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Permutation Models and SVC

Eric J. Hall

Abstract Let M be a model of ZFAC (ZFC modified to allow a set of atoms),
and let N be an inner model with the same set of atoms and the same pure sets
(sets with no atoms in their transitive closure) as M. We show that N is a per-
mutation submodel of M if and only if N satisfies the principle SVC (Small
Violations of Choice), a weak form of the axiom of choice which says that in
some sense, all violations of choice are localized in a set. A special case is
considered in which there exists an SVC witness which satisfies a certain homo-
geneity condition.

1 Introduction and Main Result

The principle SVC (Small Violations of Choice) is a weak form of AC (Axiom of
Choice), introduced by Blass [1], which says that all failures of AC are localized in
asetS:

SVC: There is a set S such that, for every set a, there is an ordinal o and a
function from § x «a onto a.

When S is such a set, we say that “SVC holds with $” and that S is an SVC witness.

The main new result of this paper can be stated as follows: Let M be a model of
ZFA (ZF modified to allow a set of atoms) in which AC holds, and let N be an inner
model which has the same pure part and same set of atoms as M. If N =SVC, then
N is a permutation submodel of M.

Definitions and Conventions The theory ZFA is a modification of ZF allowing
atoms, also known as urelements. See Jech [4] for a precise definition. A model
of ZFA may have a proper class of atoms; however, for this paper we redefine ZFA
to include an axiom which says that the class of atoms is a set (always denoted by
A). Similarly, proper class forcing will not be considered in this paper; by forcing
or generic extension it is to be understood that only a set of forcing conditions is
permitted.
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In a model of ZFA, a pure set is a set with no atoms in its transitive closure, and
the pure part or kernel is the class of all pure sets; the pure part is a model of ZF.

Our definition of permutation submodel will be almost the same as that given
in [4] (or see Jech [5] for more detail), but generalized somewhat so as to make
correct the statement of Theorem 1.1 below. A permutation model is determined
by a model M of ZFAC, a group G of permutations of the set A of atoms, and a
normal filter ¥ on G. Typically, it is assumed that G is in M. In this paper, we
only require that G be in some generic extension of M by a cardinal collapse (or
by any almost homogeneous notion of forcing); the development of the basic theory
is nearly unchanged. (See Hall [3] for an example of some N C M where N is a
permutation submodel of M which cannot be obtained by a group G in M.)

From this point we will not work much directly with the definition of permutation
model. Instead, we build on and generalize results in the paper [3], which gives a
characterization of permutation submodels in terms of forcing. The new result stated
above will be treated as part of the following main theorem.

Theorem 1.1 Let M be a transitive model of ZFAC, and let N C M be a transitive
submodel of ZFA such that N and M have the same set of atoms and the same pure
part. The following are equivalent:

(a) N is a permutation submodel of M;
(b) M is a generic extension of N;
(c) N satisfies SVC.

The equivalence between (a) and (b) is Theorem 4.1(a) of [3]. The implication from
(a) to (c) is Theorem 4.2 of [1] (no serious changes are required to make the proof
work for our slightly generalized permutation models). The implication from (b) to
(c) follows immediately from Theorem 4.6 of [1], stated here (generalized slightly
to allow a set of atoms).

Theorem 1.2 A model of ZFA satisfies SVC if and only if some generic extension
satisfies AC.

Proof Hint: If PP is a notion of forcing such that IFp AC, then SVC holds with
P. O

The proof of Theorem 1.1 can therefore be completed by proving that (c) implies
either (a) or (b). We will prove, in Section 3, that (c) implies (b); we have not found
a nice proof that (c) implies (a) without in effect going through (b).

2 Questions

Let ZFACK be the theory of ZFA (with a set of atoms) + “AC for pure sets.” It was
claimed in passing on the first page of [3] that SVC is a theorem of ZFACKX. The
claim was mistaken. No proof is known; also no disproof is known.

Consider a weaker version of the claim. If N = ZFACK and M is an extension
with the same pure part and set of atoms as N such that M |= ZFAC, then we’ll
say that M is a choice extension of N. By Theorem 1.1, the following questions are
equivalent.

Question 2.1  For a given model of ZFACK, is every choice extension a generic
extension?
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Question 2.2 Does SVC hold in every model of ZEACK that has a choice exten-
sion?

