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Propositional Logics of Closed and Open
Substitutions over Heyting’s Arithmetic

Albert Visser

Abstract In this note we compare propositional logics for closed substitutions
and propositional logics for open substitutions in constructive arithmetical the-
ories. We provide a strong example where these logics diverge in an essential
way. We prove that for Markov’s Arithmetic, that is, Heyting’s Arithmetic plus
Markov’s principle plus Extended Church’s Thesis, the logic of closed and the
logic of open substitutions are the same.

1 Introduction

In this paper, we study the propositional logics of constructive arithmetical theories.
These logics contain precisely the propositional schemes such that all substitution
instances of the given scheme are provable in the given theory. Prima facie, there
is a difference between logics of closed substitutions, that is, those substitutions
where the range of the substitution consists entirely of sentences, and logics of open
substitutions, where we allow formulas to be substituted. Of course, the logic of
open substitutions for a given theory T will be a sublogic of the logic of closed
substitutions for T , but the inclusion could be strict.

In Section 3, we will provide an “essential” example to illustrate that, for some
theories, the logic of closed substitutions and the logic of open substitutions are dif-
ferent. The example, say U , will be “essential” in the sense that every consistent
extension V of U is also an example. In fact, we will have the following. For every
consistent extension V of U , the propositional logic of open substitutions is Intuition-
istic Propositional Logic (IPC), and the propositional logic of closed substitutions is
Classical Propositional Logic (CPC).

In Section 4, we will provide a sufficient condition to guarantee that the logic of
open substitutions and the logic of closed substitutions are the same.
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In Section 5, we study Markov’s Arithmetic (MA), that is, Heyting’s Arithmetic,
(HA), plus Markov’s Principle (MP), plus Extended Church’s Thesis (ECT0). Here
ECT0 is the principle,

∀x (A → ∃y By) → ∃u ∀x (A → ∃v(Tuxv ∧ B(Uv)).

Here A is almost negative, T is Kleene’s T-predicate, and U is the result extracting
function.

It is well known that the propositional logics of MA are not equal to IPC. See
Section 2. We will show that MA satisfies the sufficient condition given in Section 4.
Hence, the logic for open and the logic for closed substitutions in MA are the same.

Finally, in Section 6, we briefly discuss an ordering of open substitutions. This
section is merely intended to draw attention to the existence of this further structure,
not to present any definite results concerning it.

Prerequisites We will suppose that the reader is familiar with the basics of con-
structivism and arithmetical theories. A good two-volume textbook is Troelstra and
van Dalen [12], [13].

2 Logics and Theories

This section provides some basic definitions and contains a brief, admittedly incom-
plete, overview of what is known of propositional logics of arithmetical theories.

We will only consider arithmetical theories. We will treat theories as sets of sen-
tences closed under the axioms and rules of constructive predicate logic. Here are a
few of the theories that are of central interest.

Heyting’s Arithmetic HA.
Markov’s Arithmetic MA := HA + MP + ECT0.
Peano’s Arithmetic PA.

All of these theories are in the usual arithmetical language with 0, S, +, and ×. We
will use Roman capitals to range over formulas of the arithmetical language. We will
use Greek lowercase letters for propositional formulas.

Closed substitutions will be assignments of sentences of the arithmetical language
to propositional variables. Open substitutions will be assignments of formulas to
propositional variables. We will call the sets of closed substitutions cSub and we will
call the set of open substitutions oSub. As a default we will assume that the value
of a substitution is almost everywhere (0 = 0). This allows us to treat substitutions
as finite objects. In case we do not adhere to this convention we will speak about
infinite substitutions. Let U be any theory. We define

1. 3U := {ϕ | ∀σ∈cSub U ` ϕσ },
2. 3◦

U := {ϕ | ∀σ∈oSub U ` ϕσ }.
(As usual, we take a formula to be provable if and only if its universal closure
is provable.)

