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1. Introduction

This paper concerns the asymptotic behavior of nonlinear analogs of harmonic
“functions” on trees. Our study was motivated by some open problems forp-
harmonic functions on domains inRn. We hope that our results will suggest cor-
rect settings for the continuous case.

Fix ν ≥ 3, and let the treeTν be a regular directed graph. The setVν of its
vertices is in one-to-one correspondence with finite words in the alphabetM =
{1,2, . . . , ν}. The vertexv∅ is the origin of the tree. Thekth generation is

Gk = {vI : I ∈Mk},
so that

Vν =
⋃
k≥0

Gk.

The set ofchildrenof a vertexvI ∈ Vν is defined asHvI = {vI1, . . . , vIν }. We
denote by [v,w] the edge that links the verticesv andw. We define the set of
edgesEν of the treeTν in the following way: the edge [v,w] ∈ Eν if and only if
w ∈Hv. Observe that if [v,w] ∈Eν then [w, v] /∈Eν (Tν is a directed graph).

Let F : R̄ν+ → R̄+ be a continuous function such thatF(0,0, . . . ,0) = 0 and
F(1,1, . . . ,1) = 1 (hereR̄+ := [0,∞) is the positive closed half-axis and̄Rν+ :=
(R̄+)ν). We say that such a functionF isadmissible.In what follows, we consider
only admissible functions. We understandF(x1, x2, . . . , xν) as a kind of nonlinear
mean of the argumentsx1, x2, . . . , xν.

Let n ≥ 1, and letφ be a function onG0 ∪ · · · ∪ Gn. We say thatφ is F -
harmonicif

φ(vI ) = F
(
φ(vI1), φ(vI2), . . . , φ(vIν)

)
for anyvI ∈G0 ∪ · · · ∪Gn−1.

If A is a subset of vertices contained inGn then we define theF -harmonic
“measure” ofA, denoted byωF (v,A), as the function defined inG0 ∪ · · · ∪Gn
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which takes the value 1 onA, the value 0 onGn \ A, and isF -harmonic on
G0 ∪ · · · ∪Gn−1. We denoteωF (A) = ωF (v∅, A).

We study the following problems aboutωF .

The Martio Problem. Does the inequality

ωF (A ∪ B) ≤ k(ωF (A)+ ωF (B)) (1)

hold, whereA,B ⊂ Gn andk does not depend onA,B, n?

The Weak Martio Problem. Does there exist a continuous functionψ : R̄2+ →
R̄+, nondecreasing in each argument, such thatψ(0,0) = 0 and

ωF (A ∪ B) ≤ ψ(ωF (A), ωF (B)) (2)

for all n and allA,B ⊂ Gn?
In other words, knowing thatωF (A), ωF (B) are (very) small, can one conclude

thatωF (A ∪ B) also is small?

Obviously, (2) is much weaker than (1).
In this paper we give the answers to both problems, depending on the function

F. We also study the corresponding problems for setsA,B that are contained in
certain Cantor-type subsets ofTν. In fact, Martio asked only about the inequality
(1) for special functionsFp (defined hereafter).

These certainly are problems of estimating the iterates ofF. Namely, define a
sequence of functions{F n} in the following way:F n is a function ofν n real vari-
ables, with

F 1(x1, . . . , xν) = F(x1, . . . , xν),

F 2(x1, . . . , xν2) = F(F 1(x1, . . . , xν), . . . , F
1(xν2−ν+1, . . . , xν2)),

...

F n(x1, . . . , xν n) = F(F n−1(x1, . . . , xν n−1), . . . , F n−1(xν n−ν n−1+1, . . . , xν n)).

InGn there areν n vertices. We can sort the vertices inGn in alphabetical order:

v1, ...,1,1 < v1, ...,1,2 < · · · < vν, ...,ν,ν−1 < vν, ...,ν,ν .

For each subsetE of Gn, we defineδE ∈ {0,1}ν n as follows. Thei-coordinate of
δE, denoted byδEi , is 1 if theith vertex ofGn is inE and 0 if it is not inE. Then
we have thatωF (E) = F n(δE).

Let us introduce a special family of functionsFp, 1< p <∞.
Notation. Let α > 0. In the following, for simplicity we will use the expres-
siont α to denote the odd extension of the functiont α defined fort > 0:

t α = t |t |α−1 for t ∈R. (3)

In particular,t 2 = t |t | is negative ift is negative and so it is different from the
usual notation. Everywhere in this note we shall uset α only with the meaning (3)
and no other. We trust this will not lead to any confusion.
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With this notation, defineFp : Rν → R by the implicit rule

Fp(a1, a2, . . . , aν) = x if (x − a1)
p−1+ (x − a2)

p−1+ · · · + (x − aν)p−1= 0.

(4)
TheFp-harmonic functions will be calledp-harmonic functions, and the corre-
sponding harmonic measure will be denoted byωp.

Elementary properties ofp-harmonic functions give that

(a) ωp(∅) = 0,
(b) ωp(Gn) = 1, and
(c) ωp(Gn \ A) = 1− ωp(A), for everyA ⊂ Gn.
If ν = 1 or ν = 2, the framework degenerates and everyp-harmonic function on
a graph is harmonic(p > 1). In the following we consider the caseν ≥ 3.

These concepts on graphs have important connections with potential theory on
Riemannian manifolds (see e.g. [CFPR; FR; HS; K1; K2; K3; R1; R2; S]).

The main inspiration for our work arep-harmonic functions, on domains inRn,

whose discrete analogs arep-harmonic functions on oriented graphs. A function
u on a domain� in Rn is calledp-harmonic(1< p <∞) if the partial differen-
tial equation

1pu = −div(|∇u|p−2∇u) = 0 (5)

holds in�; this equation must be understood in a weak sense (see [HKM, p. 57]).
Obviously, 2-harmonic functions are harmonic. Note thatp-harmonic functions
are not a linear space ifp 6= 2, but they have many properties that are similar to
those of harmonic functions. For instance, they have a comparison principle: If
u, v arep-harmonic functions in� andu ≤ v on ∂�, thenu ≤ v in � [HKM,
p. 133]. It is possible to construct a potential theory for equation (5) because the
main tool for developing such theory is the comparison principle [HKM].

