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with the Chevalley Property
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1. Introduction

Triangular Hopf algebras were introduced by Drinfeld [Dr]. They are the Hopf
algebras whose representations form a symmetric tensor category. In that sense,
they are the class of Hopf algebras closest to group algebras. The structure of trian-
gular Hopf algebras is far from trivial and yet is more tractable than that of general
Hopf algebras, owing to their proximity to groups and Lie algebras. This makes
triangular Hopf algebras an excellent testing ground for general Hopf algebraic
ideas, methods, and conjectures.

A general classification of triangular Hopf algebras is not known yet. However,
there are two classes that are relatively well understood. One of them is semisim-
ple triangular Hopf algebras ov€;, for which a complete classification is givenin
[EG1; EG2]. The key theorem about such Hopf algebras states that each of them is
obtained by twisting a group algebra of a finite group (see [EG1, Thm. 2.1]). The
proof of this theorem is based on Deligne’s theorem on Tannakian categories [D1].

Anotherimportant class of Hopf algebras is thgpointedones. These are Hopf
algebras whose simple co-modules are all 1-dimensional. Theorem 5.1in [G] gives
a classification of minimal triangular pointed Hopf algebras (we note that the addi-
tional assumption made in [G, Thm. 5.1] is, by our Theorem 6.1, superfluous).

Recall that a finite-dimensional algebra is caltessicif all of its simple mod-
ules are 1-dimensional (i.e., if its dual is a pointed co-algebra). The same Theorem
5.1 of [G] gives a classification of minimal triangular basic Hopf algebras, since
the dual of a minimal triangular Hopf algebra is again minimal triangular.

Basic and semisimple Hopf algebras share a common property—namely, the
Jacobson radical Ra# ) of such a Hopf algebrd/ is a Hopf ideal and there-
fore the quotientd/ Rad H) (the semisimple part) is itself a Hopf algebra. The
representation-theoretic formulation of this property is: The tensor product of two
simple H-modules is semisimple. A remarkable classical theorem of Chevalley
[C, p. 88] states that, ovés, this property holds for the group algebra of any (not
necessarily finite) group. So let us call this propertydothe Chevalley property.

The Chevalley property certainly fails for many finite-dimensional Hopf alge-
bras—for example, for Lusztig's [L] finite-dimensional quantum groupsdy
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at roots of unity (also known as Frobenius—Lusztig kernels). However, we found
that this property holds for all examples we know of finite-dimensitnehgular

Hopf algebras in characteristic 0. We felt, therefore, that it is natural to classify
all finite-dimensional triangular Hopf algebras with the Chevalley property. This
is what we do in this paper.

We start by classifying triangular Hopf algebras wRhmatrix of rank < 2.

We show that such a Hopf algebra is a suitable modification of a co-commutative
Hopf superalgebra (i.e. the group algebra of a supergroup). On the other hand, by
a theorem of Kostant [Ko], a finite supergroup is a semidirect product of a finite
group with an odd vector space on which this group acts.

Next we prove our main result: Any finite-dimensional triangular Hopf alge-
bra with the Chevalley property is obtained by twisting a triangular Hopf alge-
bra with R-matrix of rank< 2. We also prove the converse result that any such
Hopf algebra does have the Chevalley property. As a corollary, we prove that any
finite-dimensional triangular Hopf algebra whose co-radical is a Hopf subalgebra
(e.g. pointed) is obtained by twisting a triangular Hopf algebra \Rithhatrix of
rank < 2.

The paper is organized as follows. In Section 2 we give the definitions of Hopf
superalgebras and twists for them. We also discuss co-commutative Hopf super-
algebras and describe their classification (Kostant’s theorem [Ko]).

In Section 3 we establish a correspondence between usual Hopf algebras and
Hopf superalgebras, and we show how this correspondence extends to twists and
to triangular Hopf algebras. In Section 4 we discuss the Chevalley property, and
in Section 5 we prove our main result and discuss its consequences and some open
guestions.

In Section 6, using the main theorem, we show that a finite-dimensional co-
triangular pointed Hopf algebra is generated by its grouplike and skewprimitive
elements. Thus we confirm the conjecture that this is the case for any finite-
dimensional pointed Hopf algebra ov@r[AS2] in the co-triangular case. This
allows us to strengthen the main result of [G].

In Section 7 we prove that the categorical dimensions of objects in any abelian
symmetric rigid category with finitely many irreducible objects are integers. In
particular, this is the case for the representation category of a triangular Hopf
algebra. This gives supporting evidence for a positive answer to the question we
ask in Section 5: Is any finite-dimensional triangular Hopf algebra a twist of a
modified supergroup algebra?

In the appendix we use the lifting method [AS1; AS2] to give other proofs of
Theorem 5.2.1 and Corollary 6.3 as well as a generalization of Lemma 5.3.4.

We note that, similarly to the case of semisimple Hopf algebras, the proof of
our main result is based on Deligne’s theorem [D1]. In fact, we use Theorem 2.1
of [EG1] to prove the main result of this paper.
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2. Hopf Superalgebras

2.1. Supervector Spaces

The ground field in this paper will always be the fi€df complex numbers.

We start by recalling the definition of the category of supervector spaces. A
Hopf algebraic way to define this category is as follows.

Let u be the generator of the grody of two elements, and set

R,=31®1+1®u+u®1l—u®u)eC[Z;] ® C[Z]. @
Then(C[Z,], R,) is a minimal triangular Hopf algebra.

DerINITION 2.1.1. Thecategory of supervector spaces o@eis the symmetric
tensor category Ré@[Z>], R,) of representations of the triangular Hopf algebra
(C[Z], R,). This category will be denoted by SuperVect.

ForV e SuperVect and € V, we say thav is even ifuv = v and odd ifuv = —v.
The set of even vectors i is denoted by, and the set of odd vectors B4, so
V = Vo @ V1. We define the parity of a vectarto be p(v) = 0 if v is even and
p() =1if vis odd (ifv is neither odd nor even then(v) is not defined).

Thus, as an ordinary tensor category, SuperVect is equivalent to the category of
representations df,, but the commutativity constraint is different from that of
RepZ,) and equalg := R, P, where P is the permutation of components. In
other words, we have

B @ w) = (1P Wy @ v, @)
where bothv andw are either even or odd.

2.2. Hopf Superalgebras

Recall that, in any symmetric tensor category, one can define an algebra (co-
algebra, bi-algebra, Hopf algebra, triangular Hopf algebra, etc.) to be an object

of this category equipped with the usual structure maps (morphisms in this cate-
gory), subject to the same axioms as in the usual case. In particular, any of these
algebraic structures in the category SuperVect is usually identified by the prefix

“super”. For example, we have the following definition.

DEeFINITION 2.2.1. A Hopf superalgebra is a Hopf algebra in SuperVect.

