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The Vaught Conjecture:
Do Uncountable Models Count?

John T. Baldwin

Abstract We give a model theoretic proof, replacing admissible set theory by
the Lopez-Escobar theorem, of Makkai’s theorem: Every counterexample to
Vaught’s Conjecture has an uncountable model which realizes only countably
many Lω1,ω-types. The following result is new. Theorem: If a first-order the-
ory is a counterexample to the Vaught Conjecture then it has 2ℵ1 models of
cardinality ℵ1.

1 Introduction

In this paper we prove several properties of putative counterexamples to the Vaught
Conjecture. Specifically, these results concern the number of models the counterex-
ample has in power ℵ1. One of these results was proved thirty years ago using
admissible model theory; we give a more straightforward argument. The following
question guides our discussion: Is the Vaught Conjecture model theory?

Here are some possible ways in which this question would have a clear answer.
Shelah, Buechler, and Newelski have shown, using rather difficult techniques from
stability theory, that the conjecture holds for first-order theories that are “simple”
from the stability theoretic standpoint: ω-stable or superstable with finite U -rank. If
a counterexample were found for a first-order theory of slightly greater complexity
(e.g., a stable but not superstable first-order theory), this would indicate the issue
was a model theoretic one. If, on the other hand, a uniform proof for sentences of
Lω1,ω were given using methods of descriptive set theory, then it would not be a
model theoretic problem. The results below give partial answers to the following
methodological questions.

What specific model theoretic, as opposed to descriptive set theoretic, techniques
can attack the problem? Can one use more direct model theoretic arguments to obtain
some result of admissible model theory?
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I would argue the problem is model theoretic if its solution is different for Lω,ω

and Lω1,ω. So we will investigate the differences between properties known about
counterexamples to the Vaught Conjecture formulated in Lω,ω and Lω1,ω. Note that
the theorem of the abstract (for first-order logic) is proved in ZFC; we ask whether it
can be extended to Lω1,ω, perhaps with additional set theoretic hypotheses.

Much of model theory is concerned with models of arbitrary cardinality and with
properties that in some way depend explicitly on cardinality. We pursue the theme
“Do uncountable models count?” by noticing several results about the Vaught Con-
jecture which revolve around the properties of uncountable models (and even the role
of arbitrarily large models). Must a counterexample to VC in Lω1,ω have a model
of power ℵ2 or even ℵ1? Hjorth’s contribution to this volume provides an answer to
the last question—showing that if there is a counterexample to Vaught’s Conjecture
then there is one with no model of cardinality ℵ2.

In an attempt to clarify some techniques that are not widely known, we give more
detail than is necessary in many cases. In Section 2, we provide some background on
the nature of “complete” sentences in Lω1,ω and note that issues arise with both the
upward and downward Löwenheim-Skolem theorem when generalizing to infinitary
logic. We introduce the notion of a small uncountable model and note that stability
theory for Lω1,ω has been developed only for small models. And we relate Shelah’s
proof that this suffices for the study of categoricity; any sentence with few models
in ℵ1 has a small model. In Section 3, we make a brief excursion into Abstract
Elementary Classes to illustrate quintessentially model theoretic techniques. We use
the results of Section 2 to provide a model theoretic proof of Makkai’s theorem that
any counterexample to Vaught’s Conjecture has an uncountable small model and
in fact at least two models in power ℵ1. In Section 4, we prove the (first-order)
theorem from the abstract and expound some old but not widely known results of
Shelah about models of sentences of Lω1,ω with cardinality at most ℵ2; these results
concern the ability to extend the result to Lω1,ω. We say a set I is fully indiscernible
in a model M if every permutation of I extends to an automorphism of M . Finally
we use results of Gao to show that if a countable model M admits an infinite fully
indiscernible subset, then its Scott sentence has an uncountable model. This blocks
some approaches to settling Vaught’s Conjecture.

2 Complete Sentences and Small Uncountable Models

Using both the upward and downward Löwenheim-Skolem theorem, it is easy to see
that a first-order theory that is categorical in some infinite cardinality is complete.
The analogue in the Lω1,ω-case requires some analysis. To begin with there are sev-
eral possible meanings of complete depending on how much of Lω1,ω is considered.
In this first section, we stress this distinction and focus on the strongest such notion.
We provide some nontrivial arguments for when models satisfy complete sentences
and sketch some of the important consequences from a sentence being complete.