Both 3 and 3◦ are monotonic in U . Clearly, 3◦

U ⊆ 3U .1 Note that if 3U = IPC,
then3◦

U = IPC. We give a quick example to show that3U and3◦

U need not always
be the same.

The scheme s-ET is sentential excluded third.

Example 2.1 Consider HA + s-ET, that is, HA plus sentential Excluded Third. It is
easily seen that 3HA+s-ET = CPC. On the other hand, p ∨ ¬p is not in 3◦

HA+s-ET.
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Suppose it was. Then, HA + s-ET ` ∀x (∃y Txxy ∨ ¬ ∃y Txxy). It follows that

HA ` ¬¬∀x (∃y Txxy ∨ ¬ ∃y Txxy).

But this contradicts the fact that

HA + ECT0 ` ¬∀x (∃y Txxy ∨ ¬ ∃y Txxy),

where HA + ECT0 is consistent. In Section 3, we will produce a different and,
in a sense, stronger example. The result of that section immediately implies that
3◦

HA+s-ET is IPC.

For many salient theories the sentential propositional logic is IPC. A result of the
form ‘the sentential propositional logic of U is IPC’ is often called de Jongh’s The-
orem for U . We give a quick overview of a number of de Jongh’s Theorems. In
all known cases we already have de Jongh’s Theorem for a set of substitutions of
sentences of restricted complexity. In our table we also give these classes. We do not
give the class for de Jongh’s original result, just because it is complicated. The class
D50

1 consists of disjunctions of 50
1-sentences.

date paper theory substitutions

1969 de Jongh [1] HA —

1973 Friedman [2] HA 50
2

1973 Smoryński [10] HA + RFNHA 60
1

HA + RFNHA D50
1

HA + RFNHA + MP bool(50
1)

1981 Gavrilenko [4] HA + ECT0 60
1

1981 Visser [14] HA + DNS 60
1

Here RFN is the uniform reflection principle and DNS is the principle of double
negation shift, which allows us to infer ¬¬∀ from ∀¬¬.

Note that de Jongh’s Theorem is downward persistent. In all cases we can obtain
uniform versions of de Jongh’s Theorem: we can restrict the class of substitutions to
a single infinite substitution. This means that the free Heyting algebra on countably
many generators can be embedded in the Lindenbaum algebra of the given theory.

The above table shows that 3HA+MP = 3HA+ECT0 = IPC. Remarkably, 3MA
turns out to be a proper extension of IPC. Consider the formulas χ and ρ, which are
defined as follows.

1. χ := (¬p ∨ ¬q),
2. ρ := [(¬¬χ → χ) → (¬¬χ ∨ ¬χ)] → (¬¬χ ∨ ¬χ).

Clearly, ρ is IPC-invalid. We use r for Kleene realizability. In his classical paper [9],
Rose showed that ρ is uniformly realizable; that is,

∃e ∀σ∈cSub N |H e r ρσ .

Thus, Rose refuted a conjecture of Kleene that a propositional formula is IPC-
provable if all its arithmetical instances are (truly and classically) realizable. Note
the amazing fact that one and the same realizer realizes all instances! Inspecting
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the proof one sees that only a small part of classical logic is involved in the verifi-
cation of realizability: Markov’s Principle. See McCarthy’s paper [7] for a detailed
analysis. Thus we obtain

∃e ∀σ∈cSub HA + MP ` e r ρσ .

Since provable realizability in HA + MP implies provability in MA, we find that
ρ ∈ 3MA.

The questions we have been asking for propositional logic can also be asked for
predicate logic. De Jongh, in an unpublished manuscript of 1969, proved complete-
ness for Intuitionistic predicate logic IQC for interpretations in HA. For an abstract
see [1]. Leivant in his thesis [6] proves uniform completeness of IQC for 50

2-
substitutions with respect to HA. Finally, van Oosten gave a full semantical proof
of de Jongh’s Completeness Theorem in his paper [8].

