Notre Dame Journal of Formal Logic
Volume 47, Number 4, 2006

Hybrid Formulas and Elementarily
Generated Modal Logics

lan Hodkinson

Abstract We characterize the modal logics of elementary classes of Kripke
frames as precisely those modal logics that are axiomatized by modal axioms
synthesized in a certain effective way from “quasi-positive” sentences of hybrid
logic. These are pure positive hybrid sentences with arbitrary existential and
relativized universal quantification over nominals. The proof has three steps. The
first step is to use the known result that the modal logic of any elementary class of
Kripke frames is also the modal logic of the closure of this class under disjoint
unions, generated subframes, bounded morphic images, and ultraroots. This
latter class can be defined by the first-order sentences of a special syntactic form
(called pseudo-equations by Goldblatt) that are valid in the former class. The
second step is to translate these pseudo-equations into equivalent quasi-positive
hybrid sentences. In the third and main step, we show that any quasi-positive
sentence S generates an infinite set of modal formulas called “approximants,”
which together axiomatize a canonical modal logic that is sound and complete
for the class of frames validating S. The proof is analogous to standard proofs of
Sahlqvist’s theorem. It generalizes to sets of quasi-positive sentences. The main
result now follows.

1 Introduction

We combine a Sahlqvist-like theorem with some translations into hybrid logic in
order to axiomatize all and only the modal logics of elementary classes of frames.
(In this paper, a class is elementary if it is the class of models of a possibly infinite
set of first-order sentences.) In the introduction, we outline the work and its context.

1.1 Elementarily generated modal logics A modal logic is said to be canonical if
it is valid in the frame of its own canonical model. The canonical model construction
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involves forming the Kripke frame whose worlds are the maximal consistent sets and
with a “canonical” accessibility relation and assignment (or valuation). It came to
prominence through the work of Lemmon and Scott [30] and also (independently)
Cresswell [6] and Makinson [31], although J6énsson and Tarski [26] had introduced
a similar construction earlier. Any canonical logic is the logic of its own canonical
frame. (The logic of a Kripke frame ¥, or a class KX of Kripke frames, is the set
of modal formulas that are valid in ¥ or, respectively, in every frame in X.) So
showing a logic to be canonical yields up a “free” completeness theorem for it and
has proved to be a useful and widely applicable method of proving completeness
theorems for modal logics.

It turned out that all the canonical modal logics seen in practice were the logics of
elementary classes of frames. We call such logics elementarily generated. A seminal
result of Fine [7] showed that this was no accident: any elementarily generated modal
logic is canonical.! The converse is not true in general ([17], [16]), and this raises
the problem of characterizing both the canonical and the elementarily generated log-
ics in some independent way in order to understand them and their similarities and
differences better. It seems that all known “natural” examples of canonical logics are
elementarily generated, so certainly the elementarily generated logics are worthy of
attention.

One kind of characterization that would be attractive is a syntactic one. An ele-
mentarily generated logic may be presented to us syntactically by giving its axioms,
in which case it may not be evident that the logic is elementarily generated, or seman-
tically by giving an elementary class of frames that determines the logic, in which
case we may not have modal axioms for it. We would like

(A) to be able to tell when a given set of modal axioms determines an elementarily
generated logic,

(B) to generate explicit axioms in some effective way for any semantically-given,
elementarily generated logic.

1.2 Sahlqvist’s theorem  One obvious paradigm for such results is Sahlqvist’s the-
orem [32]. There, a syntactic blueprint is given for generating modal formulas called
Sahlqvist formulas. Positive formulas had been examined in this context much ear-
lier [26], and Sahlqvist formulas can perhaps be thought of as generalized positive
formulas. See Example 3.6 for a definition. Common examples include Up — p,
Op — OOp, and O0p — OO p.

Sahlqvist’s theorem addresses problem (A) above. Every Sahlqvist formula ¢ ax-
iomatizes an elementarily generated logic. It is the logic of an elementary class of
Kripke frames that is definable by a single first-order sentence, the so-called first-
order correspondent of o. The correspondent is obtainable from ¢ by a simple al-
gorithm. For example, the correspondent of Llp — p is Vx R(x, x), where R is the
accessibility relation of the frame.

