2. From Corollary 1.4(1)(a) and the result of [4]
it follows that Fyo is B%-almost periodic if and only ifz = 2. One should mention
that the opposite is true for the function

G(n) :=#reZ" | Q] =n}-nt™"2 neN.

Form =3, GeDiforallg > 1, form = 2, G ¢ D1 for all ¢ > 1 (see [21]; for
the definition of the spaceB? of ¢-limit periodic functions o, see Schwarz
and Spilker [22]). On the other hand,Afis irrational andn > 9, then it follows

from [2] that

H(n) :=#{reZ™ | O[f]l €[n.n+ 1} -n* ™2, neN,

is asymptotically constant, namely,

-1
H(n) = (det@)‘l/znm/zr@) +o(1)

asn — o0.
Hereafterg > 0 will denote an arbitrarily small positive real.

AckNOWLEDGMENT. | would like to thank the referee for suggestions that im-
proved the presentation of the paper.
2. AVoronoi Formula

First a truncated Voronoi formula with Riesz mean is derived. Get R™*"
(m > 3) be positive definite and let > 0. The Dirichlet series

Z(s) = Z ﬁ and Z(s) = Z

ez, #a reZ™\{0}

e(‘ar)
O Yz]*
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are absolutely convergent for B¢ > m/2 and can be continued to meromorphic
functions onC. These Epstein zeta functions have poles at most/&tthat are
simple and have residues

(det) =2z "1 (%) and (resp.) 6<a>(det6>l/2nm/2r<”_2’> ,

whered(a) = 1 fora € Z™ andd(a) = 0 otherwise. They are connected by the
functional equation
C(m/2—5)

_ -1/2__25s—m/2
Z(s) = (det&)/“x (s)

Z(m/2 —s) (2.2)
(see [13, pp. 625ff.]). Write

n ol b,
Z(s)=y. ‘;— Z(s)=Y ", Re(s) > %

n>1"n n>1"n

(see(1.1)). Letc = m/2 + ¢. A generalization of Perron’s formula states that

l c+iT XSF(S)
P Z(s) =————ds
2mi Jo_ir 's+A+1
LN
=T -1 -=
A +1 Z a,,<1 . )
An<x
o xT=0+Y 4 7 Jmind —2 1) 22
" <x Y lalming g Yy) @2)

x/2<Ap<2x

for x, T > 1 This can be proved along the same lines as the formula fer0
(see [16, Apx. A.3], where a formula f@ = oo is proved). Assumex < T <
c2x. The following O-constants may depend oqn ¢, > 0. From the functional
equation (2.1) and Stirling’s formula it follows that

Z(s)| < { 1 for Re(s) =c,
1 @+ |Im(s))™/2t2 for Re(s) = —e.

SinceZ(s) grows exponentially inlm(s)| in vertical strips of finite width, the
Phragmen-Lindel6f principle gives

|Z(s)] < |Im(s)|77 for —e <o :=Re(s) <c, [Im(s)| > 1 (2.3)

Equation (2.2) and the residue theorem give

1 —e—iT —e+iT c+iT XSF(S)
A = — Z(s)——— ds
a(¥) 2mi </c—iT * ./—s—iT * /—e+iT ) (s) Cs+2+1 '

+ O 14 xRy (), (2.4)
where

, 1
Rix) = > layl mln{m, 1}. (2.5)

Xx/2<ip<2x
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Now (2.3) and Stirling’s formula give

cxiT c
/ <</ T x°T %V do « x+71 (2.6)
—exiT —&
From the functional equation it follows that
1 —e+iT )CSF(S)
— Z(s)————ds
= 2xi eeiT F's+A2+1
= (det&) W2 2N " m/z x, T), (2.7)
n>1
where
1 —e+iT r 2 _
I(y,T) = Swds, y>0, T>1

27i ) D Tt+rtD

For—& < Re(s) = o <m/2— ¢ and|Im(s)| = |7| > 1, Stirling’s formula gives
L(m/2—5)
C(s+A+1)

— —:n(m/2+A)(S|gnt)/2|t|m/2 20—\— 1 2i(t— tlogt)<1+ 0(|1| )) (2.8)

