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An Old Friend Revisited:
Countable Models of ω-Stable Theories

Michael C. Laskowski

Abstract We work in the context of ω-stable theories. We obtain a natural,
algebraic equivalent of ENI-NDOP and discuss recent joint proofs with Shelah
that if an ω-stable theory has either ENI-DOP or is ENI-NDOP and is ENI-deep,
then the set of models of T with universe ω is Borel complete.

In 1983, Shelah, Harrington, and Makkai [9] proved Vaught’s conjecture for ω-stable
theories. In that paper they determined which ω-stable theories have fewer than
2ℵ0 countable models and proved a strong structure theorem for models of such a
theory. As in most verifications of Vaught’s conjecture for specific classes, little
attention was paid to countable models of ω-stable theories that have “many” models.
It is curious that following the publication of [9] in 1984, the investigation of the
class of countable models of an arbitrary ω-stable theory lay fallow for many years.1

One explanation for this hiatus may have been a lack of test questions. How could
one describe the complexity of a class of countable structures beyond asserting that
there are 2ℵ0 nonisomorphic ones? A remedy was provided by the collective works
of Becker, Kechris, Hjorth, Friedman, Stanley, and others (see, e.g., [1], [3], [5])
who, building on earlier work of Vaught [11], developed the concept of the Borel
complexity of a class of countable structures.

Whereas the full technology is much more general, we focus on a special case.
For a given (countable) vocabulary τ , we concentrate on the Polish space S(τ ) of
τ -structures with universe ω and subspaces thereof.2 Call a subspace K of S(τ )
invariant if K is closed under isomorphism. It is well known that any invariant set
K can be viewed as the set of models with universe ω of some Lω1,ω-sentence ϕ in
the vocabulary τ . If K and K ′ are invariant sets, possibly in different vocabularies,
we say that K is Borel reducible to K ′ if there is a Borel function from K to K ′ such
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that
A ∼= B if and only if f (A) ∼= f (B)

for all A, B ∈ K . An invariant K is Borel complete if every invariant K ′ is Borel
reducible to it. We call a theory T Borel complete if the set of models of T with
universe ω is Borel complete.

It is easily seen that the set of graphs (either symmetric or directed) with universe
ω is Borel complete. Somewhat more surprisingly, Friedman and Stanley [3] proved
that the set of subtrees of <ωω is Borel complete. This paper presents some recent
results of Shelah and the author which identify certain classes of ω-stable theories as
being Borel complete. It should be noted that there are a number of open questions
remaining in this area. While we verify that some classes of ω-stable theories are
Borel complete, we do not have a full characterization. Also, it is easy to see that if
T is Borel complete, then its class of countable models has unbounded Scott heights
in ω1. At present we do not know whether the converse holds for ω-stable theories.

We set the stage by recalling three facts about ω-stable theories.
1. Prime models exist over arbitrary sets A. They are unique up to isomorphism

over A and are atomic over A.
2. Types over models are based and stationary over finite subsets. That is, for

any p ∈ S(M) there is a finite A ⊆ M such that p is the unique nonforking
extension in S(M) of the restriction p|A.

3. Strongly regular types are ubiquitous and are well behaved. In particular, if
M is a model and p 6⊥ M , then p 6⊥ q for some strongly regular q ∈ S(M).
Moreover, if q, r ∈ S(M) are both strongly regular and nonorthogonal, then
dim(q, N ) = dim(r, N ) for any N extending M .

Our approach is to modify definitions occurring in Shelah’s “top down analysis”
of superstable theories to distinguish between classes of countable models. The
main difference is that there is no cardinal gap between ‘infinite’ and ℵ0. Thus, for
example, if a theory is strong enough to require that the dimension of a certain regular
type be infinite in any model of the theory, then it is futile to use its dimension to
distinguish between nonisomorphic countable models of the theory. This can have a
drastic impact on the complexity of the models of a theory. An extreme example is
the “standard checkerboard example” of an ω-stable theory having the dimensional
order property (DOP). It has the maximal number of uncountable models (as does
any stable theory with DOP) but is actually ℵ0-categorical.