There are many reasons to studyp-harmonic functions. For instance, ifp 6=
2 then (5) is a simple example of nonlinear degenerate elliptic equation. Observe
that (5) is the Euler equation for the functional

J(u) =
∫
�

|∇u(x)|p dx,
which is an elementary functional with nonquadratic growing ifp 6= 2. As a
consequence,p-harmonic functions are functions with extremal properties in the
Sobolev spaceW 1,p(�).

Moreover, ifp = n thenp-harmonic functions play an important role in the
theory of quasiconformal and quasiregular mappings.

Roughly speaking, we can define thep-harmonic “measure” of the Borel sub-
setE ⊂ ∂� at a pointx ∈� as thep-harmonic function in� that takes value 1 in
E and value 0 in∂� \E, evaluated inx. See [HKM, Chap. 11] for a rigorous def-
inition. Harmonic measure is a main tool in linear potential theory. An important
property of harmonic measure is its additivity. Ifp 6= 2 thenp-harmonic measure
does not have this property, that is, it is not a measure. In spite of this,p-harmonic
measure plays an important role in nonlinear potential theory.
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Open Problem. Is thep-harmonic measure subadditive? That is, does the in-
equalityω(A ∪ B) ≤ k(ω(A)+ ω(B)) hold for all Borel subsetsA,B ⊂ ∂� for
some constantk? This is an open problem for every domain�, even if� is the
unit ball of Rn (n ≥ 2). (We refer to [B] for some information in the case of the
unit disk.)

In view of the difficulty of this problem, Martio asked whether its analog is sat-
isfied for thep-harmonic measure on regular trees. We remark that regular trees
are suitable models for the balls in Euclidean spaces.

Let us return to the discrete setting of graphs. In what follows, we will consider
admissible functionsF satisfying some of the following properties:

(i ) F(x, x, . . . , x) = x, x ≥ 0;
(ii ) F is nondecreasing with respect to each argument andF(x1, x2, . . . , xν) >

0 if we have that(x1, x2, . . . , xν) 6= 0;
(iii ) F(x1, x2, . . . , xν) = F(xτ(1), xτ(2), . . . , xτ(ν)) for any rearrangementτ of the

set{1,2, . . . , ν};
(iv) F(tx1, tx2, . . . , txν) = tF(x1, x2, . . . , xν) for x1, x2, . . . , xν, t ∈ R̄+;
(v) F(x1, x2, . . . , xν) < max(x1, x2, . . . , xν) if we do not havex1= x2 = · · · =

xν;
(vi ) F can be defined on the wholeRν, and this verifiesF(t + x1, t + x2, . . . ,

t + xν) = t + F(x1, x2, . . . , xν) for all x1, x2, . . . , xν, t ∈R;
(vii ) F(1− x1,1− x2, . . . ,1− xν) = 1− F(x1, x2, . . . , xν) for x1, x2, . . . , xν ∈

[0,1].

It is obvious that any admissible function satisfying (iv) also satisfies (i ). If F
is strictly increasing with respect to each argument, then (v) follows from (i ). If F
is admissible and satisfies (iv) and (vi ) for all x1, x2, . . . , xν, t ∈R, then it satisfies
condition (vii ).

For each admissibleF, ωF satisfies properties (a) and (b) ofωp. If F satisfies
(ii ) and (vii ), thenωF also satisfies (c).

The functionFp has all properties (i )–(vii ) and is strictly increasing with re-
spect to each argument. In general, we do not assume that all conditions (i )–(vii )
hold. We remark that one can definep-harmonic functions on trees very similarly
to the definition (5).

Two subsetsA, B of Gn will be calledcongruentif there is an isomorphism of
the graphG0 ∪G1 ∪ · · · ∪Gn onto itself that leaves eachGk invariant and maps
A ontoB. For such sets, obviously,ωF (A) = ωF (B) for all admissible functions
F satisfying (iii ).

Theorems 1 and 2 are the key results. They provide conditions to give a negative
and a positive answer, respectively, to the weak Martio problem.

From now on, we consider the caseν = 3 in order to simplify notation and the
proofs of Theorems 1 and 2; however, we remark that these results are true for
anyν ≥ 3. Later we will comment on the case of generalν-regular trees (see Re-
mark 3).
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Theorem 1. Suppose thatF satisfies (ii )–(iv) and that F(a0, b0, c0) <
3
√
a0b0c0 for some positivea0, b0, c0. Then, for everyn > 0, there exist con-

gruent subsetsB(0)n , B
(1)
n , B

(2)
n of G3n such thatG3n = B(0)n ∪ B(1)n ∪ B(2)n and

ωF (B
(0)
n )→ 0 asn→∞.

It follows that if F satisfies the hypotheses of Theorem 1, then the answers to the
weak Martio problem and to the Martio problem are negative. Indeed, (2) and
Theorem 1 would imply

1= ωF (B(0)n ∪ B(1)n ∪ B(2)n ) ≤ ψ
(
ωF (B

(0)
n ), ψ(ωF (B

(1)
n ), ωF (B

(2)
n ))

)→ 0

asn→∞.
Corollary 1. The answer to the weak Martio problem is negative for thep-
harmonic measure for allp 6= 2.

Proof. Indeed, puta0 = b0 = 1 andc0 = u3. Then

(u− a0)
p−1+ (u− b0)

p−1+ (u− c0)
p−1= (u−1)p−1(2− (u+ u2)p−1).

For eachp 6= 2 there exists au (close to 1) such that(u− a0)
p−1+ (u− b0)

p−1+
(u− c0)

p−1 > 0, which givesF(a0, b0, c0) < u = 3
√
a0b0c0 (if 1 < p < 2 then

it is enough to takeu = 1+ ε; if p > 2,we can takeu = 1− ε for ε = ε(p) small
enough).

Denote byR3 the triangleR3 = {(x, y, z) ∈ R̄3+ : x + y + z = 1} and byq =(
1
3
, 1

3
, 1

3

)
its center. Let dist denote the usual Euclidean distance.