Lety > T?2. DefineF(r) := tlogy+2¢ — 2t log|t| andG (¢) := |¢|"/2+2e—*~1,
Then

+T
I(y, T) Z:I: e$lj‘[(m/2+)»)/2y / G(t)eiF(t) dt
+1

T
+ O(ys + y7£/ tm/2+2£7)L72 d[)
1

. () A+l—m/2—2e ( y )
H(t) = G() = |7] log —|t|2 .
Then

H'(t) = (signt)ltlk_"l/z_k(_2 + (’\ +1- n_21 - 28) IOg(#))

has at most one zero in,[T] and [T, —1]. Each of these intervals can therefore
be divided into two subintervals on whidti(z) is monotonic. Furthermore,

Define

H(t) > Iog( )mln{l TAEm/2=28y o 0 for 1< 1| < T.
From [23, Lemma 4.3], it follows that
I(y, T) << y—S Iog ( y >max{1 Tm/2+2$ A— 1}

+ y—e maX{:L Tm/2+25—k—llog T}

for y > T2. Therefore,
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by
Y. —apl@ax,T)

Jn> T2 (w2x)+1 Hon
2

T
<1 xm/2+2£—k—l xl—m/2—25(1 xm/2+38—)»—1)R2(ﬂ2x>’ (29)
where

by
Rz(y) = Z | | (210)

y+l<p, <2y Hn =Y

Choosen/4 <d <m/2. Let0 < y < T?. From (2.8) it follows that
AT P2 — d o
/ ys (l’l’l/ s) ds <</ <L2> Tm/Z—A—ldO,
—exir . (s +2+1D) —e\T

—&
< <l> 7m0 (2.12)

DefineG (7) := |¢|"/2~24—*~1 and

5 F'(t) 2d—m)2+2+1 < Yy )
H@) = —= = [t|*“™" log{ = ).
(3] 0 |7] g T2
Then

H'(t) = (signt)|¢]?*—m/2 <—2 + <2d - % o+ 1) Iog(%»

has at most one zero {R-oo, —T] and [T, co). Each of these intervals can there-
fore be divided into two subintervals on whi&h(r) is monotonic. Furthermore,

- T2
H(t) < _T2dm/2+k+1|og<_> <0
y
for |t| > T. From [23, Lemma 4.3] and (2.8), it follows that

d=+i +
/ °°ys C'(m/2—5) ds — iydeq:irr(m/2+)»)/2/ ~ G(1)e'FO dr
d+iT I(s+A+1 £T

+ 0<yd /Ootm/Z—Zd—A—Z dt)
T

T2
& ydT’”/z‘Zd"\‘1<Iog_l<7> + 1). (2.12)

From the integral representation of the Bessel function (see [347)%), it fol-
lows that

1 [ T(m/2—s) _
‘YL ds = y" 2’\)/4],,,/2H(2\/§), y>0. (213)

211 Jacine © TG+ D)
Using (2.11), (2.12), and Cauchy’s theorem, for® < 72 we now have
[(y’ T) — y(m_Z)L)/“Jm/Z-HL(Z\/}) + O(y—sTt7z/2+2£—A—l)

T2
+ O(ydTm/ZZd)»l(l_l_ Iogl<7>>>
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This gives

b
Z W:l/z I(nzunx, T)

pn<T2/(w2x)—1 Hon

b

— 7_’:m/27)»x(m72)»)/4 Z (,H+WJM/2+K(ZJT /_I/Lnx)
Hn<T2/(x2x)—1 Hn
T2
+ 0<xt71/2+8—k—1+x—AR3<T>>’ (214)
TeX
where b, |
R3(y) = Z —. (2.15)
w2<imey-1 T Hn
Equation (2.8) gives the trivial estimate
T
I(y, T) « / y—S(ltl +1)m/2+28—)\—1dt < y—e(l_l_ T171/2+38—A)
-T

and consequently

b,
> w7z 1 (T, T)
T2/(x2x) 1= 1, < T2/(x2x)+1 Hn

2

T
< (xfm/zfzé‘ +.XE)\)R4<T
TeX

), (2.16)

where
Riy)i= Y Ibal. (217)

y=1<pup<y+1
From [24, 721(1)] it follows that

Jmy200y)

| 2
= —COS(y - £<T +A) — z) +0s5(y™¥%, y>8>0. (218)
Ty 2\ 2 4

Putting together (2.4), (2.6), (2.7), (2.9), (2.14), and (2.16) now yields] for>
landcix < T <cax,