The fundamental modifications all appear in [9] but we develop them in the gen-
eral setting of ω-stable theories without restricting to those having few countable
models. In this instance, rather than looking at all strongly regular types over a
model, they suggested identifying those that are “eventually nonisolated.” Such types
can have finite dimension in a countable model, so specifying the dimension of such
a type gives positive information. More precisely, call a complete type p ∈ S(M)
ENI if p is strongly regular and there is a finite A ⊆ M on which p is based, sta-
tionary, and nonisolated. In [9] they suggested a variant of DOP, called ENI-DOP,
which had a technical definition but was just what was needed to translate Shelah’s
original proofs that “DOP implies complexity” to the context of countable models.
We now see that the definition (or more precisely its negation ENI-NDOP) can be
stated much more naturally in an algebraic context. Call three models {M0, M1, M2}

an independent triple of models if M0 = M1 ∩ M2 and M1 ^
M0

M2.
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Definition 1 An ω-stable theory T has ENI-NDOP if the prime model over any
independent triple of ω-saturated models is ω-saturated. We say T has ENI-DOP if
it fails to have ENI-NDOP.

That is, an ω-stable theory T has ENI-NDOP if and only if the a-prime model over
any independent triple of a-models is atomic over the triple.3 Phrased in this way, it
is insightful to compare this property with the status of NOTOP (the negation of the
omitting types order property) in the superstable setting: In [8] Shelah proves that
a superstable theory with NDOP satisfies NOTOP if and only if the a-prime model
over an independent triple of a-models is atomic over the triple. Thus, in the ω-
stable context, this is precisely ENI-NDOP. As well, it is useful to note that a routine
downward Löwenheim-Skolem argument shows that it is equivalent to restrict to
countable models. Thus, an ω-stable theory T has ENI-NDOP if and only if the
prime model over any independent triple of countable, saturated models is saturated.

Before continuing, let us prove that this definition is the equivalent to the more
technical version appearing in [9].

Proposition 2 An ω-stable theory T has ENI-DOP if and only if there is an inde-
pendent triple {M0, M1, M2} of ω-saturated models, a model N prime over M1 M2,
and an ENI type p ∈ S(N ) such that p ⊥ M1 and p ⊥ M2.

Sketch First, assume that {M0, M1, M2} is an independent triple of ω-saturated
models for which the prime model N over M1 M2 is not ω-saturated. Choose
p ∈ S(N ) to be the nonalgebraic type of smallest Morley rank such that there is a
finite A ⊆ N on which p is based and stationary and p|A is omitted in N . That p is
strongly regular follows from the minimality condition. Since p|A is omitted in N
it is surely nonisolated; hence p is ENI. If p 6⊥ Mi for some i ∈ {1, 2}, then choose
a strongly regular q ∈ S(Mi ) such that p 6⊥ q . Choose a finite B ⊆ Mi on which q
is based and stationary, and let N0 � N be prime over AB. Let p′, q ′

∈ S(N0) be
types parallel to p and q, respectively. Now dim(p′, N ) = dim(q ′, N ) = ω, where
the first equality follows from p 6⊥ q (see, e.g., [2]) and the second equality follows
from the ω-saturation of Mi . But this contradicts p|A being omitted in N .

Conversely, suppose that {M0, M1, M2} is any independent triple of models, N
is any prime model over M1 M2, and p ∈ S(N ) is an ENI type orthogonal to both
M1 and M2. We find a finite subset B∗

⊆ N for which p|B∗ is omitted in N . First,
choose a finite B ⊆ N on which p is based and stationary and p|B is not isolated.
Choose finite sets A1 ⊆ M1 and A2 ⊆ M2 such that taking B∗

= B A1 A2, we have

B∗
^

A1 A2

M1 M2 and B∗
^

B∗
∩ M0

M0.

