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Interpolation and the
Interpretability Logic of PA

Evan Goris

Abstract In this paper we will be concerned with the interpretability logic of
PA and in particular with the fact that this logic, which is denoted by ILM, does
not have the interpolation property. An example for this fact seems to emerge
from the fact that ILM cannot express 61-ness. This suggests a way to extend
the expressive power of interpretability logic, namely, by an additional operator
for 61-ness, which might give us a logic with the interpolation property. We
will formulate this extension, give an axiomatization which is modally complete
and arithmetically complete (although for proofs of these theorems we refer to
an earlier paper), and investigate interpolation. We show that this logic still does
not have the interpolation property.

1 Introduction

In this paper1 we will be concerned with what are known as interpretability logics
(Visser [16]). These are nonstandard extensions of the well-known modal logic GL.
As is well known, we can interpret modal formulas by reading the propositional vari-
ables as arbitrary arithmetical sentences and the � as T -provable for some arithmeti-
cal theory T . GL turns out to be a complete axiomatization for this semantics (see
Solovay [15] and Boolos [4]). This idea can be naturally extended by introducing
new modal operators and giving them an arithmetical meaning. One such extension
is interpretability logic. The language of this logic contains, besides the �, a binary
modal operator B (see [16], Visser [17], and Japaridze and de Jongh [12]) (we in-
troduce the arithmetical meaning of this operator below). Although GL enjoys the
interpolation property [4], this feature, although it does occur sometimes (see Are-
ces et al. [1]), is very special for interpretability logics (indeed, another difference is
that GL seems to be rather independent of the theory T , whereas we obtain different
interpretability logics when we vary T ).
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As interpolation can be seen as to how well behaved a proof system is, and the
modal study of interpretability logics is already rather complex (de Jongh and Velt-
man [5], Joosten and Goris [13]), it might be of interest to determine extensions
that do have interpolation.2 We will examine this question in this paper for the case
T = PA. The interpretability logic of PA, which is defined below, is denoted by ILM.

As we will see, a counterexample due to Ignatiev for interpolation in ILM sug-
gests that extending the language of interpretability logic with an additional operator
that expresses 61-ness might give us a way to formulate a logic that can talk about
interpretability and has the interpolation property. This “suggestion” is exactly what
we will investigate in this paper: we formulate such an extension, give a modally
complete and arithmetically complete axiomatization, and investigate interpolation.
However, and this is the main result of this paper, we will show that we still do not
have the interpolation property.

As for the failure of interpolation of this extension the paper is self contained.
Proofs of the two completeness theorems (arithmetical and modal) can be found in
Goris [9].

The organization of this paper is as follows. In Section 2 we introduce inter-
pretability logic and mention the main results and agree on some notations in Sec-
tion 3. In Section 4 we define the arithmetical reading of interpretability logic. In
Section 5 we give some more detailed motivation for our study and present an ex-
ample for failure of interpolation in ILM. In Section 6 we formulate the extension
of interpretability logic with an additional operator for 61-ness. We give a modally
complete and arithmetically complete axiomatization, which we call ILM(S),3 prove
that this logic does not have the interpolation property, and indicate the gap in the
expressiveness of ILM(S) that seems to be the reason for this.

2 Preliminaries: Interpretability Logics

Definition 2.1 (IL-formulas) IL-formulas are built up using some fixed set of
propositional variables, the propositional connectives, a unary modal operator �,
and a binary modal operator B.

With regard to priorities, B behaves similarly as →, although B binds stronger. So
A ∧ B B C means (A ∧ B)B C and A → B B C means A → (B B C). As usual,
we use ♦ as an abbreviation for ¬�¬. (As we will see later, we can use �A as an
abbreviation for ¬A B ⊥.)

Let us sketch how we can extend the arithmetical meaning of standard modal
formulas to IL-formulas (a precise definition will be presented below). If A and B
are IL-formulas and A∗ and B∗ arithmetical sentences, the “arithmetical meaning”
of A and B, respectively, then the arithmetical meaning of A B B is a formalization
of

PA + A∗ interprets PA + B∗.

In general, a theory T interprets a theory S if there exists a translation of formulas
of S into formulas of T such that T proves all the (translations of the) theorems of
S. For a precise formulation see [12] or [17]. We will not bother with this here since
we will switch to another, but equivalent over PA, arithmetical reading of B anyway.