A/\,a(x)
— (detG)il/ZT[ 7}L71x(m72)ﬁl)/4

b, m+22+1
X Z — BT COS(ZJT UnX — 71—4 )

wn<T2/(m2x) 1

T2
+ 0<xm/2)ul+28 + 1+.X'7)\R1(.X) + (xlfm/zfzs +X6A)R2< > >
X

T2 T2
+ ka?’(an) + (xfm/Z—Ze +xaA)R4<n2x> +x(m2)\3)/4>_

(2.19)
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In order to estimate th&;(y), we need an estimate for

n) =Y lad, ra(y») = Y b, y=1

y<Ap<y+1 y<pn<y+1

Sinceri(y) =#{r #a |y < Q[r — a] < y + 1}, a simple geometric argument
givesri(y) < y"~Y/2. The same holds for,(y). But these estimates are too
weak for our purposes; we needy) <. y"™/27*¢. Form > 5 andE anda ra-
tional, this follows from the circle method or the theory of modular forms. For
m = 3, 4 andE anda rational, it is much more costly to prove this estimate; fortu-
nately itis only needed in the mean. For> 8 andE anda arbitrary, the estimate
follows from [1].

From (2.5) it follows that

ri(x +1) ri(x —1 -1

R <r+ Y ———+n-h+ ; (2.20)
1<il<x 1<l<x/2
The Cauchy—Schwarz inequality gives, fors> 1,
2X
f | Ry(x)|? dx
X
2X 1 ri(x +1)|?
<[ [|r1(x>|2+< 3 l)( u> I —DP
X 1<l<x 1<i<x
1 lrai(x —D)J?
—l—( Z —)( — | | dx
2§l§x/2+1l_1 2<l<x/2+1 I-1
4x
< log?X f |r1(x) | dx. (2.21)
X/2—1
It follows analogously from (2.10), (2.15), and (2.17) that, ¥or>> 1,
2X 4x
/ IR (x)|?dx <« |og2x/ lra(x)2dx, j =234 (2.22)
X X/2-1
Furthermore,
2X 4x
/ |R1(x)|dx <« |OgX/ |ri(x)| dx,
X X/2-1
(2.23)

2X ax
/ [Rj(x)|dx < |OgX/ [ra(x)|dx, j=234.
X X/2-1

3. Almost Periodicity of Fy 4

The estimate oR;(x) in the 1-norm is connected with no cost at all. Foreal
andm > 3 (which will be called condition | in the sequel),



340 MANFRED PETER

2X 2X
d 1)d
/X 1)) dx /X ( 3 ) x

r#Fax<Qr—al<x+1

= dx
r#a:X<O[r—a]<2X+1 /[X,ZXIN[Q[x—a]—l Olr—ad]l

< > 1 X™M2, (3.1)
r#a:Q[r—a]<2X+1

Analogously,
2X
/ |r2(x)| dx < X™/2. (3.2)
X

If E anda are rational ane: > 3 (which will be called condition 1), then there
is somea > 0 witha& € Z™*™ andb € N with ba € Z™. Let

r(n) :=#{reZ" | aQ[r] =n}, neN.
Then

ri(x) = #x # a | ab®x < aQ[by — ba] < ab?(x + 1)} < Z r(n).

ab2x<n<ab?(x+1)
For allx, the sum on the right-hand side has at mgst + 1 terms. Therefore,

2X 2X
f|r1<x>|2dx<<a,bf< > |r<n>|2)dx
X X

ab2x<n<ab?(x+1)

< > rmwP dx

B2X < eaB?(2X4D) [X,2X]N[n/(ab?)~1n/(ab?)]
2
< Y IrmP
n<ab2(2X+1)