Returning to the propositional case, we end this section with a theorem of Gar-
gov that in rather general circumstances the disjunction property for U implies the
disjunction property for the propositional logic 3U . See Gargov [3].2

Before stating the theorem, we introduce some notations. First we explain Guas-
pari’s witness comparison notation. Suppose A is of the form ∃x A0x and B is of
the form ∃y B0 y. Suppose further that x is not free in B and y is not free in A. (If
A and B do not satisfy the variable conditions, we take suitable α-variants that do.)
We will write

1. A ≤ B :↔ ∃x (A0x ∧ ∀y<x ¬B0 y);
2. B < A :↔ ∃y (B0 y ∧ ∀x≤y ¬A0x).

We will use ‘�U ’ for the arithmetization of provability in U . We will write ‘x · y’
for Kleene application. Specifically, ‘x · y = z’ means ∃u (Txyu ∧ Uu = z).

Theorem 2.2 Suppose that U is an RE arithmetical theory strong enough to have
the following property:

1. if e · n = m and m 6= k, then U ` e · n = m ∧ e · n 6= k.3

Suppose further that U has the disjunction property. Then 3U has the disjunction
property.

Proof Suppose U satisfies the conditions of the theorem. Suppose 3U ` ϕ ∨ ψ .
Consider any two closed substitutions σ and τ . For any natural number n, we define

ρn(p) := (sg(n · n) = 0 ∧ σ(p)) ∨ (sg(n · n) = 1 ∧ τ(p)).

We define a recursive function E as follows.

E(n) :=

{
0 if �Uϕ

ρn ≤ �Uψ
ρn

1 if �Uψ
ρn < �Uϕ

ρn
.

Clearly, E is total. Let e be an index of E . Suppose E(e) = 0. Then e · e = 0, and,
hence, U ` e · e = 0. By the definition of E , we have U ` ϕρe . On the other hand,
U ` e · e = 0 → (pρe ↔ pσ ). So U ` ϕσ . Similarly, if E(e) = 1, we find that
U ` ψτ . Thus, for all σ and τ , either U ` ϕσ or U ` ψτ .

Up to this point our proof was constructive. By classical reasoning, we conclude
that ϕ ∈ 3U or ψ ∈ 3U . �

Gargov’s Theorem is paradigmatic for the fact that it is possible to prove properties
of propositional logics of theories without having a characterization of those logics.
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Question 2.3

1. Can we prove an analogue of Theorem 2.2 for 3◦

U ?
2. Can we make the proof of Theorem 2.2 constructive? I conjecture no.
3. Does Theorem 2.2 work for extensions of iQ, the constructive version of

Robinson’s Arithmetic? I think the answer must be yes. Specifically, I think
that the classical proof that one can interpret I10 +�1 in Q should be trans-
ferable to the constructive case. If this is true, we can use this interpretation
to obtain the desired result.

3 An Essential Example

In this section we produce an example to the effect that there is a theory T that
separates 3 and 3◦ in an essential way. The following theorem is the central result
that immediately yields the desired example.

Theorem 3.1 There is a consistent extension U of HA and an infinite open substitu-
tion σ such that σ witnesses the uniform completeness of IPC for open substitutions
with respect to every consistent extension V of U. In other words, σ is an open substi-
tution such that, for every consistent extension V of U, we have IPC ` ϕ ⇔ V ` ϕσ .

We obtain the desired example by taking T := U + s-ET, where U is the theory
provided by Theorem 3.1. Clearly, every consistent extension W of T will satisfy
3W = CPC and, by Theorem 3.1, 3◦

W = IPC.
To prove the theorem, we need a lemma about the relationship between IPC and

IQC.

Lemma 3.2 Suppose IPC 0 ϕ, where ϕ is a formula in Ep = p0, . . . , pn−1. Then
IQC is consistent with ¬ ∀x0, . . . , xn−1 ϕ(P(x0), . . . , P(xn−1)).

Proof Suppose IPC 0 ϕ. Let K be a finite Kripke model for propositional logic
with root b such that b 1 ϕ. We transform K into a model K∗ for predicate logic
with root b∗ such that

b∗ 
 ¬ ∀x0, . . . , xn−1 ϕ(P(x0), . . . , P(xn−1)).