Sahlqvist-axiomatizable logics are well behaved in other ways. A single modal
logic can be determined by several different classes of frames. A frame for a logic is
a (Kripke) frame that validates every formula of the logic. Now it is possible for the
class of all frames for an elementarily generated logic to be nonelementary; we will
see examples below. But this cannot happen for Sahlqvist-axiomatizable logics: we
get the “Sahlqvist bonus” that the correspondent of ¢ is valid in precisely the frames



Hybrid Formulas and Modal Logics 445

validating ¢ —and, as can be seen either by Fine’s theorem or directly, these include
the canonical frame of the logic.

There is even a converse result. In [28], §5.6, Kracht identified a fragment of
first-order logic (in the signature of frames) that contains the correspondent of every
Sahlgvist formula. Given any sentence y in the fragment, he showed how to syn-
thesize a Sahlqvist formula whose correspondent is equivalent to y; this addresses
problem (B).

1.3 Limitations of Sahlqvist’s theorem  Sahlqvist’s theorem has been immensely
useful in practice since it is easy to use and covers a wide range of examples. It has
been generalized by several authors—for example, [34], [18], [19], [27], and [35].
However, it does not fully answer our problems (A) and (B), because it does not
cover all elementarily generated logics.

We will give three kinds of examples of this. The first involves McKinsey’s for-
mula M = [0Og — (QUgq. The logic axiomatized by M alone is not elementarily
generated, but the logic K4.1 axiomatized by M together with the transitivity ax-
iom (g — [gq is elementarily generated: these axioms are valid precisely in the
transitive frames satisfying

Vx3y(R(x, y) AVzt(R(y,2) A R(y, 1) = z =1)), (D

and so K4.1 is the logic of this elementary class of frames. It is well known that
K4.1 is not Sahlqvist axiomatizable. (For details, see, e.g., [3], p. 168.3) It is an
example of a cofinal subframe logic. Very powerful techniques to handle these log-
ics are available, and consequently their properties are quite well understood. For
example, all canonical cofinal subframe logics are elementarily generated. Modal
axioms can be synthesized for any cofinal subframe logic [4]; this is along the lines
of (B) above, but it does not cover all elementarily generated logics and covers some
nonelementarily generated ones, so its scope is rather different from our concerns
here.

There is a wider class of elementarily generated logics not covered by Sahlqvist’s
theorem. Already in [30], Lemmon generalized McKinsey’s formula M to a whole
sequence of formulas

My, =0((0g1 = Og) A+ A(Ogn — Ogn)) (= 1). )

M is equivalent (in the basic modal logic K) to M, and in the presence of the tran-
sitivity axiom, all the M,, follow from M. The logic KM*° axiomatized by (2) is the
logic of the class of (possibly intransitive) frames defined by (1). It is therefore ele-
mentarily generated, and canonical. Indeed, (1) is true in its canonical frame, though
it is not true in all frames for KM>°: we lose half of the “Sahlqvist bonus” referred to
above. But KM cannot be axiomatized by any set of (even generalized) Sahlqvist
formulas, because the class of frames for KM is nonelementary ([15], [2]), and any
axiomatization of it must involve infinitely many noncanonical formulas [15]. (A
formula is canonical if it axiomatizes a canonical logic. All Sahlqvist formulas are
canonical.)

The same is true for the logic KMT studied by Hughes [24], characterized by the
class of frames satisfying

Vx3y(R(x,y) A R(y,y)), 3)
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and axiomatized by
MT, =<>((Dq1 =g A AUgy — q,,)) (n=>1). “)

A related example can be found in [23]. If we are willing to move to an algebraic
setting, the variety RRA of representable relation algebras is another example [23].
All these logics are canonical and indeed elementarily generated. However, not only
are they not finitely axiomatizable and not Sahlqvist axiomatizable, but any axiom-
atization requires infinitely many noncanonical formulas. Canonicity emerges only
when all the axioms are taken together. It seemed that this rather striking phenome-
non of “canonicity in the limit” was a new source of canonicity beyond the scope of
Sahlqvist’s theorem, and it needed an explanation.

A partial explanation was provided by Balbiani et al. in [2], where it was shown

that for any Sahlqvist formula® ¢(p1, ..., p,) with local first-order correspondent
o (x), the logic axiomatized by
{0l b)) A Ao, ) = m= 1},

where the p’; are distinct atoms, is canonical and is the logic of the class of frames
defined by Vx3y(R(x, y) Ao (y)). This Sahlqvist-like result covers KM> and KMT,
as is evident from (2) and (4). The full scope of the method is unclear. It remains
to be seen whether it can be generalized to cover all elementarily generated logics.
[2] lists some interesting open problems to do with it.