Theorem 2. Suppose thatF satisfies(iv) and (v).
(a) If for someε > 0 we haveF(x, y, z) ≥ 3

√
xyz+ ε dist((x, y, z), q)2 for all

(x, y, z)∈R3, then there exists anN > 0 such thatωF ≥ ωN2 .
(b) If for someC > 0 we haveF(x, y, z) ≤ 3

√
xyz + C dist((x, y, z), q)2 for

all (x, y, z)∈R3, then there exists anM > 0 such thatωF ≤ ωM2 .
Consequently, if
3
√
xyz+ ε dist((x, y, z), q)2 ≤ F(x, y, z) ≤ 3

√
xyz+ C dist((x, y, z), q)2 (6)

on R3 for someε, C > 0, then there exist positive constantsM,N such that
ωN2 ≤ ωF ≤ ωM2 . In particular, the answer to the weak Martio problem is posi-
tive, because

ωF (A ∪ B) ≤ (ωF (A)1/N + ωF (B)1/N )M
for all sets of verticesA andB.

Observe that (6) and the homogeneity (iv) of F in fact imply certain estimates
for F on the wholeR̄3+. In Section 2 we discuss the central role of the goemetric
average in Theorems 1 and 2.

Remarks. 1. Suppose thatF is twice differentiable inq, F(q) ≤ 1
3
, and (iii )

holds. Then (iii ) implies that the values of∂F
∂xi
(q) are the same fori = 1,2,3.
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Hence the Taylor formula gives that the right-hand inequality in (6) is satisfied on
R3 in a neighborhood ofq and thus on the wholeR3 (for a sufficiently largeC).

2. If ( iv) and (vi ) hold andF(x, y, z) ≥ 3
√
xyz onR̄3+, thenF(x, y, z) = x+y+z

3

on R̄3+. Indeed, puts = x+y+z
3 , x = s + x̃, y = s + ỹ, andz = s + z̃. Then for

fixedx, y, z there existε = ε(x, y, z) > 0 andδ = δ(x, y, z) > 0 such that

s + tF(x̃, ỹ, z̃) = F(s + t x̃, s + t ỹ, s + t z̃)
≥ 3
√
(s + t x̃)(s + t ỹ )(s + t z̃) ≥ s − ε|t |2

for all t ∈ (−δ, δ). Then tF(x̃, ỹ, z̃) ≥ −ε|t |2 for all t ∈ (−δ, δ); if t ∈ (0, δ)
we obtainF(x̃, ỹ, z̃) ≥ 0, and if t ∈ (−δ,0) we deduceF(x̃, ỹ, z̃) ≤ 0. Hence
F(x̃, ỹ, z̃) = 0 and so we deduce thatF(x, y, z) = s. It follows that (iv), (vi ), and
F(x, y, z) ≥ 3

√
xyz trivially imply ωF = ω2. (Note that this gives an alternative

proof of Corollary 1.)
In the sequel we will apply Theorems 1 and 2 to Cantor subsets ofGn; we de-

fine these sets following Theorem 4 and explain there why we call them Cantor
sets. This will lead to a use of functionsF that do not satisfy (vi ).

3. Analogs of Theorems 1 and 2 hold true forν-regular trees for anyν ≥ 3.
Simply replaceR3 with Rν = {x ∈ R̄ν+ : x1+ · · · + xν = 1}, replace 3

√
xyz with

ν
√
x1x2 . . . xν, and putq = (ν−1, ν−1, . . . , ν−1) ∈Rν . We will explain in Section 2

how to change the proofs in order to cover the general case.

As a corollary of Theorem 2 and Remark 1 we obtain the following result, since
F(q) = 1

3
is a consequence of (iv).

Corollary 2. Suppose thatF is twice differentiable inq and that(iii )–(v) hold.
Then there exists anM > 0 such thatωF ≤ ωM2 .
In order to state the following results, we need some additional definitions.

We define the set ofdescendantsof a vertexv, denoted byDv, as follows:

(a) v is a descendant ofv;
(b) if w 6= v, thenw is a descendant ofv if and only ifw ∈Hq andq is a descen-

dant ofv.

If A ⊂ Gn andA′ ⊂ Gn′ with n < n′, we say thatA andA′ areequivalent setsif
A′ is the set of all descendants of the vertices inA that are inGn′—that is,A′ =(⋃

v∈A Dv

) ∩ Gn′ . If A andA′ are equivalent thenωF (A) = ωF (A
′) for every

admissible functionF. In the sequel we identify equivalent sets, and then we can
writeA′ ⊂ Gn andA ⊂ Gn′ .

Theorems 3–7 can be understood as a study of smoothness properties of the
nonlinear measureωF .

Theorem 3. Consider a fixed setE ⊂Gn. For eachν ≥ 3 and admissible func-
tionF satisfying(ii ) and (vii ), there is a positive constantk that depends only on
ν, F, andE such that

ωF (A ∪ B) ≤ k(ωF (A)+ ωF (B)) for all A,B ⊂ Gr with A ∪ B = E (7)

for any natural numberr ≥ n.



Estimates for Nonlinear Harmonic “Measures” on Trees 53

We denote byk(E) the sharp constant in Theorem 3.
The next corollary gives a partial positive result about subadditivity.

Corollary 3. Consider a fixed natural numbern. For eachν ≥ 3 and admissi-
ble functionF satisfying(ii ) and(vii ), there is a positive constantkn that depends
only onν, F, andn such that

ωF (A ∪ B) ≤ kn(ωF (A)+ ωF (B)) for all A,B ⊂ Gr with A ∪ B ⊂ Gn
for any natural numberr ≥ n.
This corollary gives a partial positive result for the Martio problem. To derive it
from Theorem 3, it suffices to setkn as the maximum ofk(E) for E ⊂ Gn.

The next results concern the following question: Given fixed setsHn ⊂ Gn
with ωF (Hn)→ 0 asn→∞, does there exist someψ verifying ωF (A ∪ B) ≤
ψ(ωF (A), ωF (B)) for all n and allA,B ⊂ Hn?

First we remark that, as so stated, weak Martio inequality (2) is always true in
this situation. Indeed, letIn be a one-point set inGn. Take any continuous func-
tion ψ(x, y) that is increasing with respect tox andy and satisfiesψ(0,0) = 0
andψ(0, ωF (In)) = ψ(ωF (In),0) ≥ ωF (Hn) for every natural numbern; then
(2) trivially holds for thisψ if A,B ⊂ Hn. Instead of (2), we will study the
“intermediate” Martio inequality

ωF (A ∪ B)
ωF (Hn)

≤ ψ
(
ωF (A)

ωF (Hn)
,
ωF (B)

ωF (Hn)

)
(8)

for a special class ofHn.