A computation similar to the proof of (c) ⇒ (d) in Lemma X, 2.2 of [8] shows that
p|B∗

` p|B∗M1 M2. Since p|B∗ is not isolated, cB∗ is not atomic over M1 M2 for
any c realizing p|B∗ (hence p|B∗M1 M2). Thus p|B∗ is omitted in N . �

Examples of ω-stable theories with ENI-DOP include differentially closed fields
(see, e.g., Marker [7] in this volume) and a variant of the standard checkerboard
example: Let L = {U, R, fn}n∈ω and let T guarantee that any M |H T satisfies

1. R(a, b, c) → (U (a) ∧ U (b) ∧ ¬U (c));
2. each fn : U (M)2

→ ¬U (M);
3. {R(a, b, z) : (a, b) ∈ U (M)2

} forms a partition of ¬U (M); and
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4. if n 6= m and (a, b) ∈ U (M)2, R(a, b, fn(a, b)) and fn(a, b) 6= fm(a, b).
If {M0, M1, M2} is an independent triple of saturated models, a ∈ U (M1) \ M0, and
b ∈ U (M2) \ M0, then the type p(a, b, z) = {R(a, b, z)} ∪ {z 6= fn(a, b) : n ∈ ω}

is omitted in any atomic model over M1 ∪ M2, so T has ENI-DOP.
Our definition of ENI-DOP makes the following theorem conceptually easy.

Theorem 3 If T is ω-stable with ENI-DOP, then T is Borel complete.

Sketch Suppose T is ω-stable with ENI-DOP. It is an easy exercise in coding to
show that the class of countable bipartite graphs is Borel complete, so it suffices
to find a Borel reduction from this class into the class of countable models of T .
By the comment following Definition 1, choose an independent triple {M, N , Q}

of countable saturated models of T such that the prime model M∗ over N ∪ Q
is not saturated. Choose a type p ∈ S(M∗) of minimal Morley rank that has
a finite subset A ⊆ M∗ on which p is based and stationary, yet p|A is omit-
ted in M∗. The minimality of rank ensures that p is strongly regular, hence
ENI. Choose an independent set {Ni : i ∈ ω} ∪ {Q j : j ∈ ω} over M where
tp(Ni/M) = tp(N/M) and tp(Qj/M) = tp(Q/M) for all i, j ∈ ω. For each
pair (i, j) ∈ ω2 tp(NiQj/M) = tp(NQ/M) so there is an automorphism σi, j of
the monster satisfying σi, j (N ) = Ni , σi, j (Q) = Q j , and σi, j = id on M . Let
M∗

i, j = σi, j (M
∗), let pi, j be the corresponding conjugate of p, and let N0 be prime

over
⋃

i, j M∗

i, j .
Now suppose that we are given a bipartite graph G = (ω2, EG). Define a model

NG =
⋃

n Nn of T , where N0 is as above and, given Nn , let In = {ai, j : (i, j) ∈ EG}

be an independent set over Nn , where each ai, j is a realization of pi, j |Nn and choose
Nn+1 to be prime over Nn ∪ In . The model N0 does not depend on the graph G, but
every Nn for n ≥ 1 does. Since T is ω-stable the isolated types over any set are
dense and the prime model over any set is constructible. Thus, for each n, given an
enumeration of Nn ∪ In and an enumeration of the L(Nn In)-formulas, the atomic
diagram of Nn+1 is determined. It follows via coding that the mapping G 7→ NG can
be made to be Borel. For any pair (i, j), our construction yields that

dim(pi, j , NG) =

{
ω if (i, j) ∈ EG

0 if (i, j) 6∈ EG
.