One more example of an elementarily generated modal logic not covered by
Sahlqvist’s theorem involves additivity axioms. In [7], Fine showed that

Op = OU(p A q) v OU(p A —q) ®)
is canonical and axiomatizes the logic of the class of frames satisfying
Vxy(R(x, y) = Fz(R(x,2) AVuv(R(z, u) A R(z,0) = u=0v A R(y,0)))).

However, the class of all frames for (5) is nonelementary, so (5) cannot be replaced
by Sahlqvist axioms. The study was extended by Jénsson and Venema ([25], [39])
to general additivity axioms

n(pVvq)— n(p)Vr(q) (6)

for positive 7 (x). (An axiom equivalent to (5) is obtained by taking 7 (x) = OCx
in (6).) Venema proved that (0) axiomatizes the logic of an elementary class J,
of frames and showed how to construct a single first-order sentence o, defining
K cf. problem (A) above. He called ¢, and (6) canonical pseudo-correspondents,
since (6) is valid in any frame satisfying o, and the canonical frame of the logic
axiomatized by (6) satisfies o,. For some 7 (e.g., JOx; see Example 4.7 below),
(6) axiomatizes a Sahlqvist logic; for other 7, it does not. Venema states in [39] that
his original motivation was to “axiomatize [the modal logic of] an elementary frame
class”: cf. problem (B) above.

1.4 Our results  In this paper, we will prove a Sahlqvist-like theorem that allows
us to axiomatize all elementarily generated modal logics. We show that a modal logic
is elementarily generated precisely when it is axiomatizable by modal axioms of a
particular syntactic form. Starting with an elementary class X of frames axiomatized
by a first-order theory 7', the method applies three steps:
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1. Form the theory U consisting of the first-order sentences which are conse-
quences of T and have (roughly) the form Vx iy (x), where y (x) is built from
atomic formulas using A, V, and relativized quantifiers

VY1, (R, y1, o, y) = w) and 3y, oo, Y (RO, Y1, 0005 YE) A W),

Sentences of this form have been studied by, for example, Goldblatt and van
Benthem, and it is known that U axiomatizes the class K of frames obtained
by closing X under bounded morphic images, generated subframes, disjoint
unions, and ultraroots, and that the modal logics of J and X are the same.

2. Translate each first-order sentence ¢ in U into a “pure quasi-positive sen-
tence” of hybrid logic that is valid in precisely the models of ¢. This can be
done by a simple algorithm. Let ® be the resulting set of hybrid sentences.
X is the class of frames in which all sentences in ® are valid.

3. Translate each sentence in @ into an infinite set of modal formulas. (Again,
this can be done by a simple algorithm.) The modal logic A¢ axiomatized
by them is the logic of X (and of X).

Since pure hybrid sentences define elementary classes, all and only the elementarily
generated modal logics have the form Ag for a set ® of pure quasi-positive hybrid
sentences. In this way, we are able to enumerate modal axioms for every elementarily
generated modal logic, as per problem (B) above. @ can be regarded as a canonical
pseudo-correspondent of Ag in the sense of [39] and as discussed above.

Let us discuss the three steps in more detail. Step | is straightforward, using first-
order proof theory. In step 2, we translate the first-order sentences from step | into
pure quasi-positive hybrid sentences. Hybrid formulas involve nominals: special
propositional atoms that are always assigned to singleton subsets of a Kripke frame
and serve as names for worlds. The quasi-positive hybrid formulas allow arbitrary
existential and relativized universal quantification over nominals, this last being the
only place that negation can be used. A pure formula involves no propositional
atoms; in a sentence, all nominals are bound by quantifiers. The translation into
quasi-positive hybrid sentences is fairly straightforward, and the reader may wonder
why we bother with it. The answer is that quasi-positive sentences are modal-like
formulas to which step 3 can be applied.

The modal axioms obtained in step 3 are generated as “approximants” to the for-
mulas in ®. In any Kripke model, we may approximate a hybrid formula ¢ by
taking a finite partition of the frame induced by the truth values of a finite set S of
modal formulas (as in filtration), assigning nominals to partition classes and simu-
lating existential and universal quantification of nominals by (finite) disjunction and
conjunction over partition classes, respectively. This can be written out as a modal
formula, called an approximant of ¢. It is explicitly constructible from ¢ and S, if ¢
is a sentence.