The classical circle method can be applied to show that the funetion
n*="/2r(n) is almost periodic of¥ (see [21] for the most interesting case= 3).
In particular, its square has a mean value and therefore

Yo lrmP <yt

n=y

Consequently,
2X
f lra(x)2dx < X" (3.3)
X
The same estimate holds far (herea € Q™ is not needed):
2X
f lra(x)2dx < X" L (3.4)
X

If E isreal andn > 8 (which will be called conditionll), it follows from [1]
that
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> 1=vol(E)y"?+ 0(y™* log? y).
r:Qr—al<y

Consequently;1(y) < y™/?~%¢ and

2X
/ Iri(x)|?dx « Xm-thee, (3.5)
X
analogously,
2X
/ ra(x)|?dx <« X™ 72, (3.6)
X

Assume thatm — 3)/2 < A < (m — 1)/2. Let M be sufficiently large. From
(2.23) and (3.2), it follows that

4 pam?
Z/ IR;(x)|dx <« M"*¢.
j=27M°

ChooseM < M* < 2M with
4

D IR((M™?)] < M™2E
j=2

LetM <t < 2M. Choosel := 7M*t andx = 2. Thenn/2 < T/x < 27, and
from (2.19) it follows thatF;, (r) = S(t) + R(¢), where

Y2 e b T
S(l) = (detG) 1/27'[ +=1 Z m COS(ZT[ M,lt—z(m+2)\,+1)>
M= (M*)2 20
and
R(t) < M(m—3)/2—k+4s —|—MA_(’”_D/Z+t_(’”_l)/2_AR1(t2).

Under condition I, it follows from (2.23) and (3.1) that

2M
/ |R(t)|dt < M(M(m—S)/Z—)»+4£ +MA.—(m—l)/2)' (37)
M
Under condition Il odll, it follows from (2.21) and (3.3) or (3.5) that
2M
/ |R(t)|2dt << M(Mm7372)n+88 + M2A7m+l). (38)
M
For N > 1, define
b b4
._ Y2 _-a-1 n _r
pu () = (det&) V2t Y cos(Zm fiint = 7 (m + 22 + 1)).

un<N n

Letl< N < M2 Then|S(t) — py(1)|? is expanded into a double sum and inte-
grated fromM to 2M. Using the estimate

2M
/ cogast + B) cosazt + B) dt < min{||aa| — |a2||*1, M}
M

gives
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2M
f 1S(t) — py()|? dt
M
|5, 12
<M Z (m+21+1)/2
N<pn<(m*)2 Hn

|Dnybins) . { 1 }
+ min{ M, ——
Z (Mnlﬂng)(m+2)k+l)/4 My T A/ Mny

N <phny <fn, <(M*)2

= MS1+ S>. (3.9)
Forl eN, )
> |bn|25( > |b,,|) = ra(1)*.
un€ll,1+1] mn€ll,1+1]

Therefore s

ra(l)
§1< Z [(m+22+1/2° (3.10)

I>N-1

In the second sum, distinguish between, < 2u,, andu,, > 2u,,. Then
S> = S»1+ S2p, Where

| Dy : 1
Sa<M ), mmimm )L Ibwelmingl o
N<pm=<(M*)2 Fn Hny<tny <24t 2 "
= MS, (3.11)
| Dy 1Dy |
R D D === D DR == 72 (312)
N<Mn1§(M*)2 m 2#111<M’n2§(M*)2

D lbal <#r | Q7] < 1} <472,

U=t

the inner sum in (3.12) i®(M "=D/2=4, /%) Therefore,

by
g e L
S22 <M (m+27+3)/4
wn>N

The inner sum in (3.11) ir;)(ZOS,SM”1 min{l, I} r2(pun, +1)). Hence

1
*
Sa< Z J (m+2241)/2 Z |6l
N—1<k<(M*)2 un€lk,k+1]