More specifically, a Hopf superalgelkéis an ordinaryZ,-graded associative uni-

tal algebra with multiplicatiom:, equipped with a co-associative map H —

H ® H (a morphism in SuperVect) that is multiplicative in the super-sense, and
with a co-unit and antipode satisfying the standard axioms. Here “multiplicativity
in the super-sense” means thatatisfies the relation

Aab) = Z(—l)p(aZ)p(bl)albl ® azb> 3)
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for all a, b € H (whereA(a) = > a1 ® ax andA(b) = Y b1 ® by). This is be-
cause the tensor product of two algeb#a in SuperVect is defined to bé® B
as a vector space, with multiplication

@®b)(a' ®b') = ()" Paa’ @ bb'. (4)

REMARK 2.2.2. Hopf superalgebras appear in [Ko] under the name of “graded
Hopf algebras”.

Similarly, a (quasi)triangular Hopf superalgelifd, R) is a Hopf superalgebra
with an R-matrix (an even elemerR € H ® H) satisfying the usual axioms. As
in the even case, an important role is played by the Drinfeld elemeht?, R):

u:=mopBo(ld®S)(R). (5)

For instance(H, R) is triangular if and only ifx is a grouplike element of.

As in the even case, the tensorands of Ramatrix of a (quasi)triangular Hopf
superalgebré{ generate a finite-dimensional sub-Hopf superalgébya called
theminimal part of # (the proof does not differ essentially from the proof of the
analogous fact for Hopf algebras). A (quasi)triangular Hopf superalgebra is said
to be minimal if it coincides with its minimal part. The dimension of the minimal
part in the triangular case is thank of the R-matrix.

2.3. Co-commutative Hopf Superalgebras

DerINITION 2.3.1.  We will say that a Hopf superalgeli¢as commutativéresp.,
co-commutativeif m = m o B (resp.,A = Bo A).

ExampLE 2.3.2 [Ko]. LetG be agroup and a Lie superalgebra with an action
of G by automorphisms of Lie superalgebras. Het= C[G] x U(g), where U Q)
denotes the universal enveloping algebrg.ofhenH is a co-commutative Hopf
superalgebrawitiA(x) = x®1+1®x (x € g) andA(g) = g¢®¢g (g € G). Inthis
Hopf superalgebra, we hawg) = ¢, S(x) = —x, and in particulas? = Id.

The Hopf superalgebré is finite-dimensional if and only it; is finite, and
g is finite-dimensional and purely odd (and hence commutative). Thies
C[G] x AV, whereV = gis an odd vector space with@-action. In this case,
‘H* is a commutative Hopf superalgebra.

ReEMARK 2.3.3. We note that, as in the even case, it is convenient to think about
‘H and* in geometric terms. Consider, for instance, the finite-dimensional case.
In this case, it is useful to think of the “affine algebraic supergraiip= G x V.

Then one can regafd as the group algebi@[G] of this supergroup an#(* as its
function algebraF(G). Having this in mind, we will call the algebr#l a super-
group algebra.

It turns out that, as in the even case, any co-commutative Hopf superalgebra is of
the type described in Example 2.3.2. Namely, we have the following theorem.

THEOREM 2.3.4 [Ko, Thm. 3.3]. Let X be a co-commutative Hopf superalge-
bra overC. ThenH = C[G(H)] x U(P(H)), whereU(P(H)) is the universal
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enveloping algebra of the Lie superalgebra of primitive elementq ahd where
G(#H) is the group of grouplike elements &f.

In the finite-dimensional case we obtain a corollary.

CoroLLARY 2.3.5. Let H be a finite-dimensional co-commutative Hopf super-
algebra overC. ThenH = C[G(H)] x AV, whereV is the space of primitive
elements ofH (regarded as an odd vector spg@nd G(#H) is the finite group of
grouplikes of H. In other wordsH is a supergroup algebra.

We shall use this corollary and so (although it follows at once from Theorem 2.3.4)
we will give its proof in Section 5 for the sake of completeness.

2.4. Twists

A twist for a Hopf algebra in any symmetric tensor category is defined in the same
way as in the usual case (see [Dr]). However, for the reader’s convenience, we
will repeat this definition (for Hopf superalgebras).

Let H be a Hopf superalgebra. The multiplication, unit, co-multiplication, co-
unit, and antipode ifi{ will be denoted byn, 1, A, ¢, andS, respectively.

DEerINITION 2.4.1. A twist forH is an invertible even elemegt € H ® H that

satisfies
ARIDNINNIT @D =de AN(THAR J),

(e®d)(J)=d®e)(T) =1,
where Id is the identity map d.

(6)

Given a twist7 for H, one can define a new Hopf superalgebra structure
("7, m,1, A7, e, 87)
on the algebra?{, m, 1) as follows. The co-product is determined by

Ala) = T A(@)J forany aeH, (7)
and the antipode is determined by
$9a) = 071S(a)Q forany aeH, (8)

whereQ :=mo (S Q 1d) (7).
If # is (quasi)triangular with the universBtmatrix R, then so is{ with the
universalR-matrix RV = J, "R J.

3. Triangular Hopf Algebras with Drinfeld Element
of Order <2

3.1. The Correspondence between Hopf Algebras
and Superalgebras

We can now prove our first results, which will be essential in the next section.
We start with a correspondence theorem between Hopf algebras and Hopf super-
algebras.
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THEOREM 3.1.1. There is a one-to-one correspondence between

1. isomorphism classes of paif#, ), whereH is an ordinary Hopf algebra and
u is a grouplike element i#/ such that? = 1, and

2. isomorphism classes of pai(${, g), where?H is a Hopf superalgebra angd
is a grouplike element ift{ such thatg? = 1andgxg™ = (-1)*Wx (i.e., g
acts onx by its parity),

such that the tensor categories of representation&adnd # are equivalent.

Proof. Let (H, u) be an ordinary Hopf algebra with co-multiplicatian co-unit
e, antipodes, and a grouplike element such thatu? = 1. Let X = H re-
garded as a superalgebra, whereZhegrading is given by the adjoint action of
u. Forh € H defineAg, Ay by writing A(h) = Ao(h) + A1(h), whereAg(h) €
H ® Ho and Ay(h) € H ® Hy. Define a mapA: H — H @ H by A(h) =
Ao(h) — (=1)?M(y @ 1)A1(h). Define S(h) := u?™S(h), h € H. Then it is
straightforward to verify thatH, A, ¢, S) is a Hopf superalgebra.

The element remains grouplike in the new Hopf superalgebra and acts by par-
ity, SO we can seg := u.

Conversely, suppose thék, g) is a pair wheréH is a Hopf superalgebra with
co-multiplicationA, co-unite, antipodeS, and a grouplike elemegt(with g2 =
1) acting by parity. Foh € # defineAo, Ay by writing A(h) = Ag(h) + Av(h),
whereAg(h) € H @ Ho andA1(h) € H ® Hi. Let H = H as algebras, and de-
fineamapA: H — H @ H by A(h) := Ao(h) — (—1)?™M(g ® 1) A1(h). Define
S(h) := g"™8(h), h € H. Then it is straightforward to verify thatH, A, ¢, S)
is an ordinary Hopf algebra, and we can set g.