First we need the definition of the product of two sets of vertices. GivenD ⊂
Gr andE ⊂ Gs, we put

D × E = {vIJ : vI ∈D, vJ ∈E} ⊂ Gr+s ,
where IJ is the vector(i1, . . . , ia, j1, . . . , jb), if I = (i1, . . . , ia) and J =
(j1, . . . , jb). This product satisfies the distributive laws with respect to the union
and the intersection of sets:

A× (B ∪ C) = (A× B) ∪ (A× C), A× (B ∩ C) = (A× B) ∩ (A× C).
We haveωF (D × E) = ωF (D)ωF (E) for every admissible functionF and sets
D andE.

Theorem 4. If ν ≥ 3 and ifF is an admissible function that satisfies(ii ), (iv),
(v), and (vii ), then

k(D × E) ≤ k(D)k(E) for everyD,E.

Let 2≤ µ < ν, and putCµ,1 to be any fixed subset ofG1 with µ points. We define
the Cantor subsetCµ,n of Gn by

Cµ,n = Cµ,1× · · · × Cµ,1︸ ︷︷ ︸
n

.
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Obviously,ωF (Cµ,n) = ωF (Cµ,1)n → 0 asn→∞. We will study (8) forHn =
Cµ,n.

We use the word Cantor to denote the setCµ,n, since the setCµ =⋂ n Cµ,n con-
tained in the boundary ofTν (see [GH, Chap. 6] for the definition of the boundary
of a tree) is homeomorphic to a Cantor set in the real line.

Theorem 5. For each functionFp (p > 2) and eachν ≥ 3, we have

k(C2,n) = 1 for all n,

so that the Martio inequality(1) holds ifA ∪ B = C2,n.

Theorem 5 is not true forν ≥ 3 and 1< p < 2 (see Lemma 6).

Corollary 4. For all ν ≥ 3, n ≥ 1, and allE:

(i) k(Gn × E) = k(E) if p > 1;
(ii) k(C2,n × E) ≤ k(E) if p > 2.

Corollary 5. Consider a fixed natural numbern. For eachν ≥ 3 andp > 1,
there is a positive constantkn (the same constant as in Corollary 3) depending
only onν, p, andn such that

ωp(A ∪ B) ≤ kn(ωp(A)+ ωp(B))
for all setsA,B satisfying any of the following conditions:

(i) A ∪ B ⊂ Gn;
(ii) A ∪ B = Gr ×D, with r a natural number andD ⊂ Gn;

(iii) A ∪ B = Gr1 × C2,s1 × · · · × Grq × C2,sq × D, with r1, . . . , rq, s1, . . . , sq
natural numbers andD ⊂ Gn, if p > 2.

Putσ = F(1, . . . ,1︸ ︷︷ ︸
µ

,0, . . . ,0) andF̃(x1, . . . , xµ) = σ−1F(x1, . . . , xµ,0, . . . ,0). It

is plain that, forA ⊂ Cµ,n, ωF (A)/ωF (Cµ,n) = ωF̃ (A). If F satisfies (i )–(iv),
thenF̃ also satisfies these properties. IfF is strictly increasing in each variable
and satisfies (iv), thenF̃ satisfies (v).

Theorem 6. Let 2 ≤ µ < ν andHn = Cµ,n.
(a) If F satisfies(ii )–(iv) and

F(x1, . . . , xµ,0, . . . ,0) < σ µ
√
x1x2 . . . xµ

for somex1, . . . , xµ ∈ R̄+, then the intermediate Martio inequality(8) does not
hold.

(b) Suppose thatF is strictly increasing in each variable and is twice continu-
ously differentiable in(1, . . . ,1︸ ︷︷ ︸

µ

,0, . . . ,0). If F satisfies (iii ) and (iv) and if there

is anε > 0 such that

F(x1, . . . , xµ,0, . . . ,0) ≥ σ µ
√
x1x2 . . . xµ + ε

µ∑
j=1

(xj − 1/µ)2 (9)



Estimates for Nonlinear Harmonic “Measures” on Trees 55

for all (x1, . . . , xµ)∈Rµ, then there existC, ρ > 0 such that

ωF (A ∪ B)
ωF (Cµ,n)

≤ C
(
ωF (A)+ ωF (B)

ωF (Cµ,n)

)ρ
(10)

for all n and allA,B ⊂ Cµ,n.
Theorem 7. (a)Let 2 ≤ µ < ν. Then there are positiveδ, C, ρ such that(10)
holds forF = Fp for all p ∈ (2− δ,2+ δ).

(b) If µ = 2 then there is aδ > 0 such that, for anyp ∈ (2− δ,∞), there
existC > 0 andρ > 0 such that(10)holds forF = Fp.
Acknowledgments. We would like to thank Professor O. Martio for suggest-
ing this problem and Professor J. L. Fernández for many useful discussions. We
thank the referee for a careful reading of the manuscript.

2. Proofs of Theorems 1 and 2

We denote by∂Rν the relative boundary ofRν as a subset of the affine planeP =
{x ∈Rν : x1+ · · · + xν = 1}. PutS(x1, x2, . . . , xν−1, xν) = (x2, x3, . . . , xν, x1).

ThenS is an orthogonal linear transformation ofRν such thatSν = I. First we
consider the caseν = 3.

Let us make the following observation. Letk ∈ N. Each setE ⊂ Gk can be
represented in a unique way in the form

E = {v1I : vI ∈X} ∪ {v2I : vI ∈ Y } ∪ {v3I : vI ∈Z}
for some subsetsX, Y,Z of Gk−1. With the last identity in mind, we will write
E = (X, Y, Z); thenωF (E) = F(ωF (X), ωF (Y ), ωF (Z)).

We have a formula

(X1, Y1, Z1) ∪ (X2, Y2, Z2) = (X1∪X2, Y1∪ Y2, Z1∪ Z2). (11)

Proof of Theorem 1.Let a0, b0, c0 ∈ (0,+∞) andF(a0, b0, c0) <
3
√
a0b0c0.