& M - N(m=3/2=0/2, (3.13)

x Z mln{ }(rg(k+l)+r2(k+l~|—l))
O<I<k+1

ra(k) ra(k +1)
< E — 5 E _—
(m+2x+41)/2
N—1<k<(M*)2 k 0<I<k+2 I+1
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Since Zo(k)ra(k + 1) < ra(k)2 + ra(k + 1)2, it follows that
ra(k)? Iogk 1 ra(k +1)2
S5 < Z Km+2aiD)2 Z Kn+2:1D)2 Z I+1
k>N-1 k>N-1 O<l<k+2
The second sum is
1 1
D rat? > T T B
(m+2)+1)/2
h>N-1 kzN—LO§l§k+2:k+Z:hl+lk Y

Sincek < h < 2k + 2, the inner sum i) (h~"*+2*+D/2|og k). Therefore

rz(k)zlogk
S5 < Z K(m+20+1/2° (3.14)

k>N-1
Collecting (3.9), (3.10), (3.13), and (3.14) yields

oM 2
ra(1)<logl ((m=3)/2=2)/2
—/ IS0 — pvPdr < Y2 200 N :

I>N-1

If E isrational,n > 3, anda arbitrary, thenZ,Sy|r2(l)|2 <« y™1(see proof of
(3.4)). If E is real andn > 8, then [1] gives),_ |r2(1)|* < y™ ¢ (see proof
of (3.6)). In both cases, it follows that

1 2M
u / 1S(t) — pn(0)|?dt < Nm=3/2=0/2, (3.15)
M

If the assumptions of Theorem 1.1 are fulfilled then, by (3.7), (3.15), and the
Cauchy—Schwarz inequality, we have fdr> /N that

2M
%/ |F}L’u(t)_pN(t)|dt << N((Wl—3)/2—)»)/4+8+N()»—(m—1)/2)/2 << N—ts(m,)u)-ké"
M

whered(m, 1) > 0 depends only oA andm. If follows that
[ Fia— pylli € N7OBPTe N > 1 (3.16)

and Theorem 1.1 is proved.
Similarly, under the assumptions of Theorem 1.2, (3.8) and (3.15) give

| Fia— pyllz < N7OmP4e N > 1 (3.17)

thus proving Theorem 1.2.

4. The Fourier Coefficients ofF 4

Letm > 2, Eandareal, 0< A < (m—1)/2, ¢: R — Cinfinitely differentiable

with compact support, and € R. From (3.16) and (3.17), the Fourier coefficients
of F, o can be immediately deduced if the assumptions of Theorem 1.1 or The-
orem 1.2 are fulfilled. The problem now is to do so under weaker assumptions.
For this we employ a method from [14], which consists of proving some sort of
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Voronoi formula not forF, , but for an integral thereof. This formula has far bet-
ter convergence properties because the fundtipts)I'(s)I'(s + A + 1)~ against
which Z(s) is integrated is decreasing much faster tl&(s)I'(s + A + 1)t
(see (4.3)).

Let suppp C [a, b] C (0, c0) andX > 1/a. If follows from Perron’s formula
and the residue theorem that fore [(aX)?, (bX)?], x # A, foralln € N, and
T=>1

1 x*T'(s)

- Z(s)———ds
2mi K(T) F(S + A+ 1)

(=D"Z(—n) .

C(—n+ A+ Dn!

= Aja(x) = 8@IA+D=TO+D ) n
O<n<m/2
+ Oy p(Minfer ()T, c2(X)})
(see (2.2)). Herei(x) > 0 depends only or, C2(X) > 0 depends only oX,
and/C(T) consists of straight lines joining the poimts2 +1— iT, —m/2 — iT,
—m/2+iT, andm/2 4+ 1+ iT. Therefore,

1 xT(s)
il / Z(s)———— _ds
27Tl K(T) F(S + A =+ 1)
converges boundedly for almost alk [(aX)?, (bX)?] to
(=D"Z(—n) .
C(—n+ A+ Dn!