If the answer is “yes,” then the three equivalent conditions of Theorem 1.1 are simply
true under the given hypotheses.

3 Proof of the Main Theorem

The following lemma is proved in Blass and Scedrov [2]; a sketch of the proof is
included here because it contains an idea to be used later.

Lemma 3.1 Let M be a model of ZFAC with pure part K, and let f : A’ — A
be a bijection from a pure set to the set of atoms. Then M is the smallest model of
ZFAC which contains K and f.

Sketch of Proof For convenience, assume that all the elements of A” have the same
rank, and let Xo ¢ A’ also be a pure set of that rank. As in the proof of Lemma
15.47 in [4], construct a model M’ of ZFAC inside K whose set of atoms is A’. The
elements of M’ are obtained by iterating the power set operation over A’, modified
by letting X stand in for the empty set each time. Now (M’, €) is a model of ZFAC.

There is a unique collapsing map from M’ onto M whose restriction to A is f.
This map is A -definable using f as a parameter, so M is generated by K and f. [

Note that the collapsing map M’ — M in the proof above is an isomorphism.

To prove (c) implies (b) in Theorem 1.1, we will start with a model M of ZFAC
with a submodel N as in the hypotheses of the theorem, and assume that N satisfies
SVC. As in the proof of Lemma 3.1, let M’ be a copy of M contained in the pure part
of M (which is also the pure part of N), with A’ as its set of atoms. There is a copy
N’ of N contained in M’. In N, the set A of atoms is not well-orderable (excepting
the boring case N = M), and N does not see that N is isomorphic to N’ or to any
other submodel of M’. We’ll build a notion of forcing in N out of certain partial
embeddings from N to N'.

Of all generic extensions of N which add a well-ordering of A, M is a minimal
such model. (Other extensions which add the same well-orderings of A that M has
must contain M and also add new pure sets.) Intuitively, to get a “small” exten-
sion like M generically, we want a notion of forcing whose conditions are as large
as possible; perhaps a proper class containing arbitrarily large partial embeddings
N — N’. The assumption that SVC holds in N turns out to ensure that a mere set
of forcing conditions suffices, and also ensures, by way of the next lemma, that the
dense subsets will be well-behaved.

In the following Lemma 3.2, think of S as an SVC witness in a model of ZFA. A
form of this lemma was first pointed out to me by Omar De la Cruz.

Lemma 3.2 If f: S x a — B isonto, then for every D C B, there is a pure set
y and a well-ordering x of a subset of P(S) such that D is Ao-definable from the
parameters f, x, and y.

Proof Let D C B, and consider the set f~![D] € S x a. D is Ay-definable from f
and f~![D]; it remains to show that f~'[D]is Ag-definable from some x and y as in
the statement of the lemma. Define a one-to-one partial function b : P(S) — P(a)
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by

{B<a | fAAADIN(S x {B}) =T x {B}} if this is nonempty,
undefined else.

b(T) = [

Observe that Ran(b) is a pairwise disjoint set of sets of ordinals, and hence is a well-
orderable pure set. Let y be a well-ordering of Ran(b), and let x be the corresponding
well-ordering of Dom(b). Then b is Ap-definable from x and y, and f~'[D] is in
turn Ag-definable from b. 0

Proof of Theorem 1.1, (c) implies (b) Let M be a transitive model of ZFAC and let
N be an inner model of ZFA, both with the same kernel K and set of atoms A. As
in the discussion above, let M’ C K be an isomorphic copy of M, with A’ as its set
of atoms. Any bijection A — A’ in M can be extended uniquely to an isomorphism
M — M'. Let j : M — M’ be such an isomorphism, and for x € M we’ll write
x" = j(x),and N’ = j[N]. Observe that if j; : M — M’ is any other isomorphism,
then j and j; agree on K, since there is only one isomorphism K — K'.