The key of this proof is to transform this inequality involving the geometric aver-
age in the inequality (17) for some setsB(0)k,l,m; the intuition to choose the appro-
priate sets was inspired by some numerical simulations. By property (iv) of F,we
can assume thata0b0c0 = 1. There are closed subsetsA0, A1 = SA0, andA2 =
S2A0 of ∂R3 such thatA0 ∪ A1∪ A2 = ∂R3 and

A0 ⊂ {(x, y, z)∈P : x ln a0 + y ln b0 + z ln c0 < 0}. (12)

Indeed, divideP into three equal anglesA0,A1,A2 of size 2π
3

with common ver-
tex atq and putAj = Aj ∩ ∂R3. The boundary of the half-plane inP involved in
(12) containsq. From this, one sees that there is a position ofAj that works.

Choosea, b, c slightly larger thana0, b0, c0 (respectively), so thatabc > 1 but
F(a, b, c) < 1. We can also still assume that

x ln a + y ln b + z ln c < 0 for (x, y, z)∈A0. (13)
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We defineB(j)k,l,m subsets ofGk+l+m for j = 0,1,2 and k, l,m ∈ Z+,
k + l +m > 0, by induction onn = k + l +m. The inductive rule is

B
(j)

k,l,m =
(
B
(j)

k−1,l,m,B
(j)

k,l−1,m,B
(j)

k,l,m−1

)
for k, l,m ≥ 1, (14)

and it does not depend onj. The “boundary conditions” are

B
(j)

k,l,m =
{
Gn if

(
k
n
, l
n
, m
n

)∈Aj,
∅ if

(
k
n
, l
n
, m
n

)∈ ∂R3 \ Aj ;
(15)

heren = k + l +m ≥ 1 (k, l, m are natural numbers) andklm = 0. This defini-
tion is consistent, and by induction onn = k + l + m—using (15) (forn = 1),
(11), and (14)—it is proved that

B
(0)
k,l,m ∪ B(1)k,l,m ∪ B(2)k,l,m = Gk+l+m (16)

for all k, l,m ≥ 0 with k + l +m ≥ 1.
Next let us apply induction again onn = k + l +m to prove that

ωF
(
B
(0)
k,l,m

)
< a−kb−lc−m. (17)

If klm = 0, thenB(0)k,l,m has been formed by the rule (15), and we may assume

that
(
k
n
, l
n
, m
n

) ∈ A0 (otherwiseB(0)k,l,m = ∅ and (17) is true). ThenωF
(
B
(0)
k,l,m

) =
ωF (Gn) = 1, and (17) follows from (13). Ifklm > 0, then the induction hypothe-
sis yields

ωF
(
B
(0)
k,l,m

) = F (ωF (B(0)k−1,l,m

)
, ωF

(
B
(0)
k,l−1,m

)
, ωF

(
B
(0)
k,l,m−1

))
≤ F(a−k+1b−lc−m, a−kb−l+1c−m, a−kb−lc−m+1)

= a−kb−lc−mF(a, b, c) < a−kb−lc−m.

Now putB(j)n = B(j)n,n,n. SinceSA0 = A1 andS2A0 = A2, the setsB(0)n , B
(1)
n ,

B(2)n are congruent. Next, (16) givesB(0)n ∪ B(1)n ∪ B(2)n = G3n. Sinceabc > 1,
(17) implies thatωF (B(0)n )→ 0 asn→∞.
We put

Gα(x, y, z) =
(
xα + yα + zα

3

)1/α

, (x, y, z)∈ R̄3
+.

The geometric average plays an important role in Theorem 2. On the one hand, its
Taylor formula is quite similar to the Taylor formula ofGα (see (18)); on the other
hand, computations involvingGα are quite simple.

Lemma 1. The hypothesis(a)of Theorem 2 implies that, for someα > 0,

Gα(x, y, z) ≤ F(x, y, z), (x, y, z)∈ R̄3
+.

The hypothesis(b) of Theorem 2 implies that, for someβ > 0,

F(x, y, z) ≤ Gβ(x, y, z), (x, y, z)∈ R̄3
+.
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Proof. Gα(x, y, z) is an increasing function ofα for 0< α <∞ [HLP, Chap. 2].
Let the hypothesis (a) of Theorem 2 hold. The Taylor formula gives

Gα(x, y, z) = 1

3
+
(
α −1

2
+ o(1)

)
dist((x, y, z), q)2,

3
√
xyz = 1

3
+
(
−1

2
+ o(1)

)
dist((x, y, z), q)2

(18)

if x + y + z = 1, (x, y, z)→ q. Hence there is anα0 > 0 and an open discU in
the planeP, centered inq, such thatGα0(x, y, z) ≤ F(x, y, z) if (x, y, z) ∈ U .
Therefore,Gα(x, y, z) ≤ F(x, y, z) in U for all α ∈ (0, α0].

Let r be the radius ofU . For fixedx, y, z, we haveGα(x, y, z) → 3
√
xyz as

α → 0 [HLP, Chap. 2]. By the Dini theorem [Ru, Thm.7.13], this convergence
is uniform for(x, y, z)∈R3. Hence there exists anα ∈ (0, α0] such that

Gα(x, y, z) <
3
√
xyz+ εr 2 ≤ F(x, y, z)

for (x, y, z) ∈ R3 \ U . We conclude by (iv) thatF(x, y, z) ≥ Gα(x, y, z) for all
(x, y, z)∈ R̄3+.

If hypothesis (b) holds, then (18) yields that there is a discU as before and
some largeβ0 such thatF(x, y, z) ≤ Gβ0(x, y, z) in U . It follows from prop-
erty (v) of F that F(x, y, z) ≤ max(x, y, z) − δ on R3 \ U for someδ > 0.
SinceGα(x, y, z) → max(x, y, z) uniformly onR3 asα → ∞, it follows that
F(x, y, z) ≤ Gβ(x, y, z) onR3 for someβ ≥ β0, and we are done.

Proof of Theorem 2.An obvious induction argument shows that, if eitherF orG
satisfies (ii ), thenF ≤ G implies thatωF (X) ≤ ωG(X) for all setsX. It is also
plain to see thatωGα(X) = ω2(X)

1/α for all setsX. Thus we obtain from Lemma
1 thatωF ≥ ω1/α

2 if (a) is assumed, andωF ≤ ω1/β
2 if (b) is assumed. These in-

equalities imply that

ωF (A ∪ B) ≤ ω2(A ∪ B)1/β ≤ (ω2(A)+ ω2(B))
1/β ≤ (ωF (A)α + ωF (B)α)1/β,

so that the weak Martio inequality (2) holds.