It turns out that if a quasi-positive sentence ¢ is valid in a frame, then so are
all its approximants. Conversely, as the set S increases, the approximants simulate
¢ more and more closely. In the canonical model of the logic A, axiomatized by
all ¢’s approximants, the worlds are maximal consistent sets of formulas, and each
set consists of the formulas that are true at it. For a given S, the partition classes
consist of the worlds sharing the same formulas from S. Any two distinct worlds lie
in distinct partition classes for all large enough S. So in the limit, as S grows, the
approximation becomes exact. Since all the approximants are valid in the canonical
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model, this means that its frame validates ¢. Proving this is the chief technical
contribution of the paper. The proof uses the special form of quasi-positive sentences
and is similar to standard proofs of Sahlqvist’s theorem.

Clearly, the same goes for the logic A¢ axiomatized by the approximants to all
the sentences in @. Thus, Ag is sound and complete for the class of frames in which
@ is valid. This class is elementary, so Ag is elementarily generated. It contains
the canonical frame for Ag, so A is canonical. Since every elementarily generated
logic is of the form A, this provides another proof of Fine’s theorem [7].

1.5 How natural are the axioms? = Methods of synthesizing axioms from a tem-
plate are often accused of producing artificial, unenlightening axiomatizations. What
about our method? Well, the set U of axioms obtained in step | can be extremely
opaque, and it is infinite even if the original T is finite. The sentences in U are sim-
ilar in structure to pure quasi-positive sentences and the translation between them in
step 2 is fairly straightforward, though it can increase the opacity a little. But some-
times we can start off with a class of frames defined by pure quasi-positive hybrid
sentences. Steps | and 2 are omitted, and the modal axioms are synthesized directly
from the hybrid ones. We actually get to see the axioms, and they can be rather
natural and easily understood. Consider, for example, the logics KM*® and KMT
discussed above. The quasi-positive sentence ¢3i[Ji expresses (1), and (i (i A Qi)
expresses (3), and the approximants obtained from them are equivalent to the known
axioms (2), (4), respectively. For instance, the axiom obtained by approximating
¢3ildi with respectto S = {p1,..., pn}is

o 3 O i

—

o\ O (/\ p A /\ﬁp),
XcS peX peS\X

and this is equivalent to the M,, of (2). See Examples 4.6 and 4.7 for more details. If
we can obtain, modulo simple equivalences, axiomatizations that are already known
from the literature, then it seems fair to say that sometimes our method produces
fairly natural and intuitive axiomatizations.

This allows us to make a small contribution to problem (A) above. Given some
known axioms for a modal logic, if we can devise an elementary class whose modal
axioms (obtained by our method) are equivalent to the given ones, we have at hand
a proof that the logic is elementarily generated, and by a specific elementary class
of frames. This is not quite an idle dream: the method presented here originated in
study of the examples KM*° and KMT.

1.6 Comparison with Sahlqvist’s completeness theorem  Sahlqvist’s complete-
ness theorem ([32], [33], [3]) says that the logic axiomatized by a Sahlqvist formula
o is the logic of the class of frames in which ¢ is valid. Step 3 above says that
the logic A, axiomatized by the approximants of a pure quasi-positive sentence ¢
is the logic of the class of frames that validate ¢. Both results generalize to sets of
formulas.

We view step 3 as extending Sahlqvist’s completeness theorem. First, every
Sahlgvist formula can be expressed by (is valid in the same frames as) a quasi-
positive one. Second, the proof that step 3 works (Proposition 5.9 below) parallels
known proofs of Sahlqvist’s theorem rather closely. We do not need to use negated
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boxed atoms and the “minimal assignments” associated with them, so the most direct
analogy is perhaps with [26], which proves that positive equations are preserved by
algebraic canonical extensions. But with some extra work we could allow ¢ to be a
“hybrid Sahlqvist formula.” Step 3 would then simply extend Sahlqvist’s complete-
ness theorem to this larger class of formulas. In the special case where ¢ is a modal
Sahlqvist formula, the approximants would be simply the substitution instances of
@. We will discuss this in Example 3.6, Remark 3.16, and Section 6.2. It is not nec-
essary to put in this extra work because it does not increase the range of logics we
can axiomatize, though it would simplify some of the axiomatizations.