Let us formalize what constitutes a useful piece of Lω1,ω.

Definition 2.1 A fragment 1 of Lω1,ω is a subset of Lω1,ω closed under taking of
subformulas, substitutions of terms, finitary logical operations and such that when-
ever2 ⊂ 1 is countable and ϕ,

∨
2 ∈ 1 then

∨
{∃xθ : θ ∈ 2},

∨
{ϕ ∧ θ : θ ∈ 2},

and
∨
({ϕ} ∪2) are all in 1.
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Standard arguments show, for every countable fragment1 and every model M , there
is a countable model M ′ that is a 1-elementary submodel of M . Thus every satisfi-
able Lω1,ω-sentence has a countable model.

Definition 2.2 Let ϕ ∈ 1 ⊂ Lω1,ω have a model.
1. ϕ is complete for Lω1,ω (or just complete) if for every sentence ψ of Lω1,ω,

either ϕ → ψ or ϕ → ¬ψ .
2. For any countable fragment 1, ϕ is complete for 1 if for every sentence
ψ ∈ 1, either ϕ → ψ or ϕ → ¬ψ .

This is an important distinction, because in contrast to countable fragments the down-
ward Löwenheim-Skolem theorem is not true for arbitrary theories in Lω1,ω. In par-
ticular, it is easy to find examples of uncountable structures which have no countable
Lω1,ω-elementary submodel and so satisfy no complete sentence. Note that a sen-
tence is complete if and only if it is a Scott sentence (a sentence of Lω1,ω which
completely describes a (countable) model).

A complete sentence of Lω1,ω is ℵ0-categorical, trivializing Vaught’s Conjecture.
In Section 3 we will use 1-complete counterexamples to show that any counterex-
ample to VC has both a model in ℵ1 that satisfies a complete sentence and one that
does not. In Section 4 we will make crucial use of sentences that are complete to
analyze the number of models in ℵ1.

Definition 2.3 Let 1 be a fragment of Lω1,ω.
1. A model is1-small if it realizes only countably many1-types over the empty

set.
2. A model is small if it realizes only countably many Lω1,ω-types over the

empty set; that is, it is 1-small for 1 = Lω1,ω.

Note that M is small if and only if M is Karp-equivalent (i.e., Lω1,ω-equivalent) to a
countable model. Thus any small model satisfies a complete sentence of Lω1,ω. The
word small was suggested by the first-order notion of a small theory: A first-order
theory is small if, for every n, it has only countably many n-types over the empty set.

We first show that an ℵ1-categorical sentence is implied by a complete sentence
with a model of cardinality ℵ1. We rely on the following result which combines
results of Lopez-Escobar, Morley, and Keisler. The ingredients are in [8].

Theorem 2.4 Let τ be a similarity type which includes a binary relation symbol<.
Suppose ψ is a sentence of Lω1,ω, M |H ψ , and the order type of (M, <) imbeds
ω1. There is a model N of ψ with cardinality ℵ1 such that the order type of (N , <)
imbeds Q.

Now we can prove the following theorem.

Theorem 2.5 If the Lω1,ω-sentence ψ has a model of cardinality ℵ1 which is 1-
small for every countable fragment 1 of Lω1,ω, then ψ has a small model of cardi-
nality ℵ1.

Proof If the Lω1,ω(τ )-sentence ψ has a model of cardinality ℵ1 which is 1-small
for every countable τ -fragment1 of Lω1,ω, then ψ has a τ -small model of cardinal-
ity ℵ1.

Add to τ a binary relation <, interpreted as a linear order of M with order type
ω1. Using that M realizes only countably many types in any τ -fragment, define a
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continuous increasing chain of countable fragments Lα for α < ℵ1 such that each
type in Lα that is realized in M is a formula in Lα+1.

Extend the similarity type to τ ′ by adding new 2n + 1-ary predicates En(x, y, z)
and n + 1-ary functions fn . Let M satisfy En(α, a,b) if and only if a and b realize
the same Lα-type. Let fn map Mn+1 into the initial ω elements of the order so that
En(α, a,b) implies fn(α, a) = fn(α,b).