The Case of Arbitraryν

Lemma 2. There is a dense subsetD of the planeP0 = {x ∈Rν : x1+· · ·+xν =
0} such that, for everyr ∈D, vectorsr, Sr, . . . , Sν−1r spanP0.

Proof. There is at least one such vector, namelyr = (1,−1,0,0, . . . ,0). The de-
terminant criterion of linear dependence shows that the property in question can
fail only on an algebraic submanifold ofP0 of codimension 1.

Lemma 3. Let r ∈D. Then the sets

Aj =
{
x ∈ ∂Rν : 〈x − q, Sjr〉 = min

0≤k≤ν−1
〈x − q, S kr〉

}
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are closed and satisfySjA0 = Aj for j = 1,2, . . . , ν − 1. Moreover,A0 ∪ A1∪
· · · ∪ Aν−1 = ∂Rν and

〈x − q, r〉 < 0 for x ∈A0. (19)

We remark that, in fact,〈q, Sjr〉 = 0 for all j and allr ∈P0.

Proof. Let us prove (19) (all other properties are plain). Since vectorsSjr span
P0, we have that

∑ν−1
j=0|〈x − q, Sjr〉| 6= 0 for x ∈ ∂Rν. Supposex ∈A0, and put

tj = 〈x − q, Sjr〉. Then
∑ν−1

j=0|tj | 6= 0,
∑ν−1

j=0 tj = 〈x − q,0〉 = 0, andt0 ≤ tj
for 1≤ j ≤ ν −1. These three facts implyt0 < 0.

Let F(x1, . . . , xν) be an admissible function that satisfies properties (ii )–(v), and
consider the corresponding measureωF overTν. Lemmas 2 and 3 allow one to
repeat the construction of Theorem 1 and so obtain congruent setsB(0)n , B

(1)
n , . . . ,

B(ν−1)
n of Gνn whose union isGνn and such thatωF (B(0)n )→ 0 asn→∞. One

need only choose(a0
1, a

0
2, . . . , a

0
ν ), which now plays the role of(a0, b0, c0), so

that(ln a0
1, ln a

0
2, . . . , ln a

0
ν )∈D. The rest of the proof follows the same lines. The

proof of the analog of Theorem 2 forν-regular trees requires no alterations.
We remark that the answer to the weak Martio problem forp-harmonic mea-

sure onν-regular trees still is negative forp 6= 2. Indeed, ifp 6= 2, then there is
u close to 1 such thatF(1,1, . . . ,1, uν) < u = ν

√
uν.

3. Proofs of Theorems 3 and 4

Lemma 4. If (ii ), (v), and (vii ) hold, then the setF of all valuesω(A) for all
setsA ⊂ GN for all N ≥ 0 is dense in[0,1].

Proof. It is easy to derive from these conditions that

min(x1, . . . , xν) < F(x1, . . . , xν) < max(x1, . . . , xν) for x1, . . . , xν ∈ [0,1]

if we do not havex1= x2= · · ·= xν. Suppose thatF is not dense in [0,1], and let
(α, β) ⊂ [0,1] be one of the maximal intervals such thatF ∩ (α, β) = ∅, where
α < β. ThenF contains points which are arbitrarily close toF(α, β, . . . , β) ∈
(α, β), a contradiction.

Notation. If a = (a1, . . . , aN) andb = (b1, . . . , bN), then we put

a · b = (a1b1, . . . , aNbN) and 1= (1, . . . ,1), 0= (0, . . . ,0).
Proof of Theorem 3.The statement is trivial ifE = ∅. ConsiderE ⊂ Gn with
E 6= ∅ and fixA andB withE = A∪B.Without loss of generality we can assume
thatA ∩ B = ∅, sinceF satisfies (ii ).

Letw1 < w2 < · · · < wνn be theν n vertices inGn. Putxi = ωF (wi, A) and
yi = ωF (wi, B) for 1 ≤ i ≤ ν n with x = (x1, . . . , xν n) andy = (y1, . . . , yν n).

We haveωF (A) = F n(x) andωF (B) = F n(y).
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Observe thatxi + yi = δEi for 1≤ i ≤ ν n. This is obvious ifδEi = 0; if δEi =
1 then it is a consequence of property (c) ofωF (this property is true becauseF
satisfies (ii ) and (vii )). Hencex + y = δE. Therefore,ωF (A) = F n(δE · x) and
ωF (B) = F n(δE · (1− x)).

Consider the functiong(z) = F n(δE · z) + F n(δE · (1− z)) with z ∈ [0,1]ν
n

.

SinceE 6= ∅, we have thatδE 6= 0; this and (ii ) imply thatg(z) > 0 for everyz∈
[0,1]ν

n

. The continuity ofg gives thatM = min{g(z) : z∈ [0,1]ν
n} > 0.

One has

ωF (E) ≤ ωF (E)
M

[F n(δE · x)+ F n(δE · (1− x))] = ωF (E)

M
[ωF (A)+ ωF (B)].

Therefore, Theorem 3 is proved withk = ωF (E)/M.

Remark. Let (ii ), (v), and (vii ) hold. If z0 ∈ [0,1]ν
n

is such thatg(z0) = M

then, by Lemma 4, for everyε > 0 one can chooseAε, Bε ⊂ GN with largeN
such thatAε ∪ Bε = E and|δE · z0 − xε| < ε if xεi = ωF (wi, Aε). This implies
thatk(E) = ωF (E)/M.

Proof of Theorem 4.ConsiderD ⊂ Gr andE ⊂ Gs. Letw1 < · · · < wνr be the
ν r vertices ofGr andu1 < · · · < uν s theν s vertices ofGs. If wi = wI anduj =
uJ , then we putwi × uj = vIJ ∈Gr+s . Recall thatD × E = {wi × uj : wi ∈D,
uj ∈E}.