A)"a(x) o S(a)r()" + 1)_1 - F()\- + 1)_1 Z —n

O<n<m/2

asT — oo. From Lebesque’s dominated convergence theorem it follows that
o0 t
1050 = | f»\,a(l)e()/l)¢<—> di
1 X

1 [00? x
— _/ xk/z(m+l)/4AA,u(x)e(y\/;)w(E) dx
(

2 [lX)2

1 I'(s)
= lim — $)——) Ky (s)ds
T—o0 47 K(T) F(S + A + 1)
+ Op (L4 XH7n9028), 4.1)

wherew (1) := ¢(v/1) € CX(RT), U = X?, and

Ko(s) e wax/Z(m+l)/4+se(yﬁ)w(g> dx. (4.2)

From this representation it follows th&t, (s) is entire with respect ta Integration
by parts gives
Ky (5) Ko,ko1,00,7,0 L 1)) HUoFOH0/2- =3/ (4.3)

fors =0 +it,01 <o <05, keN,andU > 1
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The functional equation and the Phragmen-Lindel6f principle show that there
is someA € N such that, fom/2 < o <m/2+1and|t| > 1, we haveZ(s) <
[£]4. Inequality (4.3) withk = A and Stirling’s formula yield

/m/2+]:tiT 25 '(s) Ky(s)ds <y T, T>1
§)—— s)ds , >1
—m/2+iT Ts+r+D " oA
From (4.1) it follows that
I(y, X)
1 —m/2+ico F(S)
= — Z(s)———— K d 0. ,1 XA (m=3)/2+ey
a1i [opie ZOTG A VA Ocpllt )

With the functional equation (2.1), this can be written as

1 b,
I(y,X) = E(det@)—lfzn—m/2 Yz (TP, v, X)

n>1 M*n
4 0(1“{‘ X)»—(m—3)/2+£)’ (44)
where
1 [/ T'(m/2—s)
I(y,y,X) = — K —y%ds, 0. 4.5
Oy X)i= o 2o vt Y (4.5)

For Re(s) = —m/2, Stirling’s formula yields
'(m/2—5s)
C(s+A+1)
Choosingk = 0 andk > 3m/2 in (4.3), fory > 0 we have

LA+ th™* reRr.

I(y, ,y’ X) <<f U()»fm)/zf(m73)/4(1+ |t|)3m/27)»71y7m/2 dt
lll<vU

+/ (1+ |t|)3’”/2_/‘_}\—1U(}‘+k_'")/2_('"—3)/4y—m/2 dt
HEv

< U3/4y—m/2'

From (4.4) it follows that

1 by
I(y. X) = 5(det®) V2x /2y 7 o 1P v, X)

MnfUl/m n
+ O+ X = m=3/2+e o Y4y (4.6)
Choosem/4 < d < m/2. Since the integrand in (4.5) decreases faster than

polynomially as|Im(s)| — oo in {—m/2 < Re(s) < d}, for y > 0 Cauchy’s
theorem gives
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I(y,y, X)
1 /d+"°°K ()F(m/Z—s) ‘4
= S)———
27 Joio VT +21+DY @

; 2
_ 1 d+ioo F(m/z _ S) ys /b le/z_(m+1)/4+se(]/\/)_6)w i dx ds
2mi d—ioco F(S + A +1) a?U v '

For Re(s) = d anda?U < x < b?U, the integrand i®, y 4 (|¢t|"™/?~24=*~1). The
exponent in this last estimate is less thahand thus the order of the integrations
may be interchanged:

I(y,y, X)
b2U d+ioco
1 '(m/2—5s)
— r/2—(m+1)/4 = Sd d .
/aZU ()/\/_) < >27” ~/d7ioo Ls+1+1 ()" ds dx

From (2.13) and (2.18), it follows that for> § > 0 we have
I(y, v, X) = n—l/zy(m—Zx—l)/A,

<[ :;le/ze(yﬁ)a)<%) s(zf— —<’"T+1+A>) dx

+ O(y(m—Z)\—3)/4)' (47)
Denote the integral on the right-hand sidetiyy, y, X). If y = £ /i, then

© [t :
I*(ﬂzl,l,n’ Vs X) = / ¢<?> d[ €inl((’1l+l)/2+)‘)/2
0

bX
. t ;
+/ e;i:4m M"t(f)(?) dt e?m((m+1)/2+k)/2' (48)
aX

Integration by parts shows that the second mtegrm(ﬁfl/z) =0,0.Ify¢
{ Vi, —/Ttn }. then

bX
I* (7_[ Lns Vs X) = Z/ < ) 2mit(£./fn+v) dt e$m((m+l)/2+)~)/2

<, L 4.9
|m vl 7 (4.9)

If y = +./it,, define
C(y) = %(detg)fl/Zn7)wlbnM;(m+2x+1)/4e:tni((m+l)/2+)~)/2.