Definition 2.2 (IL) With IL we will refer to the following set of axiom schemata.
L1 �(A → B) → (�A → �B),
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L2 �A → ��A,
L3 �(�A → A) → �A,
J1 �(A → B) → A B B,
J2 (A B B) ∧ (B B C) → A B C ,
J3 (A B C) ∧ (B B C) → A ∨ B B C ,
J4 A B B → (♦A → ♦B),
J5 ♦A B A.

We obtain the logic IL by taking as axioms all instances of the above schemata,
the classical propositional tautologies in the enriched language, and close off under
necessitation and modus ponens. We write IL ` A for A ∈ ‘the logic IL’. Without
danger of confusion we speak of IL when we mean the logic IL.

Before we move on, let us state a well-known but important lemma (for a proof see
[12]).

Lemma 2.3

1. IL ` A B A ∧ �¬A.
2. IL ` ♦A ∨ A B A.
3. IL ` �A ↔ ¬A B ⊥.

Note that by Item 3 above, when working with extensions of IL, we can treat � as a
defined symbol.

If T is an arithmetical theory then, as is the case in provability logic, we say
that an IL-formula A is T -valid when, independent of the choice of the arithmetical
meaning of the propositional variables, A translates to a T -provable formula. When
T is understood, these formulas are also referred to as always provable formulas or
as valid formulas. All this will be made more precise in Section 4 below.

For certain theories T , the class of T -valid IL-formulas can be axiomatized by
adjoining to IL appropriate axiom schemata. PA is a theory for which such a schema
has been obtained.

Definition 2.4 (ILM, M) With M we denote the schema,

A B B → A ∧ �C B B ∧ �C.

ILM is the set of schemata IL + {M} and we obtain the logic ILM by taking as ax-
ioms all instances of ILM, the classical propositional tautologies, and close off under
necessitation and modus ponens. Again we write ILM when we mean the logic ILM.

We can evaluate IL-formulas on Veltman frames and in Veltman models.

Definition 2.5 (Veltman Frame) A Veltman frame, or simply a frame, is a triple
F = 〈W, R, S〉 where

1. 〈W, R〉 is a GL-frame (in other words, W is a set and R is a transitive, con-
versely well-founded binary relation on W );

2. S is a ternary relation on W ; with Sw we designate the binary relation
{(a, b) | (w, a, b) ∈ S}; additionally, we require for all a, b, c, w, t that the
following holds:
(a) aSwb ⇒ wRa & wRb,
(b) wRa Rb ⇒ aSwb,
(c) wRa ⇒ aSwa.
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Remark Usually one postulates in addition that each Sw is transitive. For technical
reasons we translated this property into the forcing relation defined below. We cannot
say much about this at this point; see the paragraphs at the end of Subsection 6.1.

Definition 2.6 (Veltman model) A Veltman model, or simply a model, is a quadru-
ple M = 〈W, R, S,〉 where 〈W, R, S〉 is a Veltman frame and  is a forcing re-
lation between elements of W and IL-formulas that satisfies the following require-
ments.

1. w  A B B iff for each wRu such that u  A, there exists a v such that
u(Sw)∗v and v  B (here (Sw)∗ is the reflexive, transitive closure of Sw).

2.  commutes with Boolean connectives, for example, w  A ∧ B iff w  A
and w  B.

Notice that by the equivalence �A ↔ ¬AB⊥ we obtain the usual forcing condition
for �.

We say that an IL-formula A is valid on a frame F = 〈W, R, S〉, and write
F |H A, whenever for any Veltman model M = 〈W, R, S,〉 (we say that such
a model is based on F) and any m ∈ M we have m  A.

Definition 2.7 (ILM-frame, ILM-model) A frame that additionally satisfies the
following property is called an ILM-frame.

∀waa′b (a(Sw)∗a′ Rb ⇒ a Rb).

An ILM-model is a Veltman model that is based on a ILM-frame.

Theorem 2.8 (Modal completeness of IL and ILM [6], [12]) For any modal for-
mula A we have the following.