LetA,B ⊂ Gn for n ≥ r + s, with A∪B = D×E. Putxij = ωF (wi × uj, A)
andxi = (x i1, . . . , x iν s ) (herei = 1,2, . . . , ν r ). By the foregoing remark,

F r(δD · y)+ F r(δD · (1− y)) ≥ ωF (D)
k(D)

for every y ∈ [0,1]ν
r

. (20)

Considerx1, . . . , xν
r ∈ [0,1]ν

s

as defined previously. Then

F s(δE · xi)+ F s(δE · (1− xi)) ≥ ωF (E)
k(E)

for 1≤ i ≤ ν r .
Put

yi = k(E)

ωF (E)
F s(δE · xi) and zi = k(E)

ωF (E)
F s(δE · (1− xi)) for 1≤ i ≤ ν r .

Thenyi, zi ≥ 0 andyi + zi ≥ 1.
Definey∗i = min{yi,1} andz∗i = 1− y∗i . We have:

0 ≤ y∗i ≤ 1 and 0≤ z∗i ≤ 1; (21)

y∗i ≤ yi; (22)

z∗i = 1− y∗i = 1−min{yi,1} = max{1− yi,0} ≤ max{zi,0} = zi . (23)

Therefore,
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ωF (A)+ ωF (B) = F r(δD1 F
s(δE · x1), . . . , δDν rF

s(δE · xν r ))
+ F r(δD1 F

s(δE · (1− x1)), . . . , δDν rF
s(δE · (1− xν r )))

= ωF (E)

k(E)
[F r(δD1 y1, . . . , δ

D
ν ryν r )+ F r(δD1 z1, . . . , δ

D
ν r zν r )]

≥ ωF (E)
k(E)

[F r(δD1 y
∗
1, . . . , δ

D
ν ry
∗
ν r )+ F r(δD1 z

∗
1, . . . , δ

D
ν r z
∗
ν r )]

= ωF (E)

k(E)
[F r(δD · y∗)+ F r(δD · (1− y∗))]

≥ ωF (E)
k(E)

ωF (D)

k(D)
= ωF (D × E)

k(D)k(E)
.

The definition ofxi implies the first equality; (iv) gives the second equality; (ii ),
(22), and (23) imply the first inequality; and (20) and (21) give the last inequality.
Hence

ωF (D × E) ≤ k(D)k(E)[ωF (A)+ ωF (B)]
and thusk(D × E) ≤ k(D)k(E).

4. Proof of Theorem 5

Observe that Theorem 4 will give the statement if we prove thatk(C2,1) = 1.
Define the function

g(x, y) = Fp(x, y,0, . . . ,0)+ Fp(1− x,1− y,0, . . . ,0).
Let A,B ⊂ Gm be disjoint sets such thatA ∪ B = C2,1. Let w1, w2 be the
two points of C2,1, and put x = ωp(w1, A) and y = ωp(w2, A). Then
ωp(A)+ ωp(B) = g(x, y). By the remark before the proof of Theorem 4,

k(C2,1) = ωp(C2,1)

minx,y∈[0,1] g(x, y)
(24)

(g is continuous on [0,1] × [0,1]). In order to calculate the minimum ofg, we
need a piece of elementary analysis. Putc = ν − 2, α = p − 1, β = 1/(p − 1),
andγ = (p − 2)/(p −1). Put

Xν(t) = Fp(t,1,0, . . . ,0︸ ︷︷ ︸
ν−2

);

thenXν : [0,∞)→ [x0,∞) is a strictly increasing function (herex0 = Xν(0) =
(1+ (c +1)β)−1). The inverse functionSν toXν is defined explicitly by

Sν(x) = x + [(x −1)p−1+ cxp−1]β, x ≥ x0. (25)

Putx1 = (1+ cβ)−1 andx2 = 1. Thenx0 < x1 < x2, and the pointssj = Sν(xj )
are given bys0 = 0, s1= (1+ cβ)−1, ands2 = 1+ cβ.
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Lemma 5. Let ν ≥ 3. ThenX ′ν is continuous on[0,+∞).
(1) If p > 2 (0 < β < 1), thenX ′ν(t) is strictly decreasing on[0, s1] and

[s2,∞) and is strictly increasing on[s1, s2].
(2) If 1 < p < 2 (β > 1), thenX ′ν(t) is strictly increasing on[0, s1] and

[s2,∞) and is strictly decreasing on[s1, s2].

Proof. We have
S ′ν(x) = 1+ (ψ B ϕ)(x), (26)

whereϕ(x) = (1−1/x)p−2 andψ(η) = (|η| + c) · |η1/γ + c|−γ . Calculatingψ ′,
for 1< p < 2 we haveψ ′ < 0 on(−∞,−cγ ) and(0,1) andψ ′ > 0 on(−cγ ,0)
and(1,∞); all signs are reversed ifp > 2. Note thatϕ(x1) = −cγ . This im-
plies thatS ′ν is monotone on each of the intervals(x0, x1), (x1, x2), (x2,∞) and
gives the signs of this monotonicity. Thus we also find the sign of monotonicity
of X ′ν = 1/(S ′ν BXν). We omit trivial details.

Lemma 6. Let ν ≥ 3 and0< s < 1< t.

(1) If p > 2 (0< β < 1), thenX ′ν(s) < X ′ν(1) < X ′ν(t).
(2) If 1< p < 2 (β > 1), thenX ′ν(s) > X ′ν(1) > X ′ν(t).

Proof. Note thats1 < 1 < s2 andXν(1) = 1/(1+ (c/2)β). From (26) and the
formulaX ′ν = 1/(S ′ν BXν), we have

X ′ν(0) =
(1+ c)β−1

(1+ c)β +1
, X ′ν(1) =

1

2
Xν(1), X ′ν(∞) =

1

(1+ c)β +1
= Xν(0).

(27)

Consider first the casep > 2 (0 < β < 1). The properties of the function
X ′ν appearing in Lemma 5 imply that the statement is true ifX ′ν(0) ≤ X ′ν(1) <
X ′ν(∞).

The inequalityX ′ν(1) < X ′ν(∞) is equivalent to

A(c) = 1+ 21−βcβ − (1+ c)β > 0

for every positive integerc. It is easy to check thatA′(c) > 0 for all positivec.
This implies the inequalityA(c) > A(0) = 0. The inequalityX ′ν(0) ≤ X ′ν(1) is
equality if c = 1. If c ≥ 2 then

2X ′ν(0) =
2

1+ c + (1+ c)1−β <
2

1+ c +1
= 1

1+ c/2
≤ 1

1+ (c/2)β
= 2X ′ν(1).