Roughly, K∗ is the result of putting lots of copies of K together.
1. The nodes of K∗ are the finite, nonempty, sequences 〈k0, . . . , km−1〉 of nodes

of K . We write lth(〈k0, . . . , km−1〉) := m.
2. b∗

:= 〈b〉.
3. σ � τ :⇔ lth(σ ) ≤ lth(τ ) and ∀i < lth(σ ) σ (i) � τ(i).
4. D(σ ) := lth(σ ) × n. (Remember that we took Ep = p0, . . . , pn−1. Alter-

natively, we could have taken D(σ ) := ω × n, thus obtaining a model with
constant domains.)

5. σ 
 P(〈i, j〉) :⇔ σi 
 p j . Here we assume that 〈i, j〉 ∈ D(σ ).
It is easy to see that K∗ is a Kripke model for IQC. We have to show that, for every
σ ,

σ 1 ∀x0, . . . , xn−1 ϕ(P(x0), . . . , P(xn−1)).

Consider any σ and let ` := lth(σ ). It is clearly sufficient to show

σ ∗ 〈b〉 1 ϕ(P(〈`, 0〉), . . . , P(〈`, n − 1〉)).

Consider the submodel K∗
[σ ∗ 〈b〉] generated by σ ∗ 〈b〉. We view this model as

a propositional model where we identify the propositional variables p0, . . . , pn−1
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with P(〈`, 0〉), . . . , P(〈`, n − 1〉). It is easy to see that the projection function
(·)` : 〈k0, . . . , k`, . . . , km−1〉 7→ k`, where ` < m, is a p-morphism from the model
so conceived to K . This immediately gives us the desired fact. �

Now we may prove the theorem.

Proof Leivant in his thesis [6] proves uniform completeness of IQC for 50
2-

substitutions with respect to HA. Combining Leivant’s result with Lemma 3.2, we
find a 50

2-predicate Q such that, for any ϕ(p0, . . . , pn−1) such that IPC 0 ϕ, we
have

HA 0 ¬¬ ∀x0, . . . , xn−1 ϕ(Q(x0), . . . , Q(xn−1)).

We can now take as our substitution σ(pi ) := Q((x)i ). Here (·)i is the projection
function for an appropriate sequence coding, setting the value 0 in case i is big-
ger than or equal to the length of the sequence coded by x . Consider the theory
U := HA + {¬∀x ϕσ | IPC 0 ϕ}. If U were inconsistent, then there would be for-
mulas ϕ0, . . . , ϕk−1 such that, for each j < k, IPC 0 ϕ j and HA ` ¬

∧
j ¬∀x ϕσj .

In other words, HA ` ¬¬
∨

j ∀x ϕσj . It follows that HA ` ¬¬∀x
∨

j ϕ
σ
j . Hence,

by the properties of σ , IPC `
∨

j ϕ j , and so, for some j < k, IPC ` ϕ j . Quod non.
It is clear that every consistent extension V of U satisfies de Jongh’s Theorem for

open substitutions. �

Since HA proves the decidability of IPC, our theory U is in fact the same as HA
plus all sentences of the form ∀ Ep∈50

2 (ϕ Ep → �IPCϕ), where ϕ is a propositional
formula. Here the propositional quantifier is justified using a 50

2-truth predicate.
Thus, we have established that HA plus a version of the completeness of propositional
logic is consistent.

4 The Method of Attempted Counterexamples

We will explore an argument to show that 3◦

U = 3U . The form of the argument is
quite general, but, regrettably, the nontrivial applications are, until now, quite limited.
In fact application to MA is the only nontrival example I have.

The idea is as follows. Consider an open substitution τ . We want to replace it by
a closed one that behaves in ways that are “sufficiently similar.” To realize this, we
replace the free variable in τ by (the paraphrase of) an “attempted counterexample”
(AC), say c. The partial constant is such that if T proves (ϕτ )(c), then T proves
∀x ϕτ .