It is obvious that the two assignments just constructed are inverse to each other.
The equivalence of tensor categories is straightforward to verify. The theorem is
proved. O

Theorem 3L.1implies the following. LetX be any Hopf superalgebra and let
C[Z5] x H be the semidirect product, where the generatof Z, acts onH by
gxg L = (=1)?@x. Then we can define an ordinary Hopf algeBtawhich is the
one corresponding t&€C[Z,] x H, g) under the correspondence of Theorefn13

The constructions of this section have the following explanation in terms of
Radford’s bi-product construction [R2]. Namely is a Hopf algebra in the
Yetter—Drinfeld category o€[Z>], so Radford’s bi-product construction yields a
Hopf algebra structure 08[Z,] ® H; it is straightforward to see that this Hopf
algebra is exactl§{. Moreover, it is clear that, for any paiH, «) as in Theorem
3.1.1,gu is central in{ andH = H/(gu — 1).

Let us give an interesting corollary of Theoremi.3, everthough we will not
use it.

CoroLLARY 3.1.2. Let H be a finite-dimensional Hopf superalgebra over
Then

1. H is semisimple if and only if it is co-semisimple
2. if H is semisimple thef* = Id; and
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3. if H is semisimple and? = Id, then is purely even, that is, it is a usual
semisimple Hopf algebra.

Proof. 1. If # is semisimple then so i#, hence so iH)*. But it is easy to
show that(#)* is isomorphic as an algebra @Z,] x H* (unlike the dual of
ClZ,] x H, which is isomorphic t€C[Z,] ® H*). Therefore, this crossed prod-
uct algebra is semisimple. It is well known (and easy to show) that this implies
the semisimplicity of+*.

2. The Hopf algebré{ is semisimple, so we ha = Id in it. Thus, inH we
haves? = Ad(g) and soS* = Ad(g?) = Id.

3. SinceS? = Ad(g), g must be central. Thug{ is purely even. O

REMARK 3.1.3. The example of supergroup algebras shows that, for finite-dimen-
sional Hopf superalgebras (unlike usual Hopf algebr§é)= Id does not imply
semisimplicity or co-semisimplicity. In fact, Corollary 3.1.2(3) shows that, in a
sense, the situation is exactly the opposite.

3.2. Correspondence of Twists

Let us say that a twisk for a Hopf algebra? with an involutive grouplike element
g isevenifitis invariant under Adg).

ProrosiTioN 3.2.1. Let(H, g) be a pairasin TheoremB1, and letH be the as-
sociated ordinary Hopf algebra. Lef € H ® H be an even element. Writé =
Jo+ J1, where o€ Ho ® Ho and J1 € H1 ® Hi. DefineJ := Jo— (g @D T
ThenJ is an even twist fo if and only if 7 is a twist for . Moreover,H”
corresponds tad’ under the correspondence in Theorerh.B Thus, there is a
one-to-one correspondence between even twistg/fand twists for# that is
given byJ — 7.

Proof. Straightforward. O

3.3. The Correspondence between Triangular Hopf Algebras
and Superalgebras

Let us now return to our main subject, which is triangular Hopf algebras and super-
algebras. For triangular Hopf algebras whose Drinfeld elem&ninvolutive, we

will make the natural choice of the elemenin Theorem 3L.1—namely, we de-

fine it to be the Drinfeld element df.

THeoreM 3.3.1. The correspondence of Theorem.B extends to a one-to-one
correspondence between

1. isomorphism classes of ordinary triangular Hopf algebrasvith Drinfeld ele-
mentu such that? = 1and

2. isomorphism classes of paifé(, g), whereH is a triangular Hopf superalge-
bra with Drinfeld element andg is an element o5 () such thatg? = 1and
gxg = (=)rWx.
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Proof. Let (H, R) be a triangular Hopf algebra wiilf = 1. Since(S ® S)(R) =
R and §? = Ad(u) [Dr], « ® u and R commute. Hence we can write =
Ro+ Ry, whereRge Ho® HoandR1€ H1® Hi. LetR := (Ro+ 1®u)R1)R,.
ThenR is even. Indeed, sinc&, = 1/2(R + (u ® DR(u ® 1)) and R; =
1/2(R — (u @ DR(u ® 1)), it follows thatu ® u andR commute.

It is now straightforward to show th&®{, R) is triangular with Drinfeld ele-
ment 1. Let us show, for instance, tiRatis unitary. We use the notatian« » and
X2 for multiplication and opposition in the tensor square of a superalgebra, and
we use the notatiomb and X °° for usual algebras. Then

R#*R* = (Ro+ L@ u)R)R, * (RF — (u @ DRP)R,.
SinceR, Ry = RoR, andR,R1 = —(u ® u) R1R,,, it follows that the RHS equals

(Ro+ (A® u)Ry) * (R’ + (1® u)R{P)
= RoR3" + R1R{® + 1 ® u)(R1RZ® + RoR7P).

But RoR3P + R1R® =1land(1® u)(R1R® + RoRP) = 0, sinceRR? =1, so
we are done.

Conversely, suppose th@hl, g) is a pair, wheré{ is a triangular Hopf superal-
gebra withR-matrix R and Drinfeld element 1. L&R = R+ R1, whereR has
even components arfd; has odd components. L& := (Ro+ (1® g9)R1R,.
Then it is straightforward to show thé#, R) is triangular with Drinfeld element
u = g. The theorem is proved. O

CoroLLary 3.3.2. If (H,R) is a triangular Hopf superalgebra with Drinfeld
elementl, then the Hopf algebré&{ is also triangular with theR-matrix

R:=(Ro+ (1® g)Ri)R,, 9)

whereg is the grouplike element adjoined #to obtain?{. Moreover,# is min-
imal if and only if  is minimal.

Proof. Clear. O

The following corollary, combined with Kostant’s theorem, gives a classification
of triangular Hopf algebras witR-matrix of rank< 2 (i.e., of the formR, as in
(1), whereu is grouplike of order< 2).

CoroLLARY 3.3.3. The correspondence of Theorem 3.3.1 restricts to a one-to-
one correspondence between

1. isomorphism classes of ordinary triangular Hopf algebras withmatrix of
rank < 2 and

2. isomorphism classes of paif%(, g), whereH is a co-commutative Hopf super-
algebra andg is an element oG (#) suchthag? = landgxg ™! = (—1)?®x.