Notice the following facts.
1. En(β, y, z) refines En(α, y, z) if β > α;
2. En(0, a,b) implies a and b satisfy the same quantifier-free τ -formulas;
3. if β > α and En(β, a,b), then for every c1 there exists c2 such that

En+1(α, c1a, c2b); and
4. fn witnesses that for any a ∈ M each equivalence relation En(a, y, z) has

only countably many classes.
All these assertions can be expressed by an Lω1,ω(τ

′)-sentence ϕ. Let 1∗ be the
smallest τ ′-fragment containing ϕ ∧ψ . Now by Lopez-Escobar (Theorem 2.4) there
is a structure N of cardinality ℵ1 satisfying ϕ∧ψ∧χ such that< is not well-founded
on N . Fix an infinite decreasing sequence d0 > d1 > . . . in N . For each n, define
E+

n (x, y) if for some i , En(di , x, y). Now using (1), (2), and (3) prove by induction
on the quantifier rank of ϕ for every Lω1,ω(τ )-formula ϕ that N |H E+

n (a,b) implies
N |H ϕ(a) if and only if N |H ϕ(b).

For each n, En(d0, x, y) refines E+
n (x, y) and by (4) En(d0, x, y) has only count-

ably many classes; so N is small. �

Shelah “reduces” Morley’s categoricity theorem for Lω1,ω to complete sentences.
This reduction involves a crucial model theoretic technique: Prove a theorem for
arbitrary vocabularies τ . In fact, as exemplified in the next theorem, this reduction
applies to more general questions concerning the number of models in ℵ1 if the
sentence has few models in ℵ1.

Theorem 2.6 Let ψ be a complete sentence in Lω1,ω in a countable vocabulary
τ . Then there is a countable vocabulary τ ′ extending τ and a first-order τ ′-theory T
such that reduct is a 1-1 map from the atomic models of T onto the models of ψ .

If ψ is not complete, the reduction is only to “finite diagrams” [17]. This is a very
important distinction, as the arguments given in Section 4 depend heavily on working
in an atomic class. This “reduction” is not direct. In order to deduce categoricity for
an arbitrary Lω1,ω-sentence, stronger results than transfer of categoricity must be
proved for complete Lω1,ω sentences ([19] expounded in [3], [1]).

There are two different arguments to obtain this reduction. If the sentence ψ
has arbitrarily large models, the result is a fairly straightforward argument with
Ehrenfeucht-Mostowski models.

Theorem 2.7 Let ψ be an Lω1,ω(τ )-sentence which has arbitrarily large models.
Ifψ is categorical in some cardinal κ , ψ is implied by a consistent complete sentence
ψ ′, which has a model of cardinality κ .

Without the arbitrarily large models assumption, the argument is considerably more
difficult; it relies on both Theorem 2.5 and the following theorem of Keisler [8].
Model theoretically, these versions are somewhat stronger; they need only few rather
than one model in cardinality ℵ1.
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Theorem 2.8 For any Lω1,ω-sentence ψ and any fragment 1 containing ψ , if ψ
has fewer than 2ℵ1 models of cardinality ℵ1 then for any M |H ψ of cardinality ℵ1,
M realizes only countably many 1-types over the empty set.

Theorem 2.9 Let ψ be an Lω1,ω(τ )-sentence. If ψ has fewer than 2ℵ1 models of
cardinality ℵ1, ψ is implied by a consistent complete sentence ψ ′, which has a model
of cardinality ℵ1.

Proof By Theorem 2.8, there is a model of power ℵ1 which is 1-small for every
countable fragment 1. But then by Theorem 2.5, there is an uncountable small
model N of ψ and the Scott sentence of N is as required. �

3 Two Models in ℵ1

In this section we re-prove (in one case much more simply) old theorems showing
that a counterexample to Vaught’s Conjecture must have two models in power ℵ1.
But we first take a brief excursion through Abstract Elementary Classes to see what
I take as the essence of “model theoretic” methods—arguments involving the direct
constructions of models—apply in this context.

Vaught’s Conjecture concerns the set of countable models of a ‘theory’. An Ab-
stract Elementary Class (AEC) is one of the most abstract formulations of ‘theory’
([21], [22], [5], [1]). A class of L-structures and a notion of strong submodel ≺,
(K ,≺), is said to be an abstract elementary class if both K and the binary relation
≺ are closed under isomorphism and satisfy a collection of conditions generalizing
those of Jónnson for constructing homogeneous universal models. In particular, the
class must be closed under ≺-increasing chains. The class is presented as a collection
of models and a further crucial requirement is the existence of a Löwenheim number
for the class.