There are, however, some differences between our result and Sahlqvist’s. For
one, it generates modal axioms and a modal logic A, from a hybrid formula ¢.
This provides a perhaps new and surprising connection between modal and hybrid
logic. Because ¢ generates purely modal axioms, our result is not to be regarded as
a Sahlqvist theorem for hybrid logic; readers seeking such a theorem should consult,
for example, [18] and [34].

It is also perhaps notable that the set of axioms for A, is infinite. In a way, this
is not so alarming. First, the logics KM, KMT, and so on, are not finitely axiom-
atizable, so infinite axiomatizations are inevitable if we are going to cover them.
One benefit of allowing infinite axiomatizations is that we can after all “explain” the
canonicity of these logics by Sahlqvist-like reasons, even though they have no ax-
iomatization by canonical formulas. Second, the infiniteness is to an extent already
present in the standard Sahlqvist theorem. For example, the logic K4 generated by
the Sahlqvist axiom (p — OOp is in a way axiomatized by the infinite set of sub-
stitution instances {a — Ua : a a modal formula}. K4 is finitely axiomatizable
only because of the presence of the substitution rule. Alternatively, p — OUp
can be regarded as a schema, from which axioms Oa — OUla are generated. But
a quasi-positive sentence is also a schema in the sense that it generates an infinite
number of modal axioms in a purely syntactic and effective way. The difference
from conventional schemata is only that the generating process is a little more com-
plicated than substitution.

Nonetheless, some logics A, are finitely axiomatizable, whereas we only obtain
an infinite set of axioms for them. How to determine whether A, is finitely axiomati-
zable and how to obtain a finite set of axioms when it is remain interesting questions
for the future.

1.7 Comparison with Sahlqvist’s correspondence theorem  This part of Sahlqvist’s
theorem says that for any Sahlqvist formula o there is a first-order sentence, the
“correspondent” of o, that is true in precisely the frames in which ¢ is valid. The
correspondent is obtained from ¢ by a simple algorithm. To compare this with our
results, we need to distinguish between the class Fr @ of frames validating ® (the
class X of step 2), and the class Fr Ag of frames validating A¢. Their analogues
for a Sahlqvist formula o are the class of models of the correspondent of o and the
class of frames for o, respectively, and Sahlqvist’s theorem gave us the bonus that
these two classes are the same. In our situation, we only have Fr ® € Fr A, and the
inclusion can be strict. For example, there are frames validating KM*° and KMT that
do not satisfy the conditions (1) and (3), respectively. (For which © is the inclusion
strict is another question for the future.)
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For the class Fr @, correspondence is trivial, because quasi-positive sentences
have straightforward first-order translations: they are essentially their own first-order
correspondents. For Fr Ag, no first-order correspondence is possible in general,
because Fr Ag can be nonelementary. This is so for KM ([15], [2]) and, in an
algebraic setting, for RRA [22]. The class of nonfinitely colorable graphs is nonele-
mentary [22], and this can be used to show that Fr KMT is nonelementary as well.

So we cannot think of @ as a set of correspondents of Ag: half our “Sahlqvist
bonus” can be forfeited. But the other half we get to keep: @ is valid in the canonical
frame for Ag. Since Ag is valid in any frame validating @, the two are canonical
pseudo-correspondents in the sense of [39].

1.8 Summary  We give a necessary and sufficient syntactic condition for a modal
logic to be elementarily generated and one that matches existing axiomatizations of
some known examples quite closely. However, it yields infinite axiomatizations of
even finitely axiomatizable modal logics. Nonetheless, we hope it will be useful in
showing more modal logics to be canonical and proving completeness theorems for
them.

1.9 Layout of paper  The three steps in Subsection 1.4 are treated in the order 2,
3, 1. Step | can be found in Theorem 5.16, step 2 in Theorem 3.13, and step 3 in
Theorem 5.15. In Section 2, we set out the definitions of modal and hybrid formulas.
In Section 3, we introduce the quasi-positive formulas that will be our main concern.
We give some examples and prove that every positive relativized first-order sentence
can be expressed by such a formula. Section 4 defines the approximants of a hy-
brid formula, gives some examples, and proves some basic facts about them. The
main Sahlqvist-like proof of soundness and completeness of the logic axiomatized
by the approximants of quasi-positive formulas is in Section 5; Subsection 5.5 shows
that every elementarily generated logic can be handled in this way. Section 6 has a
discussion of the results and some open questions.