Proof. Let (H, R) be an ordinary triangular Hopf algebra wighmatrix of rank<
2. In particular, the Drinfeld elementof H satisfies:? = 1 andR = R,. Hence
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by Theorem 3.3.1(H, A, R) is a triangular Hopf superalgebra. Moreover, it is
co-commutative becaugé = R, R, =1

Conversely, for any#, g), by Theorem 3.3.1 the pai#, R,) is an ordinary
triangular Hopf algebra, and clearly the rankryfis < 2. O

Corollaries 2.3.5 and 3.3.3 imply that finite-dimensional triangular Hopf algebras
with R-matrix of rank< 2 correspond to supergroup algebras. In view of this, we
make the following definition.

DerINITION 3.3.4. A finite-dimensional triangular Hopf algebra wiRhmatrix
of rank < 2 is called anodified supergroup algebra.

3.4. Construction of Twists for Supergroup Algebras

ProposITION 3.4.1. LetH = C[G] x AV be a supergroup algebra. Lete S2V.
ThenJ := /2 is a twist forH. Moreover,((AV)7, J7,,~.7) is minimal triangu-
lar if and only if» is nondegenerate.

Proof. Straightforward. O

ExampLE 3.4.2. LetG be the group of order 2 with generatarLet V ;= C be
the nontrivial 1-dimensional representationafand writeAV = sp{1, x}. Then
the associated ordinary triangular Hopf algebr&® g) := (C[G] x AV, g) is
Sweedler’s [S] 4-dimensional Hopf algebFawith the triangular structure,.
Namely, the algebrd is generated by a grouplike elemgntaind a 1 :g skew
primitive elementx (i.e., A(x) = x ® 1+ g ® x) satisfying the relationg? = 1,

x? =0, andgx = —xg. Itis known [R2] that the set of triangular structures on
H is parameterized bg; namely,R is a triangular structure of if and only if

A
R:RA:=Rg—E(x@x—gx@x—i—x@gx—i—gx@gx), reC.

Clearly,(H, R;) is minimal if and only ifA # 0.

Letr € S?V be defined by := Ax ® x, L € C. SetJ, 1= ¢e"/? =1+ %Ax ® x;
itis a twist forH. Hence,J, :=1— %Agx ® x isatwist forH. Itis easy to check
thatR; = (J;)iR,Js. Thus,(H, R;) = (H, Ro)"*.

RemARk 3.4.3. Infact, Radford’s classification of triangular structuregforan
be easily deduced from Lemma 5.3.4 (see Section 5).

4. The Chevalley Property
Recall that in the introduction we made the following definition.

DeriNiTION 4.1. A Hopf algebrad overC is said to have th€hevalley property

if the tensor product of any two simpl-modules is semisimple. More generally,

let us say that a tensor category has the Chevalley property if the tensor product
of two simple objects is semisimple.
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Let us give some equivalent formulations of the Chevalley property.

ProrosITION 4.2. Let H be a finite-dimensional Hopf algebra ovérand let
:= H*. The following conditions are equivalent.

. H has the Chevalley property.

. The category ofright) A-co-modules has the Chevalley property.
. CoradA) is a Hopf subalgebra of.

. RadH) is a Hopf ideal and thu$// Rad H ) is a Hopf algebra.

. §2 =Id on H/Rad H) or (equivalently on Corad A).

ORNWNPEP &

Proof. (1. & 2.) Clear, since the categories of lgit-modules and righ#A-co-
modules are equivalent.

(2. = 3.) Recall the definition of a matrix coefficient of a co-modieover
A. If p: V > V ® Aisthe co-actionv e V, a € V*), then

¢Y = (@®I1d)p(v) € A.

It is well known that:

(&) The co-radical ofi is the linear span of the matrix coefficients of all simple
A-co-modules.
(b) The product inA of two matrix coefficients is a matrix coefficient of the ten-
sor product. Specifically,
¢¥,a¢uv§/,/3 = ¢¥§Ka®ﬂ'
It follows at once from (a) and (b) that Cor@t) is a subalgebra od. Since the
co-radical is stable under the antipode, the claim follows.

(3. & 4.) To say that Ra@{) is a Hopf ideal is equivalent to saying that
Corad H*) is a Hopf algebra, since Corad*) = (H/RadH )*.

(4. = 1) If V, W are simpleH-modules then they factor throudly Rad H ).
But H/Rad H) is a Hopf algebra, s& ® W also factors througl// Rad H) and
hence is semisimple.

(3. = 5.) Clear, since a co-semisimple Hopf algebra is involutory.

(5. = 3.) Consider the subalgebm of A generated by Cordd). This is
a Hopf algebra, and? = Id on it. Thus,B is co-semisimple and hende =
Corad A) is a Hopf subalgebra of. O

REMARK 4.3. The assumption that the base field has characteristic O is needed
only in the proof of(5. & 3.)

5. Classification of Triangular Hopf Algebras
with the Chevalley Property

5.1. The Main Theorem
Our main result is the following theorem.

THeoOREM 5.1.1. Let H be a finite-dimensional triangular Hopf algebra over
Then the following are equivalent.
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1. H is atwist of a finite-dimensional triangular Hopf algebra wikhmatrix of
rank < 2 (i.e., of a modified supergroup algebra
2. H has the Chevalley property.

The proof of this theorem is contained in Sections 5.2 and 5.3.

5.2. Local Finite-Dimensional Hopf Superalgebras Are Exterior Algebras

THEOREM 5.2.1. Let#H be alocal finite-dimensional Hopf superalgelfrat nec-
essarily supercommutatiyeThenH = AV* for a finite-dimensional vector space
V. In other words;H is the function algebra of an odd vector spdce

ReEMARK 5.2.2. Note that, in the commutative case, Theorem 5.2.1 is a special
case of Proposition 3.2 of [KO0].

Proof of Theorem 5.2.1It is sufficient to show that{* = AV for some vector
spaceV, since(AV)* = AV* as Hopf superalgebras. For this, it is sufficient to
show thatH* is generated by primitive elements, since the sub-Hopf superalge-
bra inH* generated by a basis of the space of primitive elemerits*as clearly
a freeanti-commutative algebra on its generators.

Let I be the kernel of the co-unit iK. Then! = Rad ) sinceH is local. So
in particular there exists a positive integ€rsuch that, for anyq, ..., xy € H,
one has

(x1—e(x)D - (xy —e(xy)D) =0.

Letd;: H* — (H*)®* be the map dual to the ma@p®* — H defined by
X1® - @ x> (x1—e(x)D) -+ (xp — e(xp)D

(this map was introduced by Drinfeld in [Dr]). We see that we have a filtration of
H* H* = H, whereH] is the kernel 0B, (the Nth term of this filtration is
#H*). In other words}} is the orthogonal complement of.

Let V C H* be the space of primitive elements, andifet= AV C H* be the
corresponding Hopf supersubalgebra generated by them. We will prove by induc-
tion in k that{; is contained i3, which will complete the proof.