So an extreme form of “Vaught’s Conjecture is model theory” would be to prove
it for any AEC. But this fails. The set K = {α : α ≤ ℵ1} with ≺ as initial segment
is an AEC with ℵ1 countable models. But the counterexample has no large models.
(The Löwenheim number requirement forbids using all ordinals as the example.)
The upward Lowenheim-Skolem theorem is true for Lω,ω but not Lω1,ω. So this
excursion into the abstract leads us to some more precise questions.

In the absence of the upward Löwenheim-Skolem theorem, how can one construct
models of larger cardinality? For the moment we continue in the context of AEC.

Definition 3.1 A model M is ≺-extendible if there exists an N 6= M with M ≺ N .

We begin by mentioning some fairly easy principles. Much more technical argu-
ments are needed to obtain the hypotheses of these lemmas. An extendible model is
more often referred to as one which is nonmaximal. The following is obvious.

Lemma 3.2 In any AEC, if every model of size λ is ≺-extendible, there is a model
of size λ+.

Since AECs are closed under unions of chains, in any AEC, if there is a strictly
increasing ≺-sequence Mα , α < λ+ of models of size λ, there is a model of size λ+.

Lemma 3.3 If the AEC K is λ-categorical and the model of size λ is ≺-extendible,
then there is a model of cardinality λ+.
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Now we specialize to studying Lω1,ω-counterexamples to Vaught’s Conjecture. The
existence of Scott sentences guarantees that if there is a countable ≺-extendible
model it has an uncountable Lω1,ω-elementary extension. We sketch the analysis
of Harnik and Makkai [6] to show every counterexample to VC has an uncountable
“large” (not small) model. For this they introduce another technical meaning for
large, now describing a sentence rather than a model.

Definition 3.4 A sentence σ of Lω1,ω is large if it has uncountably many countable
models. A large sentence σ is minimal if, for every sentence ϕ, either σ∧ϕ or σ∧¬ϕ
is not large.

By a tree argument [6] show the following.

Lemma 3.5 (Harnik-Makkai) For every counterexample σ to Vaught’s Conjecture,
there is a minimal counterexample ϕ such that ϕ |H σ .

Our first goal is to show any counterexample to Vaught’s Conjecture has an un-
countable model which is not small. Fix a minimal counterexample σ to Vaught’s
Conjecture. For any countable fragment 1 containing σ , define

T1 = {σ ∧ ϕ : ϕ ∈ 1 and σ ∧ ϕ is large }.

Note that T1 is consistent and complete for1. Keisler [8] shows that the “prime” part
of Vaught’s fundamental paper on countable models of complete first-order theories
[23] goes through for scattered σ . This translation is fairly straightforward without
any appeal to admissible model theory.

Fact 3.6 A theory T that is complete for a countable fragment of Lω1,ω and has
only countably many types over the empty set has a prime model.

Since σ is scattered, each T1 has a prime model (for 1).

Lemma 3.7 If σ is a counterexample to the Vaught Conjecture and1 is the smallest
fragment containing σ , there is a strictly increasing ≺1-sequence Mα , α < ℵ1 of
countable models.

Proof Fix a minimal counterexample σ to Vaught’s Conjecture and let 10 be a
countable fragment containing σ ({σ } = T0). Define by induction 〈1α, Tα,Mα〉

such that
1. if β < α, the Scott sentence ψβ of Mβ is in 1α ,
2. Tα = T1α ,
3. Mα is the 1α prime model of Tα .