Furthermore, it is easily checked that if G ∼= H , then NG ∼= NH . Determining when
nonisomorphism is preserved is more challenging. If pi, j is based and stationary on
(Ni ∪ Q j ) \ M , then nonisomorphism will indeed be preserved. However, in the
general case, pi, j might depend on parameters from M as well. The “patch” is to
define a coarser relation on the space of bipartite graphs. Namely, we say G ∼ H
if and only if G \ FG ∼= H \ FH for some finite subsets FG ⊆ G and FH ⊆ H .
We prove that the space of bipartite graphs remains Borel complete with respect to
the relation ∼ and that the mapping above satisfies NG

∼= NH implies G ∼ H . It
follows that T is Borel complete. �

Thus, we may restrict our attention to ω-stable theories with ENI-NDOP. Although
[9] concentrates on theories with few countable models, it is already implicit in [9]
that any countable model of such a theory admits a tree decomposition. We pause
to make these notions precise. Throughout, a tree is a nonempty, downward-closed
subset of <ωω. For η 6= 〈〉, η− denotes the immediate predecessor of η.
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Definition 4 Fix M any model. A partial decomposition D of M is a set of pairs
D = {(Mη, aη) : η ∈ T D

} indexed by a tree T D satisfying the following:

1. M〈〉 is an atomic substructure of M and {aν : lg(ν) = 1} is a maximal inde-
pendent over M〈〉 set of realizations of strongly regular types qν ∈ S(M〈〉);

2. for each nonempty η ∈ T , Mη is atomic over Mη− ∪ {aη} and {aν : ν an im-
mediate successor of η} is a maximal independent over Mη set of realizations
of strongly regular types qν ∈ S(Mη) satisfying qν ⊥ Mη− .

A decomposition of M is a partial decomposition such that M is prime over⋃
{Mη : η ∈ T }.

Note that there is no restriction placed on a〈〉. It is included to minimize the
complexity of the definition. There is a natural partial order on partial decom-
positions of M ; namely, D1 ≤ D2 if and only if T D1 is a subtree of T D2 and
(MD1

η , aD1
η ) = (MD2

η , aD2
η ) for each η ∈ T D1 , which gives rise to the notion of a

“maximal” partial decomposition.
As noted above the following theorem really only uses ideas present in [9], which

in turn follow from ideas in Chapter XI of [8].

Theorem 5 Suppose T is ω-stable with ENI-NDOP. Then every countable model
M |H T has a decomposition. Moreover, every maximal partial decomposition of M
is a decomposition of M.

One has tremendous flexibility in choosing a decomposition of a given model M of
such a theory. One can freely choose any atomic submodel for M〈〉. Next, there are
several choices of maximal independent sequences of realizations of strongly regular
types over M〈〉. Then, for each aν with lg(ν) = 1 one can freely choose an atomic
model over M〈〉 ∪{aν}, and so on. While it is true that atomic submodels of M over a
given set are isomorphic over the set, this does not make them unique. It is an excel-
lent exercise for the reader to see the vast freedom one has in constructing maximal
decompositions of the countable saturated model of the theory in Example 11.

This example suggests that if we want the complexity of the decomposition of a
model M to reflect the complexity of the isomorphism type of M , we should restrict
our freedom in choosing a decomposition. One natural way to do this is to insist that
at each “choice” we take a maximal atomic submodel over the requisite set. This
leads to a better decomposition result.

Definition 6 Fix a model M . A partial ENI decomposition of M is a partial de-
composition of M in which tp(aη/Mη−) is ENI for every nonempty η ∈ T . An ENI
decomposition of M is a partial ENI decomposition of M where M is prime over⋃

{Mη : η ∈ T }.

The following theorem is proved in [6], but is likely known to others.

Theorem 7 Suppose M is a countable model of an ω-stable theory with ENI-
NDOP. Then,

1. any partial decomposition of M in which every Mη is chosen to be maximal
atomic over the requisite set is a partial ENI decomposition (hence maximal
partial ENI decompositions of M exist), and

2. any maximal partial ENI decomposition of M is an ENI decomposition of M.
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The reader is cautioned that even ENI decompositions of a model need not be unique.
In fact, even if the ENI depth is finite, countable models of T can have ENI decom-
positions of differing ENI depths. Despite this, Theorem 10 below demonstrates that
if the theory T admits a countable model with an ENI-decomposition indexed by a
non-well-founded tree, then the class of countable models of T is Borel complete.