For a function p whose range is contained in M’, define a new function
p : Ran(p) — K’ by p(r) = r’; in other words, p = j | Ran(p). It is immediate
from the definition that if p and ¢ are any two functions with the same range, then
p = q. The remainder of this paragraph is optional, for readers interested in the mo-
tivation for defining p. Suppose that p can be extended to an isomorphism N — N’,
and consider the function p* = ({i > p | i : N — N'is an isomorphism },
the intersection of all isomorphisms N — N’ which extend p. Think of the do-
main of p™ as the extended domain of p. For example, if x € Dom p, then {x}
is certainly in the extended domain of p. Each pure set y is also in the extended
domain (since all isomorphisms N — N’ agree on pure sets); p*(y) = y’. It turns
out that p is in its own extended domain; to show this, it suffices to show that each
(x,y) € pis in the extended domain of p. To this end, leti : N — N’ be any
isomorphism extending p. Clearly i(x) = p(x) = y. Since y € Ran(p) is a pure
set, i(y) = y’. Thus i({x,y)) = (y,y’) for any isomorphism i extending p. It
follows that p € Dom(p™), and p™(p) = p.

Suppose N satisfies SVC with S. Working in N, we will now define a notion
of forcing P. Let T = P(S). Let F be the set of all functions from subsets of
T to T’; fix an ordinal a and a surjection f : S x a — F. Note that although
the priming function j is not in N, the restriction j | K is in N (it is the unique
isomorphism K — K'), so we may freely apply primes to pure sets. It follows that
the tilde operation p — p also makes sense in N (when applied to functions whose
ranges are pure sets). We will also refer to the two particular sets 7’ and f’. Finally,
the definition of P will also use the term N’. To avoid the implicit assumption that
N’ is a definable class in N, one could replace N’ in the definition of P with some
sufficiently large initial segment N..

Let P be the set of all partial injections p : T — T’ such that Ran(p) is well-
orderable in N’, and for every Ao formula ¢, every y € K, and every (transfinite)
sequence x of elements of Dom p, we have p(x) € N’ and

NEopxpy, f) < NEpx,pY, ). (%)

The domain of each p € P is well-orderable (since Ran(p) C T’ is always a pure
set). Conversely, if X C T is well-orderable, then X is the domain of the function
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p=j ] X eP. Toseethat p € N, let k| : X — k be a bijection in N from
X to some ordinal x. Since j € M, there is clearly a k» : ¥ — Ran(p) such that
p = ko o k1. But this k> would be a pure set, so k; and hence p are in N.

Now, back out in M, define G = {p € P | p C j}. Itis not hard to see that
G is a filter in . It remains to show that G is generic over N. This will suffice
because M C N[G] by Lemma 3.1, and since N C M and G € M it must be that
M = N[G].

Toward showing that G is [P-generic over N, let D € N be a dense subset of P.
Applying Lemma 3.2, we get a parameter y € K, a parameter X which we can think
of as a sequence of elements in 7', and a A formula ¢ such that for all 7,

reD < oy, f,0).

Let p € G such that Dom p contains all elements of x. Since D is dense, letd < p
withd € D. Next, we’ll need ac € G which has the same range asd. Takec = j | z,
where z = j~'[Ran(d)]. By definition of P, Ran(d) is well-orderable in N’. Since
Jj : N — N’ is an isomorphism, z is well-orderable in N. It follows thatc = j [ z
is in P (and hence in G). Observe that Ran(c) = Ran(d), and consequently & = d.
Also, ¢ < p, since both are in G and Ran(c) = Ran(d) 2 Ran(p).

Since d € D, we have N = ¢(x, y, f,d), and hence N’ = ¢(d(x), y', f, d) by
(). Butd = ¢, and d(x) = c¢(x) since both d and c extend p. N’ = ¢(c(x), y', f', )
and N = ¢ (X, y, f, ¢). Therefore, c € DN G, which is what we needed to show that
G is generic. ]

4 Homogeneity

Suppose in Theorem 1.1 that we insist in condition (a) that N be a permutation
submodel of M in the more traditional sense, with G € M. How must (b) and (c)
be restricted to preserve equivalence? The answer for (b) was determined in [3]; the
result is as follows.

Theorem 4.1  Let M be a transitive model of ZFAC, and let N be a transitive
subclass of M which is a model of ZFA such that N and M have the same set of
atoms and the same pure part. The following are equivalent:

(@) N is a permutation submodel of M obtained from a group G € M,
(b") M is a generic extension of N by an almost homogeneous notion of forcing.

We now present a condition (¢’) which is equivalent to (a’) and (b’), analogous to
(c) in Theorem 1.1. This (¢/) will say that N has an SVC witness with a certain
homogeneity property.