For this, let1α be the minimal fragment containing
⋃
β<α 1β and the Scott sentence

of each Mβ for β < α. The Mα are as required. The chain is strictly increasing since
Mα |H ¬ψβ if β < α. And each Mα ≺10 Mβ for α < β since the 1i and Ti are
increasing; that is, Mα is the prime model of Tα and Mβ |H Tα . �

Theorem 3.8 (Harnik-Makkai) If σ ∈ Lω1,ω is a counterexample to VC then it has
a model N of cardinality ℵ1 which is not small.1

Proof We continue the argument from Lemma 3.7. Now if M =
⋃
α Mα , M does

not satisfy any complete sentence of Lω1,ω, as any sentence θ true on M is true on
a cub of Mα; so it has more than one countable model and cannot be complete. But
since every small model is satisfied by a complete sentence, M is not small. �
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Our goal now is to show that any counterexample to Vaught’s Conjecture has
small uncountable models. This was first obtained by Makkai, using (in contrast
to Keisler’s study of prime models) notions of saturated models in admissible set
theory and some reasonably elaborate machinery devised by Ressayre [14] (basic
to admissible model theory but much more than we will use here). Now we apply
Theorem 2.5 to provide a proof which trades the mechanism of admissible sets for a
model theoretic coding to analyze models of cardinality ℵ1.

Note that by the downward Löwenheim-Skolem theorem every model of a com-
plete sentence of Lω1,ω is small. So every Lω1,ω-complete sentence is scattered in
the following sense.

Definition 3.9

1. Sn(σ,1) denotes the collection of n-types in1 that are realized in models of
σ .

2. A sentence σ of Lω1,ω is scattered if for every countable fragment 1 of
Lω1,ω, Sn(σ,1) is countable for each n.

If σ is scattered and σ ′
→ σ , then σ ′ is scattered. In his landmark proof that a coun-

terexample to Vaught’s Conjecture has at most ℵ1 models of cardinality ℵ0, Morley
[13] established, by essentially descriptive set theoretic arguments, the following
theorem.

Theorem 3.10 (Morley) If σ is a counterexample to VC, σ is scattered.

Note that the hypothesis of Theorem 2.5 is satisfied by any scattered Lω1,ω-sentence
that has an uncountable model.

We conclude the result proved by Makkai [11] using admissible model theory.

Theorem 3.11 (Makkai) If σ ∈ Lω1,ω is a counterexample to VC then it has an
uncountable model N which is small.

Proof By Lemma 3.10, ψ is scattered. By Theorem 3.8, it has a model of power
ℵ1 and then, by Lemma 2.5, it has a small uncountable model. �

We have shown the following.

Corollary 3.12 There is no ℵ1-categorical counterexample to Vaught’s Conjecture.

We detour briefly to discuss an alternative very natural approach to constructing
small models of cardinality ℵ1. The next lemma also emphasizes why we spoke
of ≺-extendible rather than just extendible models; the precise notion of “elemen-
tary equivalence” is very important. Note that with the choice of 1 below, ≺1 is the
same as saying L∞,ω-elementary.

Lemma 3.13 A sentence σ of Lω1,ω has an uncountable small model if and only
if it has a pair of countable models such that M0 is a proper substructure of M1,
M0 and M1 are isomorphic, and M0 ≺1 M1, where 1 is the smallest fragment
containing the Scott sentence of M0.

Proof If N is an uncountable small model of σ , let ψ be the Scott sentence of N
and L the fragment generated by ψ . Then take M0 an L-elementary submodel of N
and M1 an L-elementary submodel of N which properly extends M0. Conversely,
construct a chain 〈Mi : i < ℵ1〉 where (Mi ,Mi+1) is isomorphic to (M0,M1).
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This construction goes through limits by taking unions since for countable δ, all Mδ

are isomorphic. Then every type realized in Mω1 is realized in M0 so it is a small
uncountable model of ψ . �

Continuing our methodological queries, is there any direct way (using only countable
models) to deduce the existence of such a pair of countable models directly from the
failure of Vaught’s Conjecture?

During the conference Sacks sketched a positive reply to this question by a nice
argument using admissible sets and Barwise compactness which gave the result via a
construction on countable models. In essence Makkai’s original argument [11] also
provides a positive answer using the technology of admissible set theory.

4 The Number of Models in ℵ1

We have shown that any counterexample to Vaught’s Conjecture has at least two
models of cardinality ℵ1. Why stop there? The following result seems to be new.

Theorem 4.1 If a first-order theory is a counterexample to the Vaught Conjecture
then it has 2ℵ1 models of cardinality ℵ1.

But it is easy from two well-known but difficult theorems.

Theorem 4.2 (Shelah) If a first-order T is not ω-stable, T has 2ℵ1 models of car-
dinality ℵ1.