It turns out, however, that if one is seeking a dividing line, having non-well-
founded ENI-decompositions is too restrictive. Example 13, which is a kind of hy-
brid of Examples 11 and 12, has a bound on the complexity of ENI-decompositions,
yet the class of countable models allows for coding of arbitrary trees.

Definition 8 A chain is a finite sequence 〈(Mi , pi ) : i ≤ k〉 such that M0 � M1
� · · · Mk and for every i < k, Mi is countable, pi ∈ S(Mi ) is regular, Mi+1 is prime
over Mi and a realization of pi , and (when i > 0) pi ⊥ Mi−1. An ENI-chain is a
chain where in addition each pi is an ENI type.

That is, a chain is a potential “branch” of a decomposition tree of a model and an
ENI-chain is a branch of an ENI-decomposition tree. In terms of Borel complexity,
sharper results are obtained via the following hybrid notion that encapsulates the
essence of Example 13.

A type p ∈ S(M) is supportive (of an ENI-type) if there is a chain 〈(Mi , pi ) :

i ≤ k〉 with M0 = M , p0 = p, and some pi is ENI. As well, a supportive chain
is a chain in which every pi is supportive. Thus, ENI-chains are supportive, but not
conversely. In Example 13 every ENI-chain occurring in a decomposition is short,
while there are arbitrarily long supportive chains in the decompositions of certain
models.

Definition 9 Fix an ω-stable theory T with ENI-NDOP. T is deep if there is an
ω-sequence in which every proper initial segment is a chain. (This is consistent with
Shelah’s notion of a deep theory in [8].) T is ENI-deep if there is an ω-sequence in
which every proper initial segment is an ENI-chain and T is e-deep if there is such
an ω-sequence with each proper initial segment a supportive chain.

As every ENI-chain is supportive, an ENI-deep theory is necessarily e-deep. But the
theory in Example 13 is e-deep but not ENI-deep. In [6] we succeed in proving the
following theorem.

Theorem 10 If T is ω-stable, has ENI-NDOP, and is e-deep, then T is Borel
complete.

The proof of Theorem 10 is rather involved. At first blush, once one knows Fried-
man and Stanley’s theorem that countable trees are Borel complete, it seems like the
proof should be easy. One can fix a sequence S = 〈(Mi , pi ) : i < ω〉 such that
every proper initial segment is a supportive chain. It is easy to get a Borel map-
ping T 7→ MT from the set of subtrees of <ωω to the class of countable models
of T having a decomposition tree indexed by T in which every branch is isomor-
phic to an initial segment of S. Moreover, almost any reasonable way of doing
this will preserve isomorphism; that is, if T ∼= T ′ then MT

∼= MT ′ . However, the
nonuniqueness of decompositions prevents one from immediately asserting that non-
isomorphism is preserved. The solution is twofold. First, given a tree T , one “pads”
T , that is, exhibits a Borel mapping T 7→ T , where T consists of “many copies”
of T . Then, by adapting many of the arguments of [10] and the method of quasi
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isomorphisms described in [4] (but allowing only finitely many exceptions instead
of countably many) we show that the composition map T 7→ T 7→ MT preserves
nonisomorphism.

One other point is worth making. Whereas we are able to prove Theorem 10, our
arguments are rather crude. The “real” question of determining whether two decom-
positions are sufficiently different as to imply nonisomorphism of the models they
generate remains open. This issue would need to be addressed by someone looking
at e-shallow theories (i.e., not e-deep) and attempting to determine the precise Borel
complexity of the class.

We close by giving the three examples alluded to above.

Example 11 The theory of a unary function without loops.

Proof Let L = { f }, where f is a unary function symbol, and the theory T assert
that every element has infinitely many pre-images and that there are “no loops,” that
is, ∀x( f (n)(x) 6= x) for all n ≥ 1. It is easily checked that T is ω-stable with
ENI-NDOP.

If M is any model of T and a ∈ M , define the component of a in M to be

C(a) = {b ∈ M : f (n)(b) = f (m)(a) for some n, m ∈ ω}.