The base of induction is obvious (&gx) = x —e(x), henceH{; = C). Suppose
the statement is known fér= n, and leta € H;; ;. Then it is straightforward to
verify thatj := A(a) —a®1—-1®a € 1} ® H}. Hence, by the induction as-
sumption,j € B ® B. Thus, j is a symmetric (in the super-sense) 2-cocycle for
the co-Hochschild complex df. But it is well known that a symmetric (in the
super-sense) co-Hochschild 2-cocycle for the exterior algebra is a co-boundary.
Thus, there exists € Bwith j = A(b) —b®1—1Q® b. Hencea — b is a primi-
tive element and thus € B. We are done. O

REMARK 5.2.3. In the appendix we give another proof of Theorem 5.2.1 using
the lifting method of [AS2].

Theorem 5.2.1 will be used in Section 5.3, but it also allows one to give the fol-
lowing proof of Corollary 2.3.5.
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Proof of Corollary 2.3.5.Let I be the ideal ir{* generated by all the odd ele-
ments. It is easy to see that this is a Hopf ideal. Consider the Hopf al@gebta
‘H*/I (the even part). This is aardinary commutative Hopf algebra, sb =
F(G) for a suitable finite groug;. Moreover, it is clear that every elementiofs
nilpotent, sol = RadH*). Thus, irreduciblé{*-modules are 1-dimensional and
are parameterized lyye G. Let us call theniL,. Also, we see thar = G(H).

Let P, be the projective cover of the irreducible moduile Thent* = P, P,
where theP, are indecomposable two-sided ideals (the ideals are two-sided be-
cause the algebra is commutative in the super-sense). In parti@ulare local
algebras with 1-dimensional semisimple quotient. Also, we have a natural projec-
tion of algebrag{* — P, for all g; in particular,HH* — P;.

Note thatX acts or{* on the left and right. In particular, so does the graup

LemMma. The following hold

1. 81P;82 = Pygigg,;

2. A(Pf»’) C eagl-,gz:glgz:g Pgl ® PgZ'

Proof. Straightforward. O

CoroLLARY. TheidealZ :=
a Hopf superalgebra.

o1 P¢ is @ Hopf ideal, and thu®, = H*/T is

Thus,P;" C H is a sub-Hopf superalgebra with an actiorGafand we have a fac-
torization?’{ = C[G] x P;. The Hopf superalgebra; is local, soP; = AV by
Theorem 5.2.1. This concludes the proof of Corollary 2.3.5. O

REMARK 5.2.4. Here is the same proof, described in a more intuitive geometric
language. Considef := Sped?#*); this is an affine supergroup scheme. Let
G C G be the even part of. ThenG is a finite group scheme, so by a standard
theorem it is a finite group. LeY be the connected component of the identity
in G. Then the function algebr&@(V) on V is a local finite-dimensional Hopf
superalgebra. It follows by Theorem 5.2.1 tiia¢V) = AV* for some finite-
dimensional vector spadé

Thus, we have a split exact sequence of algebraic supergroups

1-V—->G6G—-G—1
(itis split becaus& is a subgroup o that is complementary t§). HenceG =
G x V, as desired.
5.3. Proof of the Main Theorem

We start by giving a super-analog of Theorem 3.1in [G].

LemMma 5.3.1. LetH be a minimal triangular pointed Hopf superalgebra. Then
Rad ) is a Hopf ideal, andH/Rad %) is minimal triangular.

Proof. The proof is a tautological generalization of the proof of Theorem 3.1 in
[G] to the super case.
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First of all, it is clear that Rad{) is a Hopf ideal, since its orthogonal comple-
ment (the co-radical of*) is a sub-Hopf superalgebra (sintg is isomorphic
to H°°Pas a co-algebra and hence is pointed). Thus, it remains to show that the tri-
angular structure o descends to a minimal triangular structure’fonRad H).
For this, it suffices to prove that the composition of the Hopf superalgebra maps

Corad H*®P) < H*P » H — H/RadH)

(where the middle map is given by tlRematrix) is an isomorphism. But this fol-
lows from the fact that, for any surjective co-algebra mag; — C,, the image
of the co-radical ofC; contains the co-radical af, [M, Cor. 5.3.5]. One need
only apply this statement to the mag°® — H/RadH). O

LemMma 5.3.2. LetH be a minimal triangular pointed Hopf superalgebra such
that the R-matrix R of H is unipotent(i.e., R —1® 1is0in H/RadH) ®
H/RadH)). ThenH = AV as a Hopf superalgebra ari® = ¢”, wherer € S2V

is a nondegenerate symmet(in the usual senddilinear form onV*.

Proof. By Lemma 5.3.1, Rad{) is a Hopf ideal, and4/Rad #) is minimal
triangular. But ther-matrix of #/Rad#) must be 1® 1, soH/RadH) is 1-
dimensional. Hencé{ is local and so, by Theorem 5.2% = AV. If R is a
triangular structure of then it comes from an isomorphisnV* — AV of Hopf
superalgebras that is induced by a linear isomorphisii* — V. ThusR = e”,
wherer is regarded as an elementbf® V. SinceRR» = 1, we haver + r?t =
0 (wherer? = —r°P is the opposite of in the super-sense), 3G S2V. O

ReEMARK 5.3.3. The classification of pointed finite-dimensional Hopf algebras
with co-radical of dimension 2 is known [CD; N]. In the appendix we use the lift-
ing method [AS1; AS2] to give an alternative proof. We shall need the following
more precise version of this result in the triangular case.

LemMma 5.3.4. Let H be a minimal triangular pointed Hopf algebra whose co-
radical is C[Z2] = sp{1, u}, whereu is the Drinfeld element off. ThenH =
(AV)7 with the triangular structure of Corollary 3.3.2, whet& = e/2 for

r € §2V anondegenerate element. In particul&f,is a twist of a modified super-
group algebra.

Proof. Let H be the associated triangular Hopf superalgebi s described in
Theorem 3.3.1. Then thB-matrix of # is unipotent because it turns intagll
after killing the radical.

Let H,, be the minimal part of{. By Lemma 5.3.2H,, = AV andR = ¢’,
r € S2V. Hence, if7 = ¢’/? thenH? " hasR-matrix equal to ® 1. Thus, %7
is co-commutative and so, by Corollary 2.3.5, it equalZ ;] x AV. Therefore,
H = C[Z3] x (AV)Y, and the result follows from Proposition 3.2.1. O

We shall need the following lemma.

LemMma 5.3.5. LetB C A befinite-dimensional associative unital algebras. Then
any simpleB-module is a constituer{tn the Jordan—Holder seri@¢®f some sim-
ple A-module.
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Proof. Since A when considered as A-module contains3 as aB-module, it
follows that any simpleé3-module is a constituent of.

Decomposél (in the Grothendieck group of) into simpleA-modules:A =
> Vi. Further decomposing @ modules, we obtaif; = »~ W;; and hencet =
> Zj Wi;;. Now, by the Jordan—Holder theorem, sint€as aB-module) con-
tains all simpleB-modules, any simpl&-module X is in {W;;}. Thus, X is a
constituent of somé#;, as desired. O

ProrosiTioN 5.3.6.  Any minimal triangular Hopf algebr& with the Chevalley
property is a twist of a triangular Hopf algebra witR-matrix of rank< 2.