This argument uses many descriptive set theoretic techniques. See Shelah’s book
[16] or Baldwin’s paper [2].

Theorem 4.3 (Shelah) An ω-stable first-order theory satisfies Vaught’s Conjecture.

Proof of 4.1 If T has less than 2ℵ1 models of cardinality ℵ1 then by Theorem 4.2,
it is ω-stable and then by Theorem 4.3, it satisfies Vaught’s Conjecture. �

We now discuss the possibility of assuming the weak continuum hypothesis
(2ℵ0 < 2ℵ1 ) to extend the previous theorem to Lω1,ω. This provides an excuse
for describing the role of the weak continuum hypothesis in some nice constructions
of Shelah and Keisler concerning the spectrum of sentences of Lω1,ω. We say that a
complete sentence σ in Lω1,ω is ω-stable if only countably many Lω1,ω-types over
any countable M |H σ are realized in some model of σ . This is a strictly and cru-
cially weaker assumption than if we replace the countable model M by a countable
set A. Shelah observed that under the weak continuum hypothesis, Theorem 2.8,
which asserted that few models in ℵ1 yields few types over the empty set, implies
the following.

Fact 4.4 (2ℵ0 < 2ℵ1 ) If a sentence ψ ∈ Lω1,ω is not ω-stable it has 2ℵ1 models of
cardinality ℵ1.

As noted above, for first-order logic, few models in ℵ1 implies ω-stable. And this
result even holds (in ZFC) for sentences in Lω1,ω which have arbitrarily large mod-
els. The arbitrarily large models give us access to Ehrenfeucht-Mostowski models.
But for an arbitrary sentence in Lω1,ω, to show few models in ℵ1 implies ω-stable
requires weak CH. Shelah [18] first provided a counterexample in Lω,ω(Q) using
Baumgartner’s order. But examples can be found in Lω1,ω ([21], [1]).
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This leads us to some natural generalization of Theorem 4.3. The notion of an ex-
cellent class ([19], [20], [3], [24]) plays a crucial role in the model theory of infinitary
logic.

Question 4.5 Does Vaught’s Conjecture hold for ω-stable sentences in Lω1,ω? For
excellent classes?

These questions pose two difficulties. As Grossberg pointed out, the questions are
not really well formed. The work in [19] and [20] on ω-stable and excellent classes is
restricted to atomic classes—the translation of complete sentences of Lω1,ω. All such
classes are ℵ0-categorical. So the first step is to adapt the stability theory machinery
for the translations of arbitrary sentences in Lω1,ω. These are finite diagrams in the
sense of [17]. But the machinery of that paper is primarily directed at the study of un-
countable models and makes the additional assumption that there is a homogeneous
model. Once an appropriate framework is found that circumvents these difficulties,
the real task begins. The proof that an ω-stable first-order theory has either ℵ0 or
2ℵ0 countable models has two parts. On the one hand, various conditions are shown
to imply the existence of 2ℵ0 countable models; on the other, the conjunction of the
negations of these properties are shown to allow such control over the structure of
models that the theory has only countably many models. This second part might be
easier with the greater expressive power of Lω1,ω. But the loss of compactness may
greatly complicate the first.

Many of the difficulties in studying Lω1,ω stem from the difficulty of proving the
amalgamation property. Recall that a sentence σ in a fragment 1 of Lω1,ω satisfies
the amalgamation property if M0 ≺1 M1,M2 implies M1 and M2 have a common
1-elementary extension.

Theorem 4.6 (Shelah 2ℵ0 < 2ℵ1 ) If a sentence σ in Lω1,ω has fewer than 2ℵ1

models of cardinality ℵ1 then the countable models of σ have the amalgamation
property.

The argument for this can be found in [21], [5], and [1]. The weak CH is used to
apply the Devlin-Shelah diamond; this use is necessary and counterexamples are in
the same place. Consider the following theorem of Shelah.

Theorem 4.7 An ℵ1-categorical sentence ψ in Lω1,ω has a model of power ℵ2.