It is easily checked that any two components of a model M are disjoint or equal, and
if M is countable then any two components are isomorphic. Thus, the isomorphism
type of a countable model is determined by the number of components. In particular,
T has only countably many nonisomorphic countable models.

However, T is deep. To see this, note that if N � M , then a nonalgebraic type
p ∈ S(M) is orthogonal to N if and only if p ` f (n)(x) = a for some a ∈ M
and n ≥ 1, but p ` f (m)(x) 6∈ N for every m ∈ ω. Using this characterization
it is easy to construct an ω-chain M0 � M1 � · · · where tp(Mn+1/Mn) ⊥ Mn−1
for all n ≥ 1 witnessing that T is deep. The reason why deepness does not imply
many models is that none of the relevant types in such a witness are ENI; hence all
relevant dimensions (other than the number of components) are necessarily ℵ0 in
any countable model of T . More precisely, for a given model M there is a unique
nonisolated complete 1-type, namely, the type specifying that x is in a component
disjoint from M . �

In the next example we add additional structure to make the requisite types ENI.

Example 12 A unary function with no loops having ENI pre-images.

Proof Let L = { f, S}, where f and S are both unary function symbols. The theory
T asserts that f is as in Example 11; S is a “Z-like successor function,” that is,
every element has an immediate S-successor and an immediate S-predecessor; and
S(n)(x) 6= x for all n ≥ 1. Furthermore, for any element a of any model, f −1(a) is
closed under S; that is, ∀x f (S(x)) = f (x).

This theory is again ω-stable with ENI-NDOP, but it is also ENI-deep. Indeed,
the characterization of which types over M are orthogonal to N when N � M is
identical to the one given in Example 11. However, in this case any chain of models
witnessing that T is deep simultaneously witnesses that T is ENI-deep. Thus, T is
Borel complete by Theorem 10. �
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Our final example illustrates the distinction between ENI-chains and supportive
chains.

Example 13 An ω-stable theory T with ENI-NDOP that is e-deep but not ENI-
deep.

Proof Let L = {P, Q, f, S}, where P and Q are unary relations dividing the uni-
verse into two sorts. f is a unary function symbol acting on the P-part as a unary
function with no loops as in Examples 11 and 12. Additionally, f describes an
infinite-to-one surjection of Q onto P . So for each element x in the P-sort, f −1(x)
has infinite intersection with both P and Q. By contrast f −1(y) = ∅ for any element
y of the Q-sort. Finally, S is a Z-like successor function on the Q-part satisfying

∀y[Q(y) → f (S(y)) = f (y)].

The theory T is ω-stable, ENI-NDOP, e-deep, but not ENI-deep. It is illustrative to
see how arbitrary subtrees of <ωω can be coded into countable models of T . Let M0
denote the prime model of T . The isomorphism type of M0 can be described by spec-
ifying that P(M0) consists of a single component (hence is isomorphic to the prime
model of the theory in Example 11) such that, in addition, for every a ∈ P(M0),
f −1(a) ∩ Q(M0) consists of a single Z-chain. Let a∗ denote an arbitrary element of
P(M0). Recursively, define a (Borel) injection

h :
<ωω → P(M0)

to guarantee that h(〈〉) = a∗ and that h induces a bijection between {ηˆ〈n〉 : n ∈ ω}

and f −1(h(η)) ∩ P(M0) for every η ∈
<ωω.

Now, given an arbitrary tree T ⊆
<ωω, we form a countable model MT using the

function h and Z-chains in the Q-sort as “markers.” Specifically, given such a T let
MT be the (elementary) extension of M0 formed by adding exactly one extra Z-copy
to f −1(h(η)) ∩ Q for each η ∈ T . A moment’s thought shows that the mapping
T 7→ MT is Borel and preserves both isomorphism and nonisomorphism; hence T
is Borel complete. �

Notes

1. We understand that Martin Koerwien recently has been working independently on simi-
lar problems.

2. To aid clarity, in certain places we shall freely replace ω by another fixed countable
universe, for example, ω2 or <ωω.

3. In an ω-stable theory the a-models are precisely the ω-saturated models.
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