Definition 4.2  Working in ZFA, let T be a set, and let X, Xp be (transfinite) se-
quences of elements of 7. We say that x; and x, have the same T-type if they satisfy
the same A formulas using 7" and pure sets as parameters. We say x| and x, are
T -isomorphic if there is an €-automorphism F of T such that F(x;) = x».

Theorem 4.3  Under the hypotheses of Theorem 4.1, conditions (2') and (b') are
equivalent to
(¢') N satisfies SVC with a set S whose power set T = (P(S))N has the following
homogeneity property: Any two sequences in N with the same T -type are T -
isomorphic in M.
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Example 4.4  We consider the basic Fraenkel model and the ordered Mostowski
model; see [5] for precise descriptions. The basic Fraenkel model N is the minimal
model of ZFA for a given pure part and set of atoms. In N the set S of finite sequences
of atoms is an SVC witness. (To see this, check that forcing with S yields a generic
extension satisfying AC, and use Theorem 1.2). Sequences in N of elements of
T = P(S) are finite, and so it is not hard to see that sequences in N with the same
T -type are T -isomorphic, not only in some M where AC holds, but in N.

The above example is not typical. Suppose N is the ordered Mostowski model, a
minimal model of ZFA such that A has a dense linear order <, obtained as a permu-
tation submodel of some M where A is countable. The set S of finite partial order
embeddings A — Q is an SVC witness. In N, there are no nontrivial automorphisms
of (A, <). As a result, although sequences of elements of S with the same S-type
are S-isomorphic in M, they are not usually S-isomorphic in N (and the same is true
with S replaced by T = P(S)).

Proof of Theorem 4.3 Let M and N be as in the hypotheses of Theorem 4.1. First,
assume that (c’) holds: N satisfies SVC with S, and T = (P(S))" satisfies the
given homogeneity condition. We’ll prove (b’). In N, define a notion of forcing Py
consisting of partial embeddings T — T’, just as in the proof of Theorem 1.1, but
replace (x) with

NEoex p,y, ,T) < N Epx,py,f.T),

and further require that the above hold not only for Ay formulas, but rather all A
formulas. The proof that M is a Pq-generic extension of N works as before; it
remains to show that [P; is an almost homogeneous notion of forcing. Observe that
T’ is almost homogeneous in M’, and every g € Aut(T’, €) induces a g € Aut(Py, <)
by (gp)(x) = g(p(x)).

Let p and g be conditions in P, and let d and e be well-orderings of their respec-
tive domains. Following the proof of Theorem 1.1, we have a fixed isomorphism (the
priming function) j : M — M’ in M. Now j(d) and p(d) must have the same type
in T’, so let g be an automorphism of 7’ such that g(p(d)) = j(d). Likewise, find
such that (g (e)) = j(e). Then g(p) maps d to j(d), and fz(q) maps e to j(e). Thus
g(p) and fz(q) are compatible, which shows that P; is almost homogeneous.

Conversely, assume that (a’) holds: N is a permutation submodel of M, by a
group G € M. It is shown in [3] (Lemma 4.8) that M is a generic extension of N by
a notion of forcing called the generator poset, which we’ll denote by P¢. The rest of
the proof will make use of several facts about P proved in [3]; hereafter italicized
lemma and theorem numbers refer to that paper. There is a Pg-name f which is
Ap-definable (from Pg) such that 1p, I * f ‘A — Alisa bijection” (Lemma 4.8),
where A’ is a pure set as in Lemma 3.1; this f can be thought of as a name for an
isomorphism N — N’. SVC holds in N with P (follows easily from Theorem
4.13), and thus SVC holds with § = Pg U {(Pg, <)}. Let T = (®(5))", and let
X1, X2 € N be sequences of elements of T such that x; and x; have the same T-type.
We want to show that x; and x, are T-isomorphic.

Let y be a pure set such that p; IF f(X;) = y for some p; € Pg. By definition of
“same T'-type,” it must also be true that there is a p» € P such that p, |- fx) = .
By Lemma 4.10(c), there are filters I'1 and I'; in Pg, generic over N, such that
pi € I'i e M. Let f; = Valr, (f); then g = f2_1 o f1isin G (by Lemma 4.10(d)).
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Since G is a group of e-automorphisms of N and acts on (Pg, <) (Lemma 4.6), we
have that g is an €-automorphism of 7', and observe that g(x;) = X». O

(1]

(2]

(3]

(4]

(3]
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