Otherwise, defing’(y) := 0. Then (4.6), (4.7), (4.8), and (4.9) give, far >
maxia~t, |y|"},

I(y, X) = C()/)/ ( )dt+O(Xl/2 4 XP—n=3/2+e)

Therefore
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. 1 o
Jim Z10,%) = C(y)/o ¢ (x) dx,

which proves Theorem 1.3.

5. Proof of Corollary 1.4

Part (1)(a) is proved by contradiction. Let©01 < (m — 3)/2 and assume that
| Frollz < 0o. Choose 0% ¢ € C2°(R*) with ¢ > 0. Then, forX > 1andN > 1,
Fao() = ) C(/im)e(—/int)

2/t
0 < —/ P ¢<§> dt
1 oo
=1 |Fw<t)|2¢(§) i
—1 (% t
— ZZRG(C(A/_,M,,)E/; Fuo(t)e( M,,z)¢<§) dt)

n<N

+ Z!Cun|/ ()

n<N

Y o))

ny,n2<N:ni1#n2

X —/ e((/Bonz — M)tﬂ)(%) dr.

From Theorem 1.3 it follows that the integrals in the second term, after division by
X, tend toC(,/un, ¢) asX — oo. Integration by parts shows that the integrals
in the last term ar@,,, ,., »(1) asX — oo. Letting X — oo therefore gives

S lctam)l [ o <o 1Fialf

n<N

uniformly in N. Consequently,

|ba?
Z (m+;/\+1)/2 <<Z‘C Mn <OO.

n>1 n>1
In particular,
Z |bn |2 — O(X("HZAJFD/Z)

X<pp<2x

asx — oo. Leta > 0 witha&~te Z"*". Then we haveiu, € N for n e N and
> c<u,<2: 1 K x. The Cauchy—Schwarz inequality gives

1/2 1/2
Z bn < ( Z 1> ( Z |bn|2) — O(X(In+2k+3)/4) — 0(xm/2)

X<pp<2x X<pp<2x X<pp<2x
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asx — oo. On the other hand, a trivial lattice point estimate gives
Yo=Y l=a"Proam?
X=[n=2x rx<0r]<2x

with somec > 0, which gives a contradiction. Thus, part (1)(a) is proved.
Part (1)(b) follows from Theorem 1.2.
In order to prove part (2), assume that (m —1)/2 andE is real. Letx > 2.
From (2.23) and (3.2) it follows that

4 2x
Z[ IR;(1)| dt < x™'?logx.
j=2"7

Choosexr < x* < 2x with

4
D IR (x| < x> logix. (5.1)
j=2
Now use (2.19) withl" = 7+/x*x. Thenz < T/x < /27 and

4
bn —(m— — *
Asa(x) € Z —z T 14 m=D/2R (x) + x* '”/ZZRj(x ). (5.2)

MSX* :u’n j:2
The trivial estimates1(y) < y™ "2and), _ b, < y™/?, together with
(2.20), yield
by,
Ri(x) <« x" V2 |ogx, Z s <K logx. (5.3)

*
Hn=Xx n

Now (5.1), (5.2), and (5.3) giva, (x) < logx.

6. Proof of Corollary 1.5

Let the assumptions of Corollary 1.5 be fulfilled. It will be shown that all the
Fourier coefficients opF; , vanish. SincepF; , is supposed to b&7-almost
periodic, it will then follow from the general theory thbF; 4|, = O.