This result actually was first proved in more generality for Lω1,ω(Q) (adding the
quantifier ‘there exists uncountably many’), but for Vaught Conjecture considera-
tions we restrict to Lω1,ω. The original proof [18] used diamond and developed a
considerable amount of stability theory for Lω1,ω. In [21] (see also [1]) a beauti-
ful proof of Theorem 4.7 is given in ZFC. The crux is to use another application of
Lopez-Escobar to construct a proper pair of cardinality ℵ1. Then, as in Lemma 3.3,
categoricity shows every model of power ℵ1 is extendible and so yields a model in
ℵ2. The argument below weakens categoricity to few models in ℵ1. The condition
that there is some proper pair in ℵ1 is strengthened to showing there is no maximal
model of power ℵ1 and then the model of power ℵ2 follows as in Lemma 3.2.

By the reductions of Section 3.2, we may work with an atomic class, the class of
atomic models of a complete first-order theory. In the next theorem, which appears
to be newly remarked (although of course implicit in [19] if not [18]), we weaken
the hypothesis of ℵ1-categoricity in Theorem 4.7 to ω-stability; we are still working
in ZFC.
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As in [18] and [19] and expounded in [1] and [10], we develop the notion of an
ω-stable atomic class. (Warning, many words—type, ω-stable, independent, etc.—
have subtly different meanings in this context. So new arguments are needed for
what at first appear to be old results.) Most crucially, all amalgamation questions are
slippery. A notion of independence, M ^

N
P , is defined (based on splitting) which

has many of the properties of the first-order notion of ‘nonforking’. One is able to
show that countable models in K admit a form of free amalgamation. See the chapter
on independence in ω-stable atomic classes of [1] for a recent detailed exposition of
the next few theorems.

Definition 4.8 A and B are freely amalgamated over N in M , if AB ⊂ M ∈ K
and A^

N
B.

Fact 4.9 If M0 ≺ M1,M2 then there exists M ′

1 ≈ M1 and M3 with M ′

1 and M2
freely amalgamated over M0 in M3.

Theorem 4.10 If the atomic class is ω-stable and has a model of power ℵ1 then it
has a model of power ℵ2.

Proof As in Lemma 3.2, it suffices to show every model N in K of cardinality
ℵ1 has a proper elementary extension M in K . Write N as a continuous increasing
chain 〈Ni : i < ℵ1〉. By Theorem 4.2, K is ω-stable. Now define an increasing
sequence 〈Mi : i < ℵ1〉 such that Ni ≺ Mi , Mi is freely amalgamated with Ni+1
over Ni in Mi+1. Since independent sets intersect only where they have to, M0
properly extends N0. The union of the Mi is the required proper extension of N . The
construction is routine taking unions at limits. The successor stage is also easy from
the following claim (which can be proved for ω-stable atomic classes), replacing
0, 1, 2 by α, α + 1, α + 2 but keeping N fixed.

Claim 4.11 Let N0 ≺ N1 ≺ N2 ≺ N. Given M0 ^
N0

N2, with M0 and N1 freely

amalgamated over N0 in M ′

2, we can choose M2 and M ′

3 so that N2,M1 ≺ M2 and
M2 and N2 are freely amalgamated over N1 in M ′

3.

�

The hypothesis in Theorem 4.10 that there be a model with cardinality ℵ1 is essential.
As defined here, the Marcus example [12] is ω-stable and has exactly one model.

Now we can strengthen Theorem 4.7 replacing categoricity in ℵ1 by few models
in ℵ1 at the cost of assuming 2ℵ0 < 2ℵ1 . The following corollary is immediate since
with this set-theoretic hypothesis, few models in ℵ1 implies ω-stability (Lemma 4.2).

Corollary 4.12 (Shelah 2ℵ0 < 2ℵ1 ) If the atomic class K has at least one but fewer
than 2ℵ1 models of cardinality ℵ1 then it has a model of power ℵ2.

Recall Hjorth [7] proved the following theorem.

Theorem 4.13 (Hjorth) If there is a counterexample to Vaught’s Conjecture, there
is one with no model of size ℵ2.

Note that, by Lemma 4.12, under the weak continuum hypothesis we deduce that
Hjorth’s example has 2ℵ1 models of cardinality ℵ1. The number of models in ℵ1
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does not appear to be controlled by Hjorth’s construction. This leads to a number of
specific problems.

1. Show Hjorth’s example has 2ℵ1 models in ℵ1 in ZFC.
2. Can one just prove directly that any counterexample to Vaught’s Conjecture

has 2ℵ1 models of cardinality ℵ1?