Here is a more precise presentation of the strategy. Consider a theory T . Suppose
T is an arithmetical theory extending HA. Let Bx be a formula with only x free. We
say that Ax , with only x free, is B-AC if and only if

1. T ` ∀x, y ((Ax ∧ Ay) → x = y);
2. whenever T ` ∀x (Ax → Bx), then T ` ∀x Bx .

Example 4.1 Suppose T 0 Bn. Then it is easy to see that x = n is B-AC. So the
B-AC property is mainly interesting when, for all n, T ` Bn.

We say that T has the AC-property if, for every Bx , there is a B-AC Ax . If we
only have AC-formulas for the elements of a class 0, we will speak about the 0-AC
property. Here is the desired application of the AC-property.

Theorem 4.2 Suppose T has the AC-property; then 3◦

T = 3T .
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Before giving the proof, we formulate a convention. In this section, we will assume
that open substitutions involve at most one free variable. This assumption does not
restrict the generality of our results, since we are looking at theories that have coding
of sequences.

Proof We already know that 3◦

T ⊆ 3T . For the converse, suppose ϕ ∈ 3T .
Consider an open substitution σ . To show: T ` ϕσ .

Suppose Ax is AC for ϕσ x . Define σ̃ by pσ̃ := ∀x (Ax → pσ x). Note that σ̃ is
closed.

We claim that T ` Ay → (pσ y ↔ pσ̃ ). Reason in T . Suppose Ay. First suppose
pσ̃ . It is immediate that we obtain pσ y. Conversely, suppose pσ y. Consider any
x and suppose Ax . It follows that x = y, and, hence, pσ x . We may conclude that
∀x (Ax → pσ x), that is, pσ̃ .

It follows, by induction on ψ , that T ` Ay → (ψσ y ↔ ψ σ̃ ). Since ϕ ∈ 3T and
since σ̃ is closed, we have T ` ϕσ̃ . Ergo, T ` ∀y (Ay → ϕσ y). Since A is an AC
for ϕσ , we find T ` ∀y ϕσ y. We conclude that ϕ ∈ 3◦

T . �

A formula B is T -stable if T ` ¬¬ B → B. So B is T -stable if and only if B is
T -equivalent to a negation. The next theorem articulates a basic insight.

Theorem 4.3 Every T -stable Bx has a B-AC formula Ax in T .

Proof We define Ax := (¬Bx ∧ ∀y<x By). The uniqueness clause is clear. Sup-
pose T ` ∀x (Ax → Bx). It follows that T ` ∀x (∀y<x By → ¬¬ Bx). Hence,
by stability and well-founded induction, T ` ∀x Bx . �

Note that Theorem 4.3 seems pretty useless. In the case of PA, where all formulas
are stable, we already know that3◦

PA = 3PA. Fortunately, an adaptation of the proof
of Theorem 4.3 will show that MA has the full AC-property, and so, 3◦

MA = 3MA.

Example 4.4 Let U be HA plus s-ET, that is, sentential excluded third. Consider
Cx := ∃y T xxy ∨ ¬∃y T xxy. Suppose we have a C-AC Ax .

Reason in U . Suppose Ax . By the uniqueness clause from the definition of
C-AC, it follows that ¬ ∀y (Ay → Cy) implies ¬ (Ax → Cx). However, to-
gether with Ax this implies ¬ C(x), which is a contradiction. Hence, by s-ET we
find ∀y (Ay → Cy). Using Ax again we get Cx . Thus, we may conclude that
(Ax → Cx) without any assumptions.

So U ` ∀x (Ax → Cx). Since A is C-AC, U ` ∀x Cx . This, however, is false
(consider realizability). So U does not have the AC-property.

5 Markov’s Arithmetic

In the present section we study Markov’s Arithmetic. We prove that MA has the
AC-property.

5.1 General facts In this subsection, we provide some general facts about MA.
First we provide two characterizations of MA.