Proof. By Proposition 4.2, the co-radic#ly of H is a Hopf subalgebra, since
H =~ H*Pis minimal triangular. Consider the Hopf algebra mapHo —
H*%%/ Rad H *°°P) given by the composition of the maps

Ho < H ~ H*°P — H*°F/ Rad H*°P),

where the second map is given by tenatrix. We claim thag is an isomorphism.
Indeed,Ho andH *°F/ Rad H *°°P) have the same dimension, since RAA#°P) =
(Hp)*t, and¢ is injective, sinceHy is semisimple by [LR]. Letr: H — Hg be
the associated projection.

We see, arguing exactly as in [G, Thm. 3.1], ti#&4 is also minimal triangu-
lar, say with R-matrix Ro. Now, by [EG1, Thm. 2.1], we can find a twigt in
Ho ® Hy such that(H)” is isomorphic to a group algebra and h&snatrix
(Ro)” of rank < 2. Notice that here we are relying on Deligne’s theorem, as men-
tioned in the introduction.

Let us now considey as an element affy ® Hg and the twisted Hopf algebra
H’,whichisagaintriangular. The projectian H’ — (Hy)’ is stillaHopfalge-
bra map and send®’ to (Rg)”’. It induces a projectioiH’),, — C[Z,] whose
kernel K,, is contained in the kernel of. Because any simpléd”’),,-module
is contained as a constituent in a simpfemodule (see Lemma 5.3.5K,, =
Rad(H”),,). Hence,(H”),, is minimal triangular andH"”),,/Rad (H’),,) =
(C[Z3], R,). It follows, again by minimality, thatH’),, is also pointed with co-
radical isomorphic t€[Z,]. Therefore, by Lemma 5.3.4H”),, (and henced’)
can be further twisted into a triangular Hopf algebra wittmatrix of rank< 2,
as desired. O

Now we can prove the main theorem.

Proof of Theorem3.1. (2. = 1) By Proposition 4.2H/Rad H) is a semisim-
ple Hopf algebra. LeH,, be the minimal part oH, and letH,, be the image of
H, in H/Rad H). ThenH,, is a semisimple Hopf algebra.

Consider the kerndt of the projectionH,, — H,,. ThenK = RadH) N H,,.
This means that any eleméng K is zero in any simpléf-module. This implies
thatk acts by zero in any simpl#,,-module, since by Lemma 5.3.5 we have that
any simpleH,,-module occurs as a constituent of some sinfptenodule. Thus,

K is contained in Rad{,,). On the other handH,,/K is semisimple, sk =
Rad H,,). This shows that Rad{,,) is a Hopf ideal. ThereforeH,, is minimal
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triangular satisfying the conditions of Proposition 5.3.6. By Proposition 58,6,
is a twist of a triangular Hopf algebra witR-matrix of rank< 2. HenceH is a
twist of a triangular Hopf algebra witR-matrix of rank< 2 (by the same twist),
as desired.
(1. = 2.) By assumption, Rej#H ) is equivalent to Re(®) for some supergroup
G (as a tensor category without braiding). But we know that supergroup algebras
have the Chevalley property because, modulo their radicals, they are group alge-
bras. This concludes the proof of the main theorem. O

REMARK 5.3.7. Notice that it follows from the proof of the main theorem that any
triangular Hopf algebra with the Chevalley property can be obtained by twisting a
triangular Hopf algebra witlR-matrix of rank< 2 by aneventwist.

DEerINITION 5.3.8.  If a triangular Hopf algebrA overC satisfies condition 1 or
2 of Theorem 8..1,then we will say thatd is of supergroup type.

5.4. Corollaries of the Main Theorem

CoroLLARY 5.4.1. A finite-dimensional triangular Hopf algebrH is of super-
group type if and only if its minimal pad,, is also.

Proof. If H is of supergroup type then R@d) is a Hopf ideal. Thus, as in the
(2. = 1) proof of Theorem 3.1, weconclude that Rad{,,) is a Hopf ideal, that
is, H,, is of supergroup type.

Conversely, ifH,, is of supergroup type theH,, is a twist of a triangular Hopf
algebra withR-matrix of rank< 2. HenceH is a twist of a triangular Hopf alge-
bra with R-matrix of rank< 2 (by the same twist), s is of supergroup type.

CoroLLARY 5.4.2. A finite-dimensional triangular Hopf algebra whose co-radi-
cal is a Hopf subalgebra is of supergroup type. In particular, this is the case for
finite-dimensional triangular pointed Hopf algebras.

Proof. This follows from Corollary 5.4.1. O

CoroLLARY 5.4.3. Any finite-dimensional triangular basic Hopf algebra is of
supergroup type.

Proof. A basic Hopf algebra automatically has the Chevalley property, since all its
irreducible modules are 1-dimensional. Hence, the result follows from the main
theorem. O

5.5. Questions

The previous results motivate the following question.

QuestioN 5.5.1. Does any finite-dimensional triangular Hopf algebra @er
have the Chevalley property (i.e., is any such algebra of supergroup type)? Is
it true under the assumption th&if = Id or at least under the assumption that

u? =17
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REMARk 5.5.2. Recall from [G] that it is not known whether any finite-dimen-
sional triangular Hopf algebra ov€r has the property? = 1 or at leastS* =

Id. It is also not known ifS* = Id impliesu? = 1 for triangular Hopf algebras.
However, it is clear that, for finite-dimensional triangular Hopf algebiasf
supergroup typey?® = 1 (and hences* = Id). Indeed, sinces? = Id on the
semisimple part of{, it follows thatu acts by a scalar in any irreducible represen-
tation of H. In fact, since t(u) = tr(u'), we have that: = 1 oru = —1 on any
irreducible representation &f, and hence:? = 1 on any irreducible representa-
tion of H. Thus,«? is unipotent. But it is of finite order (since it is a grouplike
element), soitis equal to 1 as desired.

REMARK 5.5.3. Note that the answer to Question 5.5.1 is negative in the infinite-
dimensional case. Namely, although the answer is positive in the co-commutative
case (by [C]), itis negative already for triangular Hopf algebras Witmatrix of

rank 2, which correspond to co-commutative Hopf superalgebras. Indeed, let us
take the co-commutative Hopf superalgebta= U(gl(n|n)) (for the definition

of the Lie superalgebra @t|n), see [K, p. 29]). The associated triangular Hopf
algebra?{ does not have the Chevalley property, since it is well known that the
Chevalley theorem fails for Lie superalgebras (e.g., fonjgl)); more precisely,
already the product of the vector and co-vector representations for this Lie super-
algebra is not semisimple.