2 Modal and Hybrid Formulas

Our paper is fairly self-contained, but we do envisage that the reader has some prior
acquaintance with modal and hybrid logic. Background information can be found in,
for example, [3].

We consider any modal language £ over the fixed infinite set 'V of propositional
atoms (or propositional variables). For simplicity, we assume that £ has a single
k-ary box [J and a corresponding diamond <), where k > 1. All our proofs extend to
languages £ with multiple modalities, and occasionally we will add extra modalities
to L.

£ denotes the extension of £ with nominals and the nominal quantifiers. For-
mally, we fix a set 4 of nominals disjoint from V. (More properly, they should be
called state variables.)

Definition 2.1  The .£1-formulas (over V U {) are defined as follows. The atomic
L1-formulas are ¢, forany g € V; i, foranyi € d;and T, L. If ¢, w, 01, ..., 0k
are LT -formulas, then so are —=¢, ¢ A w, o V v, (@1, ..., 01), O@1, ..., 00,
and also Vig and 3i¢, for any nominal i. .£ is the fragment of £+ without nominals
or quantifiers.
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An occurrence of a nominal i in a formula ¢ is said to be bound if it is in the
scope of a quantifier Vi or i in ¢, and free, otherwise. For an £ -formula ¢, we
write free(p) for the set of all atoms a € 'V that occur in ¢ and all nominals i € { that
have free occurrences in ¢. An LT -formula is a sentence if it has no free occurrences
of nominals and pure if it has no occurrences of atoms.

Asusual, p — y abbreviates ~¢ V i, and ¢ <> y abbreviates (¢ — W)A(y — @).
&£ and LT have the usual semantics. Formally, the definition for £V is as follows.

Definition 2.2
1. A frame is a structure of the form ¥ = (W, R), where R € W 1. We will
write R(¢t, uy, ..., uy) to indicate that (¢, uy,...,ur) € R.

2. For a frame & = (W, R) as above, a hybrid assignment into ¥ is a map
h:VUJ — @(W)suchthat |h(i)] = 1 foreachi € J.

3. Given a hybrid assignment % into ¥ as above and a world w € W, we define
F,h,w [= ¢ by induction on £ -formulas ¢ as follows.
(a) forp e VUJ, weput F, h, w = ¢ iff w € h(p).
(b) T, L, and Booleans—as usual.
©) F,hv E Op1,...,pr) iff for all vy,...,0p € W with

R(w,vy,...,vr), wehave £, h,v; = ¢; for some [ with 1 <[ < k.
d F,h,w E O@1,...,pr) iff there are vy,..., 0 € W with
R(w,v1,...,0p) and F, h,v; = ¢ forevery l with 1 <1 < k.

(&) F,h,w =Vigiff ¥, g, w = ¢ for every hybrid assignment g into ¥
with g(x) = h(x) forallx € VU 4\ {i}.

f) F,h,w = Jip iff F, g, w = ¢ for some hybrid assignment g into F
with g(x) = h(x) forallx € VU 4\ {i}.

The definition of the semantics of the modal sublanguage £ is an obvious variation
on this; there, we only need a map m : V — (W), and we call such a map simply
an assignment, or sometimes a modal assignment.

A formula ¢ is said to be valid in a frame ¥ if and only if ¥, h, w = ¢ for all
hybrid (or modal, as applicable) assignments 4 into ¥ and all worlds w of ¥ .

Remark 2.3  In our view, Vi and 3i are quantifiers, not modalities. So LT has the
same modal operators as £. We have not included in £ the familiar hybrid binder
J or the actuality operator @;. Recall their definitions:

I. F,h,w = |;p iff F,g,w = ¢, where g is the same as & except that
g(i) = {w},

2. F,h,w = @ iff F,h,v E ¢, where h(i) = {v}.
The first is no problem, since };¢ can be expressed in L by Ji(i A ¢). The @
operator is more problematic. In the absence of quantifiers, it can be thought of as
a box or diamond with accessibility relation W x {v}. When the quantifiers Vi, 3i
are present, this relation can change, so then @; is not a conventional modality.
However, in the case where £ has universal modalities A, E (i.e., a box and diamond
with accessibility relation W x W), one can use either A(i — ¢) or E(i A ¢) to
simulate @;¢. Conversely, E¢ is definable from @ and 3, via 3i @;¢, where i does
not occur free in ¢, and Ag is of course definable by —E—¢.