Theorem 5.1 We have
1. MA ` A iff, for some n, HA + MPPR ` n r A;
2. MA ` A iff, for some n, PA ` n r A.
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The proof is just a minor adaptation of the proof of Troelstra [11], Theorem 3.2.25.

Proof Suppose MA ` A. Since all principles of MA are realizable over HA+MPPR,
we find HA + MPPR ` n r A.

Suppose HA + MPPR ` n r A. Since HA + MPPR is included in MA, we find
MA ` n r A. Hence, MA ` A.

Suppose HA + MPPR ` n r A. Then, clearly, PA ` n r A.
Suppose PA ` n r A. Over HA + MPPR, the formula n r A is equivalent to a

negative formula, say B. So PA ` B. Since, by the double negation translation, PA
is conservative over HA with respect to negative formulas, we find HA ` B. Thus,
HA + MPPR ` B and, hence, HA + MPPR ` n r A. �

A propositional formula ϕ is effectively realizable if there is a recursive function F
such that, for all closed substitutions σ , N |H F(σ ) r ϕσ .

Theorem 5.2 All ϕ in 3MA are effectively realizable.

Proof We apply Theorem 5.1(2). Take F(σ ) to be the number n provided by the
smallest PA-proof of a sentence of the form n r ϕσ . �

Our next theorem is an immediate consequence of Theorem 2.2, using the fact that
MA has the disjunction property.

Theorem 5.3 3MA has the disjunction property.

5.2 MA has the AC-property In this subsection, we show that MA has the AC-
property. Consider any Cx . We define

D1 Bxe := (∃u (e · x) · 0 = u ∧ ∀v ((e · x) · 0 = v → v r Cx)).
We find, using the Gödel Fixed Point Lemma, a formula Ax such that

D2 MA ` Ax ↔ ¬¬[ ∃p ∃e<p { proofMA(p, e r ∀z (Az → Cz)) ∧

∀q<p ∀ f<q ¬ proofMA(q, f r ∀z (Az → Cz)) ∧

¬ Bxe ∧ ∀y<x Bye } ].
Here we assume that z can be uniquely extracted from a formula of the form z r E .
We can easily arrange this to be the case.

Remember that any formula of the form v r Cx is almost negative. Thus, in the
presence of MPPR it becomes negative (modulo provable equivalence). It follows
that Bxe is an MA-stable formula. We will show that A is C-AC; that is,

1. MA ` ∀x, y ((Ax ∧ Ay) → x = y),
2. MA ` ∀x (Ax → Cx) ⇒ MA ` ∀x Cx .

The uniqueness (1) is easy to see. We prove (2). Suppose that we have MA `

∀x (Ax → Cx). Then we can find a proof p and a number e such that p witnesses
that MA ` e r ∀z (Az → Cz). We pick p? and e? such that p? is smallest with this
property and e? is the witness produced by p?. By 6-completeness, we find

MA ` proofMA(p?, e? r ∀z (Az → Cz)) ∧

∀q<p? ∀ f<q ¬ proofMA(q, f r ∀z (Az → Cz)).
(1)

Hence, from D2, we have

MA ` Ax ↔ ¬¬(¬Bxe? ∧ ∀y<x Bye?). (2)
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On the other hand, we have MA ` e? r ∀z(Az → Cz). Spelling this out we find that

MA ` ∀x ∀y (y r Ax → (∃u (e? ·x) · y = u∧∀v ((e? ·x) · y = v → v r Cx))). (3)

Since Ax is a negation, we have MA ` Ax ↔ 0 r Ax . Hence,

MA ` ∀x (Ax → (∃u (e? · x) · 0 = u ∧ ∀v ((e? · x) · 0 = v → v r Cx))). (4)

In other words, by D1, we have

MA ` ∀x (Ax → Bxe?). (5)

Comparing Equations (2) and (5), we find MA ` ∀x ¬Ax . Hence, by Equation (2),

MA ` ∀x (∀y < x Bye? → ¬¬ Bxe?). (6)

Hence, using the stability of B, we obtain MA ` ∀x Bxe?. Thus, putting
f ? := 3w.((e? · w) · 0), we find MA ` f ? r ∀x Cx . Ergo, applying ECT0 in
MA, we have MA ` ∀x Cx . This completes the proof that 3◦

MA = 3MA.