REMARK 5.5.4. It follows from Corollary 5.4.1 that a positive answer to Question
5.5.1 in the minimal case would imply the general positive answer.

Here is a generalization of Question 5.5.1.

QuEesTioN 5.5.5. Does anyC-linear abelian symmetric rigid tensor category,
with End(1) = C and finitely many simple objects, have the Chevalley property?

Here is an even more ambitious question.

QuestioN 5.5.6. Is such a category equivalent to the category of representations
of a finite-dimensional triangular Hopf algebra wiimatrix of rank< 2? In
particular, is it equivalent to the category of representations of a supergroup as a
category without braiding? Are these statements valid at least for categories with
Chevalley property? For semisimple categories?

6. Finite-Dimensional Co-triangular Pointed Hopf Algebras
Are Generated by Grouplikes and Skewprimitives

There is a conjecture (see [AS2]) that any finite-dimensional pointed Hopf algebra
overC is generated by grouplike and skewprimitive elements. Here we confirm it
in the co-triangular case.

THEOREM 6.1. A finite-dimensional co-triangular pointed Hopf algebtaover
C is generated by grouplike and skewprimitive elements.
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In order to prove the theorem, we will need the following lemma.

LemmMma 6.2. Let H be a finite-dimensional pointed Hopf algebra or superalge-
bra. Then the following are equivalent.

1. H is generated by grouplike and skewprimitive elements.
2. There exists a faithfuH *-module that is a direct sum of tensor products of
H*-modules of dimensio2

Proof. Irreducible H*-modules are 1-dimensional, so a 2-dimensional represen-

tation has the form
(p(a) r(a) ) .
— , aeH",
0 g

wherep, g are characters (i.e., they belong@oH )) andr is aq : p skewprimi-
tive. Conversely, such a 2-dimensional representation exists for any skewprimitive
element. Matrix elements of tensor products of representatial$ afe products
of the matrix elements of these representations (as elemef#its.oFhis implies
the lemma. 0

Now we are ready to give the following.

Proof of Theorem 6.1We need to show that * has a faithful representation that
is a direct sum of products of 2-dimensional representations. By [G], the Drin-
feld element: of H* satisfies:®> = 1. Hence, by Theorem.B.1, we cameplace
H* with the corresponding Hopf superalgetﬁé (since this does not change the
representation category as a tensor category). Buts basic triangular, which
means (by Corollary 5.4.3) that* is twist-equivalent to a supergroup algel®a
Thus, by Lemma 6.2, it suffices to show tH&it (the dual ofB) is generated by
grouplikes and skewprimitives.

But B = C[G] x AV, whereG is abelian. Thusy is decomposed in the di-
rect sum of eigenspaces f6t. Let vy, ..., v, be a basis o¥/ such thatgv,g™* =
xi(g)v;, where they; are some characters 6f. Using this presentation a8, it
is easy to compute its du@* and show that it is generated as an algebr&by
(the character group) ang : 1 skew primitive element§, i =1,..., n. We are
done. O

CoroLLARY 6.3. Theorem 5.1 ofG] gives the classification of all minimal tri-
angular pointed Hopf algebras.

Proof. Since minimal triangular pointed Hopf algebras are also co-triangular, by
Theorem 6.1 they are generated by grouplikes and skewprimitives (which answers
a question from [G]). On the other hand, [G, Thm. 5.1] gives a classification
of minimal triangular Hopf algebras that are generated by grouplikes and skew-
primitives. O

REMARK 6.4. Lemma 6.2 implies that, #1, H» are finite-dimensional pointed
Hopf algebras and if the co-multiplication &f;" is obtained by conjugating that
of H; by an invertible element (not necessarily a twist), t#ans generated by
grouplike and skewprimitive elements if and onlyH} is.
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7. Categorical Dimensions in Symmetric Categories
with Finitely Many Irreducibles Are Integers

In this paper we classified finite-dimensional triangular Hopf algebras with the
Chevalley property. In conclusion, let us give one result that is valid in the greater
generality of any finite-dimensional triangular Hopf algebra—and even for any
symmetric rigid category with finitely many irreducible objects.

Let C be aC-linear abelian symmetric rigid category withas its unit object,
and suppose that Ef) = C. Recall that there is a natural notion of dimension
in C that generalizes the ordinary dimension of an object inMeet 8 denote the
commutativity constraint i€ and, for an objecV, let ev, and coey denote the
associated evaluation and coevaluation morphisms, respectively.

DeriNITION 7.1 [DM]. The categorical dimension diitV) € C of V € Ob(C)
is the morphism

By, v+ coew

dim.(V): 1% vV —5 vigV s 1, (10)
The main result of this section is the following.

THEOREM 7.2. In any C-linear abelian symmetric rigid tensor catego€ywith
finitely many irreducible objects, the categorical dimensions of objects are integers.

Proof. First note that the categorical dimension of any objéof C is an algebraic
integer. Indeed, levy, ..., V, be the irreducible objects @f. Then{Vy, ..., V,}
is a basis of the Grothendieck ring 6f Write V Q V; = Zj N;;(V)V; in the
Grothendieck ring. Thew;;(V) is a matrix with integer entries, and diV) is
an eigenvalue of this matrix. Thus, diGV ) is an algebraic integer.

Now, if dim.(V) = d then it is easy to show (see e.g. [D1]) that

dim.(S*V)=dd+1)---(d + k — )/k!
and

dim.(A*V) =dd —1)--- (d — k + 1) /k!;
hence these dimensions are also algebraic integers. Therefore, the theorem fol-
lows from our next lemma.

LemMA. Suppose is an algebraic integer such thaid +1) - - - (d + k — 1) /k!
andd(d—1) - - - (d —k+1)/k! are algebraic integers for ak. Thend is an integer.

Proof. Let Q be the minimal monic polynomial af overZ. Sinced(d — 1) - - -
(d — k+1)/k! is an algebraic integer, so a#éd’ — 1) - - - (d’' — k + 1)/k!, where
d’ is any algebraic conjugate dgf Taking the product over all conjugates, we get
that
N@)Nd —-1)---Nd —k+1/kDH"

is an integer, where is the degree of). But N(d — x) = (—1)"Q(x). Hence
we have thaR(0)Q (D) - - - Q(k —1)/(kH)" is an integer. Similarly, from the iden-
tity for S*V it follows that Q(0)Q(—1) --- Q(1 — k)/(k")" is an integer. Now,
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without loss of generality, we can assume tfdtc) = x” + ax""*+ - .-, where

a < 0 (otherwise, replac@®(x) by Q(—x); we can do it because our condition

is symmetric under this change). Then for lakgere haveQ(k — 1) < k", so

the sequencg; := Q(0)QQ) --- Q(k — 1)/k!" is decreasing in absolute value or
zero starting from some place. But a sequence of integers cannot be strictly de-
creasing in absolute value forever. Herlge= 0 for somek and soQ has an
integer root. This means thditis an integer (i.e.Q is linear), since? must be ir-
reducible over the rationals. This concludes the proof of the lemma and hence of
the theorem. O

CoroLLARY 7.3. For any triangular Hopf algebraH (not necessarily finite-
dimensiona), the categorical dimensions of its finite-dimensional representations
are integers.