Lety e R and let O< ¢ < 1/2. All estimates will be uniform ire. Choosep
C>X(Rt)suchthatO< ¢ <1, ¢(r) =1fore <r<1l—¢,¢'(t) >0for0<r <
e, ¢'(t) <0forl—e <t <1 and¢(t) = 0fort > 1and:r < 0. DefineG(¢) :=
F,.o(t)e(yt). From Theorem 1.3 it follows that, for > 1,

foo G(t)¢><£> dt
1 u

whered(y, ¢) > 0 is a constant depending only gnand¢. ChooseTy(e) > 1
such thati(y, ¢)|p(T)| < e for T > To(e). Then, forT > Ty(e),

<d(y,P)u, (6.1)
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iy, ,
' // G<z>¢( >dtp()d (VT"’) ulp' ()] du
To To
B A
T I

Integration by parts shows that, for 1,

r e\, t t Ty [t
/ ¢(—)P (u) du = ¢<—)p(T) - ¢(—>,0(To) +/ —¢ (—)p(u)du-
To u T To To U u

From (6.1) and (6.2) it follows that, fdaf > Ti(¢) > To(e),

—/ G(t) —¢< )p(u)dudt
To

T
Le+p(Md(y, $) + p(To>7°d<y, $) <& (6.3)

Call the inner integral on the left-hand sidé&, T). Lett > 1 andT > Ti(¢).
Then

16.T) =/ —¢( )p(u)du+f —¢>< )p(u)du
[To, T1N[t,t/A—e)] U [To, T1N[1/e,00) U
=L, T)+ 1@, T). (64)

If T > eT thenly(r, T)=0.If t <¢T,

121, T) =p(£)/ —¢( )du—p( )(¢(s)—¢<%>) < p(0). (6.5)

If t <u <t/(1— ¢) then the mean value theorem gives, with sagme? < u,

te p(&)
pG0) — p(@)] = lu 1] - |p'@)] < —% <ept).
Therefore,
t ot
L, T)=p@) —¢ (—) du
[To, T1N[t,1/A—e)] U u
t t
+ O(S,O(I) - ¢’<—> du). (6.6)
[To, T1N[t,t/A—e)] U u
If t > T then the second integral is 0.¢lf< T, it is
t/(1—¢) t t
< - —¢ (= )du=¢pQ—-6)—pQ =1 (6.7)
: u? u

If t > T ort < (1— ¢)Ty, then the first integral in (6.6) vanishes.(If— ¢)Ty <
t < T, itequals—¢p(max{t/T,1— e}) + ¢(¢t/Tp). Define

V() = ¢(max{t,1—¢}).
By (6.4)—(6.7) it now follows that, for > 1 andT > Ti(¢g),
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1t,T) = p(¢)(—¢<%> + ¢<TLO)) Ia-eyro,11(1)

+ O(p M) ,e71(1)) + O(ep(t) I, 71()).
Hence, forT > Ty(e),

foo G)I(t, T)dt
1

T o0
= —/ G(r>p(r)w(i> dr + 0(/ |Fx,a(t)|p(r>¢(i) dt)
-#)To r 1 To

eT T
+ 0(/1 |Fk,a(t)|p(t)dt) + 0(8/1 [Fr,a(@®)]p(t) dt)- (6.8)

BecausepF, , is assumed to bB9-almost periodic, it is als$*-almost peri-
odic and thug|pF,_q|l1 < co. Hence, the last two terms in (6.8) a®&sT). This,
together with (6.3), yields

/loo G(t)p(t)lﬁ(%) dt = O(eT) (6.9)

for T > Ty(e) > Ti(e). SincepF; , is almost periodic, integration by parts gives

1T t 0
Tlinooffl G(ﬂﬁ@)lﬁ(;) dr = fC(pr,u,J/)/o Y(t) dt,
where

. 1 (7
fe(pFyy) = fim = / PO Fa(te(yt) dt
-0 1

is the Fourier coefficient opF; , corresponding tg. It therefore follows from
(6.9) that

Fe(oFrar y) /0 V() di = O(e).

Sincef0°° Y(r)dt > 1— g, this means thafc(pFy.q«, ) = O(e) uniformly in
¢. Consequentlyfc(pF; q, y) = 0. According to the introductory remark, this
proves the corollary.
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