Remark 5.4 Note that we use many special features of MA. For example, the proof
does not seem to go through if we replace ECT0 by CT0. The proof does generalize
to any RE extension U of MA that is closed under the rule, if U ` E , then, for some
n, U ` n r E .

6 Structure on Open Substitutions

To simplify inessentially, let’s suppose that all open substitutions only involve one
arithmetical variable. We consider substitutions of a fixed finite Ep. We fix some
theory T . We define

1. σ vT τ iff, for some primitive recursive f , we have

T ` ∀x
∧

p∈ Ep(p
σ (x) ↔ pτ ( f x));

2. (σ tT τ)(p)(x) := (∃z ((x = 2z ∧ pσ (z)) ∨ (x = 2z + 1 ∧ pτ (z))).
We will suppress the subscript T as long as T is clear from the context. Clearly, if
σ vT τ , then T ` ∀x ϕτ (x) → ∀x ϕσ (x). We also have

T ` ∀x ϕσtτ
↔ (∀x ϕσ ∧ ∀x ϕτ ).

It is easy to see that t is the supremum of v. We define further:
1. ϕ is o-exact for T iff there is an open Ep-substitution σ such that, for all Ep-

formulas ψ , T ` ψσ iff 3◦

T ` ϕ → ψ ;
2. we will say that the pair 〈σ, ϕ〉 is an o-exact pair for T if σ witnesses the

o-exactness for T of ϕ.

Theorem 6.1

1. Let 〈σ, ϕ〉 and 〈τ, ψ〉 be o-exact for T . Suppose σ vT τ . Then3◦

T ` ϕ → ψ .
2. Suppose 〈σ, ϕ〉 and 〈τ, ψ〉 are o-exact. Then we have 〈σ, ϕ〉 + 〈τ, ψ〉 :=

〈σ t τ, ϕ ∨ ψ〉 is o-exact. Thus, o-exact formulas are closed under disjunc-
tion.

Proof Ad (1). We have

3◦

T ` ψ → χ ⇒ T ` ∀x χ τ

⇒ T ` ∀x χσ

⇒ 3◦

T ` ϕ → χ.
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Ad (2). We have

3◦

T ` (ϕ ∨ ψ) → χ ⇔ 3◦

T ` ϕ → χ and 3◦

T ` ψ → χ

⇔ T ` ∀x χσ and T ` ∀x χ τ

⇔ T ` ∀x χσ ∧ ∀x χ τ

⇔ T ` ∀x χσtτ .

�

Notes

1. Alternatively, we can define the logics via the associated Lindenbaum Heyting algebras.
Let H be any Heyting algebra. We define

3H := {ϕ | ∀σ : PROP→H ϕσ = >}.

Note that if there is an embedding of H into G, then 3G ⊆ 3H . Let L(U ) be the
sentential Lindenbaum algebra of U and let L◦(U ) be the formula Lindenbaum algebra
of U . We have 3U = 3L(U ) and 3◦

U = 3L◦(U ).

2. In fact, Gargov’s theorem is stated for the provability logics of extensions of HA. We
give it for propositional logics of a wider class of theories. Gargov gives credit to Kipnis
for one of the main ideas of his proof. This idea is contained in Kipnis’s proof that the
propositional logic of effective realizability has the disjunction property. See Kipnis [5].

3. Certainly, any theory extending iS1
2, the constructive version of Buss’s theory S1

2, has
the desired property, but clearly a much weaker theory will suffice. Note that we may
adapt the definition of Kleene’s T -predicate to make the property easy to obtain. Also
we could use a relative interpretation to enable us to work in a weaker theory.
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