Proof. Itisenough to consider the minimal p&f}, of H thatis finite-dimensional,
since dim (V) = tr(uly) for any moduleV (whereu is the Drinfeld element of
H) andu € H,,. Hence the result follows from Theorem 7.2. O

REMARK 7.4. Theorem 7.2 is false without the finiteness conditions. In fact, in
this case any complex number can be a dimension, as is demonstrated in exam-
ples constructed by Deligne [D2, pp. 324-325]. Also, it is well known that the
theorem is false for ribbon, nonsymmetric categories (e.g., for fusion categories
of semisimple representations of finite-dimensional quantum groups at roots of
unity, where dimensions can be irrational algebraic integers).

REMARK 7.5. Note that Theorem 7.2 can be regarded as a piece of supporting
evidence for a positive answer to Question 5.5.6.

REMARK 7.6. In any rigid braided tensor category with finitely many irreducible
objects, we can define the Frobenius—Perron dimension of an éhjeBrdim(V ),

to be the largest positive eigenvalue of the matrix of multiplicationvbin the
Grothendieck ring. This dimension is well-defined by the Frobenius—Perron theo-
rem and has the usual additivity and multiplicativity properties. For example, for
the category of representations of a quasi-Hopf algebra, it is just the usual dimen-
sion of the underlying vector space. If the answer to Question 5.5.6 is positive then
FPdim(V) for symmetric categories is always an integer that is equal to@im
modulo 2. It would be interesting to check this, at least in the case of modules over
triangular Hopf algebras, when the integrality of FPdim is automatic (so only the
mod 2 congruence has to be checked).

8. Appendix: On Pointed Hopf Algebras

In this appendix we use the lifting method [AS1; AS2] to give alternate proofs of
Theorem 5.2.1 and Corollary 6.3 and a generalization of Lemma 5.3.4.

By a braided Hopf algebrave shall mean a Hopf algebra in the braided tensor
category of Yetter—Drinfeld modules over a group algebfa], whererl is a fi-
nite abelian group. For example, one can endow the exterior algébreith the
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structure of a braided Hopf algebra as follows. kgt .., xy be a basis o/ and
let there be givegy, ..., gy €T andya, ..., xy € 'Y such that

xi(g))=-1 1<i,j<N.

ThenV is a Yetter—Drinfeld module oveZ[I'], where the action and co-action of
I" onx; are given byy; andg; (respectively). This action and co-action extend to
AV and turnAV into a braided Hopf algebra.

Lemma 8.1. LetR = ,., R(n) be a graded braided Hopf algebra such that
R(0) = C, R()) ~ V as a Yetter—Drinfeld modulg@vith the preceding assump-
tions), and R is generated byR(1). ThenR is isomorphic toAV as a graded
braided Hopf algebra.

Proof. Itis known and easy to see thaV satisfies all the hypotheses thatoes,

plus that the primitive elements are concentrated in degre¢AV) = AV(D) =

V (see e.g. [AS], Sec. 3]). In other wordsY is the Nichols algebra of, and
there exists a surjective homomorphism of graded braided Hopf alg&bras

AV thatis the identity in degree 1 (see e.g. [AS2, Lemma 5.5]). On the other hand,
it is clear thatAV can be presented by generaterfs.. ., xy with relations

XiXj +xjx; = 0, 1<i,j<N. (11)

So, in particularx? = 0 for alli. It is thus enough to show that equations (11)
also hold inR, with an evident abuse of notation. Butx; + x;x; is a primitive
element ofR, whose action is given by the characjey ; and whose co-action is
given byg;g;. Sincey;x;(g:g;) = 1 andR is finite-dimensionaly; x; + x;x; =
0in R by [AS1, Lemma 3.1]. O

Let H be a finite-dimensional pointed Hopf algebra such thék ) is isomor-
phic toT". We recall that the lifting method [AS1; AS2] attaches several invariants
to H:

(a) the graded Hopf algebra fr associated to the co-radical filtration &f,

(b) agraded braided Hopf algebRa the co-invariants of the homogeneous pro-
jection from grH to C[I'];

(c) a Yetter—Drinfeld modulé¥ := R(1) over C[I'], called the infinitesimal
braided vector space @.

We may conclude immediately from Lemma 8.1 as follows.

CoroLLARY 8.2. Let H be a finite-dimensional pointed Hopf algebra such that
G(H) is isomorphic ta". Assume that the infinitesimal braiding Bf is isomor-
phictoV as before. The# is generated by grouplike and skewprimitive elements.

REMARK 8.3. Notice that Corollary 8.2 allows one to give an alternative proof of

Corollary 6.3. This is because Lemmas 5.3 and 5.4 in [G] imply that the infinites-
imal braiding of any minimal triangular pointed Hopf algebra is isomorphic to a

V as described previously.
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Assume now thal" = Z,. There is only one possible choice fgras before—
namely,gy = --- = gy = uandy; = --- = xy = the sign. This gives the
Hopf superalgebra as explained in Section 5. Let e a finite-dimensional
pointed Hopf algebra such th@t H) is isomorphic tdZ,. Then, for some natural
number, the infinitesimal braiding o is isomorphic toV as before by [AS1,
Lemma 3.1] again. The lifting method gives a very direct proof of the following
well-known result.

THeoreM 8.4 [N, Thm. 4.2.1; CD]. If H is a finite-dimensional pointed Hopf
algebra withG (H ) isomorphic taZ,, thenH >~ C[Z;] x AV.

Proof. By the foregoing remarks and Corollary 8.2, we know thaigr: C[Z>] x
AV for someV. The fact thatd ~ gr H (“there are no liftings”, in the jargon of
the lifting method) is a particular case of the main result [AS1, Thm. 5.5].0

We can now give another proof of Theorem 5.2.1.

It is enough to show tha#* = AV for someV as before, sincéAV )* =
AV* as Hopf superalgebras. By the hypothesis, the co-radicai*ois trivial:
CoradH*) = C1 We can consider the bi-produét := C[Z;] x H*; that is,
H = H in our notation. We claim thaH is a finite-dimensional pointed Hopf
algebra withG (H') isomorphic taZ,. Indeed, the filtration

ClZz] C C[Z2] x (H")1 C --- CC[Z2] X (H"); C ---

is a co-algebra filtration, whered (H*)1 C --- C (H*); C --- isthe co-radical
filtration of #*. HenceC[Z;] contains the co-radical af/, and the other inclu-
sion is evident.

It follows then from Theorem 8.4 thalf ~ C[Z,] x AV. By [AS2, Lemma
6.2], H* ~ AV as braided Hopf algebras—that is, as Hopf superalgebrasJ
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