A natural strategy for the second question is to return to the initial Harnik-Makkai
argument, Lemma 3.8, and code stationary sets into the construction of the tree. But
this requires some notion of how different “tops” are put on the limits of countable
chains and there is nothing of this sort evident (to me) in the proof. And such an
argument might not avoid the set theory since Devlin-Shelah diamond is used in
many such arguments. Moreover, the proof of the first-order case involves a deep
analysis of the models; it would be very striking to avoid this.

If one showed any counterexample to Vaught’s Conjecture has 2ℵ1 models of
cardinality ℵ1, then a strategy to solve Vaught’s Conjecture would be to show that if
there is a counterexample to Vaught’s Conjecture, then there is one with ℵ1 models
of cardinality ℵ1. And there is a marvelously simple recipe for such an example.
Marcus [12] constructed a first-order theory T with an atomic model that has no
elementary submodel but contains a definable subset P comprising an infinite set of
indiscernibles. Now impose a structure (from a disjoint language) on P and require
that this structure is a model of the counterexample to Vaught’s Conjecture. The
disjoint union of this model with a pure set seems to have ℵ1 models of power ℵ1.
But this holds only if ‘indiscernible’ is read as ‘fully indiscernible’ in the following
sense.

Definition 4.14 A set I is fully indiscernible in a model M if every permutation of
I extends to an automorphism of M .

We defeat the pipe dream above with the following corollary to work of Gao [4].
The crux is a characterization of ‘M is extendible (for Lω1,ω)’ in terms of the auto-
morphism group of M . Kueker [9] showed that |aut(M)| = 2ω if M is an extendible
countable model but the converse fails. In line with our previous methodological
standpoint we will sketch some of Gao’s argument for a characterization rather than
just quoting the final result to distinguish model theoretic and descriptive set theo-
retic techniques used in the argument. The various descriptive set theoretic assertions
in the next couple of paragraphs are proved in [4].

Proposition 4.15 If a countable model M admits an infinite subset of full indis-
cernibles then M is extendible (for Lω1,ω).

Proof We first note that M is extendible if and only if aut(M) is closed in ωω. To
see this, rephrase ‘extendible’ as ‘there exists an (∞, ω) map j from M properly
into itself’. (This relies on ≺ being (∞, ω)-submodel and the countability of M .)
Clearly, if aut(M) is not closed in ωω, there is a sequence fn of automorphisms of
M whose pointwise limit is an (∞, ω) map (so clearly an injection) but not an auto-
morphism, that is, not onto. In the other direction, given such a map j , enumerate M
as 〈ai : i < ω〉. Then for each n, a1, . . . , an and ja1, . . . , jan are (∞, ω)-equivalent
so j � a1, . . . , an extends to an automorphism fn of M . The sequence fn verifies
that aut(M) is not closed.
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So far the argument is model theoretic although the conclusion about the topology
on Baire Space is crossing the line. But even more, Gao restates the condition as
follows.

Fact 4.16 If G is a closed subgroup of S∞, then G admits a left-invariant complete
metric if and only if G is closed in the Baire space ωω.

And to complete the proof, we use these abstract conditions on the automorphism
group. Suppose I is fully indiscernible in a model M . Then aut(M) projects (by
restriction) onto the group of permutations of I , S∞. Thus, if M is not extendible,
G = aut(M) is closed in ωω and so admits a left-invariant complete metric. But
then, as Gao further shows, the projection of G onto S∞ would induce a left-invariant
complete metric on S∞. There is no such metric and we finish. �

This conference exhibited a striking interaction among logicians of various stripes.
This paper is one example; I raised the question of whether a counterexample to
Vaught’s Conjecture necessarily had a model of cardinality ℵ2 early in the confer-
ence; Sacks elaborated on the question in his second presentation; Hjorth heard the
problem in Sack’s lecture and had the tools to solve it. And in writing up my con-
tribution, I saw that Hjorth’s solution suggests some new strategies for attacking
Vaught’s Conjecture itself. But these strategies are restrained by Gao’s results which
are shown by a real interweaving of model theoretic and descriptive set theoretic
techniques.

Note

1. As final corrections were being made to the galleys, it was discovered that Theorem 3.8
here is also reproved as Theorem 4.9, pp. 14–15 of Sacks [15] in this special issue.
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