So one approach to @ is to use universal modalities to handle it. But it turns out

that in many cases we can define @ in £ even without universal modalities. We
will discuss this in Remark 3.16 below.
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3 Quasi-positive Formulas

These are roughly the positive hybrid formulas in which all universal quantification
is relativized. The rest of the paper is largely devoted to studying them. In this
section, we define them, give some examples, and study their expressive power.

3.1 Definitions

Notation 3.1 For 1 < d < k, we let Ddgo abbreviate (L, ..., L, o, 1,..., 1),
and <>‘1(p abbreviate O(T,..., T,p, T,..., T), in each case with the ¢ in the dth
place.

Definition 3.2  The path formulas are defined as follows. Each path formula =
involves an atom, say ¢, and perhaps also nominals. We write it as 7 (¢) (of course,
it may involve nominals as well as ¢). For a formula ¢, we write 7 (¢) for the result
of replacing g by ¢ in 7 ().

1. Any atom g is an existential path formula 7 (g).

2. If = (g) is an existential path formula, 1 < d < k, and j € {, then z'(g) =
7 (0%(j A q)) is an existential path formula.

3. If 7r<>(q) is an existential path formula, then the result ﬂD(q) of pushing
negations down next to atomic formulas in —z(—g) is a universal path
formula, called the dual of 7r<>(q). For example, if k = 1 and 7r<>(q) is
0G A O A q)). then 7 () is O — D" — ).

A typical existential path formulais 7 ©(g) = 0% (jiAOLR (jaA - -AOU (juAg)) - - ).
It is rather like an @-operator. It is not hard to see thatif £, h, w =« <>(i), where i
is a nominal with 4 (i) = {r}, say, then &, h, ¢ |= ¢ if and only if F, h, w = 7 (p),
for any hybrid formula ¢. So 7r<>(g0) is like @;¢. We will use this in Theorem 3.13.

Definition 3.3  The quasi-positive (LT -) formulas are defined as follows:

1. Any atomic £ -formula is quasi-positive.

2. If ¢, y are quasi-positive formulas, then so are p A y and ¢ V .

3. If gy, . .., gk are quasi-positive, then so are (g1, . . ., 9x) and O (g1, . . ., @k).

4. If ¢ is quasi-positive and i € {, then Jig is quasi-positive.

5. If ¢ is a quasi-positive formula, 7 (g) is an existential path formula and
nD(q) the dual universal path formula, and iy, ..., i, € 4 \ free(z ©(q)),
then

7T A Vit k@D O, .., i0) = 9)
is also a quasi-positive formula.

It will become clear in Proposition 5.9 why we use 7 Hin this way in the last clause,

even though semantically it would be equivalent to use = 0, Unfortunately, we have
not been able to find a simpler formulation of universal quantifiers that allows Propo-
sition 5.9 to be proved. Remark 5.11 has some discussion of this.

We could also allow formulas like Vi (i — ¢), but this is equivalent to i (i A @),
so there is no need to.

3.2 Examples  We will see that quasi-positive formulas are rather expressive. We
give some examples; for simplicity, we assume here that the arity k& of [(J and ¢ is 1.
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Example 3.4  (3i[i says that there is a successor that sees at most one world. It
is a quasi-positive sentence. Similarly, ¢3i3j1( V j) says that there is a successor
with at most two successors.

Example 3.5 O3i(i A Qi) says that there is a reflexive successor. Similarly, if £ has
universal modalities A, E, the quasi-positive sentences EJi (i A Qi) and ATi (i A Qi)
say that some (respectively, all) worlds are reflexive.

Example 3.6  Modal Sahlqvist formulas such as Op — p and OOp — OO p are
valid in the same frames as

3i(i A Qi) and Vi(Oi — Vi'[Oi" — 37 (OG A OJ) AOGE AOND).

There seems to be no absolutely standard definition of a modal Sahlqvist formula, but
probably a reasonably well-accepted definition is the one in the recent textbook [3].
In slightly restricted and simplified form, it says that

1. any positive modal formula is a Sahlqvist formula,

2. any negated boxed atom =" p (where (1°p = p and "1 p = (0" p)) is
a Sahlqvist formula,

3. if ¢, w are Sahlqvist formulas 