In the case 1< p < 2, the same arguments yield the result.

Note thatωp(C2,1) = Xν(1). By (24), the proof of Theorem 5 finishes with the
following result.

Lemma 7. Let ν ≥ 3. The functiong(x, y) satisfies, for every0 ≤ x, y ≤ 1,

Xν(1) = 1

1+ ((ν − 2)/2)β
≤ g(x, y) ≤ 2

1+ (ν − 1)β
= 2Xν(0) if p>2,

Xν(1) ≥ g(x, y) ≥ 2Xν(0) if 1<p<2.
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In particular, k(C2,1) = 1 if p > 2 and k(C2,1) = Xν(1)/(2Xν(0)) > 1 if 1 <
p < 2.

Proof. By the symmetry of the functiong, we can assume thatx ≥ y. So let us
study the values ofg on the set

D = {(x, y)∈ [0,1]2 : x ≥ y}.
First we see thatg must attain its maximum and minimum values onD on the

boundary ofD, because∇g 6= 0 in the interior ofD. Indeed, by property (iv) of
the functionFp, we have

g(x, y) = y Xν
(
x

y

)
+ (1− y)Xν

(
1− x
1− y

)
.

Hence, by Lemma 6,

∂g

∂x
(x, y) = X ′ν

(
x

y

)
−X ′ν

(
1− x
1− y

)
6= 0

for (x, y) in the interior ofD, because(1− x)/(1− y) < 1< x/y.

Note thatg(x, x) ≡ Xν(1) andg(1, y) = g(1− y,0). Put

B(y) = g(1, y) = Xν(y)+ (1− y)Xν(0), y ∈ [0,1].

SinceB(1)=Xν(1), we obtain that minD g=min[0,1] B and maxD g=max[0,1] B.

We haveB ′(y) = X ′ν(y) − Xν(0) andB(0) = 2Xν(0). If p > 2 then, by
Lemma 6 and (27), it follows thatX ′ν(y) < X ′ν(1) ≤ X ′ν(∞) = Xν(0) for 0 <
y < 1. HenceB ′(y) < 0 for 0< y < 1. Similarly, B ′(y) > 0 for 0< y < 1 if
1< p < 2. This finishes the proofs of Lemma 7 and Theorem 5.

5. Proofs of Theorems 6 and 7

Proof of Theorem 6.Defineσ andF̃(x1, . . . , xµ) as in Section 1 and apply The-
orems 1 and 2 and Corollary 2 (in the general caseν ≥ 3) to F̃ . Observe that
ωF (Cµ,n) = σ n. Part (a) is immediate. If (9) holds, then the differentiability con-
dition onF implies thatF̃ also satisfies the (analog of ) the right-hand side of (6).
This and Theorem 2 yield part (b).

Proof of Theorem 7.(a) We putPa = {x1+ · · · + xµ = a} ⊂ Rµ, a ∈ R. The
invariance ofF̃p under rearrangement implies that∂

∂xj
F̃p(q) does not depend on

j (q is the center ofRµ). ThereforedF̃p(q)|P0 = 0. Note that there existδ1 >

0 and a neighborhoodV1 of q in P1 such that, for everyi, j, ∂2

∂xi∂xj
F̃p(q

′) is uni-

formly continuous as a function of(p, q ′) ∈ (2− δ1,2+ δ1) × V1. It is easy to
check this fact as follows. Implicit differentiation of equation (4) gives that∂

∂xi
F̃p

is aC1 function in a neighborhood of the point(2, q) if µ < ν. Since ∂2

∂xi∂xj
F̃2 ≡

0, the Taylor formula with the Lagrange form of the rest gives that, for anyε >

0, there existδ0 > 0 and an open subsetV (q ∈V ⊂ P1) such that∣∣∣∣F̃p(q ′)− 1

µ

∣∣∣∣ ≤ ε|q ′ − q|2
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for all q ′ ∈ V and allp ∈ (2− δ0,2+ δ0). SinceF̃p → F̃2 uniformly onRµ as
p→ 2, we conclude that there are positiveε, δ such that (9) holds forF = Fp if
p ∈ (2− δ,2+ δ). Theorem 6 then gives the first assertion.

(b) Letµ = 2 andp > 2. We haveσ = Xν(1). By Lemma 6 and (27),

Xν(t) ≥ Xν(1)+X ′ν(1)(t −1) = Xν(1)1+ t
2

for 0 ≤ t ≤ 1, which implies that

Fp(x1, x2,0, . . . ,0︸ ︷︷ ︸
ν−2

) ≥ σ x1+ x2

2
for x1, x2 ≥ 0.

Hence there is anε > 0 such that (9) holds forF = Fp for all p ∈ (2,∞). The
analog of the right-hand inequality in (6) holds forF = F̃p(x, y) for anyp ∈
(1,∞). One can then conclude that assertion (b) holds.

6. The Casep =∞
In potential theory it is possible to define “∞-harmonic functions”. In this section,
we consider the “∞-harmonic measure”.

The∞-harmonic measureis defined asωF∞ , whereF∞ is the limit

F∞(x1, . . . , xν) = lim
p→∞Fp(x1, . . . , xν) = min(x1, . . . , xν)+max(x1, . . . , xν)

2

(it is easy to prove). Theorem 1 and Remark 2 give that the answer to the weak
Martio problem is negative for the∞-harmonic measure. Besides, we can now
construct setsAn,Bn ⊂ Gn with Dn = An ∪ Bn and

ω∞(Dn)

ω∞(An)+ ω∞(Bn) =
n+1

2
. (28)

ConsiderD1= G1. GivenDn,we constructDn+1 in the following way:Dn+1=
(Dn, In, . . . , In), whereIn is any subset ofGn with only one vertex. Then we
haveω∞(D1) = 1 andω∞(Dn+1) = ω∞(Dn)/2+ 2−n−1, and this implies that
ω∞(Dn) = (n+1)2−n.

ConsiderA1 = C2,1. Given An, we constructAn+1 in the following way:
An+1= (An, In,∅, . . . ,∅). Consequently, ifBn = Dn \An it follows thatBn+1=
(Bn,∅, In, . . . , In). It is immediate by induction thatω∞(An) = ω∞(Bn) = 2−n.
These equalities give (28).
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