1. A is valid on all frames iff IL ` A.
2. A is valid on all ILM-frames iff ILM ` A.

3 Notations

In this section we agree on some notations and conventions. Uppercase charac-
ters A, B,C, . . . range over modal formulas. The lowercase characters a, b, c, . . . ,
p, q, r, . . . denote propositional variables and nodes in frames and models (no con-
fusion will arise).

For models M we will use the notation M for both the model and its domain,
similarly for frames. If F = 〈W, R, S〉 then we write W F for W , RF for R, SF for
S.

If A is a modal formula then �A =def �A ∧ A. When we want to apply an
operator, say �, to all formulas in some finite set 0 then we write �0.

Finally one should note that some objects occurring in this paper carry slightly
different names than they did in [9]. That is, ILM(S) was 61ILM, SL was 61L,
ILS-formula was 61ILM-formula, and M(S) was M(61).

4 Arithmetical Reading of Modal Formulas

All the modal logics presented in this paper have an arithmetical reading. Although
we are mainly concerned with interpolation in the modal logics, many concepts are
motivated out of the arithmetical semantics of these logics. Therefore we elaborate
a bit on the arithmetical side in this section.
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Lowercase Greek letters like ϕ and ψ denote first-order formulas with identity in
the language of PA: 〈+,×, 0, 1〉. As usual, we take → and ∀ as logical symbols, fix
⊥ to be some provably false sentence (like 0 = 1), and treat the other symbols as
defined. Boldface characters like n and w denote fixed (standard) natural numbers.
Numerals are canonical representations of standard natural numbers in the language
of PA. If n is a natural number, then with n we denote its corresponding numeral and
it is recursively defined as follows: 0 = 0, n + 1 = n + 1. Normal characters like n
and w are (just) variables.

We assume a standard coding of the syntax of PA in PA (see, for example, [4]). If
x is a syntactic object, then we denote by pxq its code. For the different syntactic ob-
jects we have11-formulas that define the codes of those objects in PA. For example,
we have a 11-formula Formula(x), which is provable of n if and only if n = pϕq
for some formula ϕ. With ¬̇ we denote a primitive recursive function such that for
each formula ϕ, ¬̇ pϕq = p¬ϕq. Similar conventions hold for the other Boolean
connectives. It is well known that we can set things up such that PA can prove the
recursive properties of syntactic objects. For example, PA proves that when x is a
formula, then so is ¬̇x .

We let �(x) be a standard Gödel provability predicate [4]. So, in particular, �(x)
is a 61-formula, provably false of any n which is not the code of some formula and
for which we have

PA ` ϕ ⇔ PA ` �(pϕq). (1)
In what follows, for readability, we write �pϕq for �(pϕq), or even more generally,
we will identify standard natural numbers with their corresponding numerals. Be-
sides (1), the following conditions (Löb derivability conditions [4]) are well known.
For all formulas ϕ,ψ ,

1. PA ` �pϕq → �p�pϕqq,
2. PA ` �p(ϕ → ψ)q → (�pϕq → �pψq),
3. PA ` �p�pϕq → ϕq → �pϕq.

When working with formalized provability, generalized versions of the above con-
ditions are often necessary. For us the following two observations about �(x) are
sufficient. For one we have the following generalization of Item 2.

PA ` �(x→̇y) → (�(x) → �(y)).

And additionally we have that if t (x1, . . . , xk) is a term in the language {→̇, p⊥q}

and for all ϕ1, . . . , ϕk , t (pϕ1q, . . . , pϕkq) is the code of some propositional tautol-
ogy, then

PA `

∧
1≤i≤k

Formula(xi ) → �(t (x)).

Stated informally, the above says that we can provably do any propositional reason-
ing under the �.

Using this standard provability predicate �(x) we can translate IL-formulas that
only contain the � as a modal operator to arithmetical sentences. To give an arbi-
trary IL-formula arithmetical meaning we will use a formalization of the following
metamathematical concept.

Definition 4.1 (51-conservativity) Let S and T be finite extensions of PA. We say
that S is 51-conservative over T if for any 51-sentence π we have that S ` π
implies T ` π .
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In order to formalize this notion we define

61(x) =def ∃y(61!(y) ∧ �(x↔̇y)).

Here 61!(x) is a 11-formula that defines the codes of strict 61-formulas. And we
define a binary predicate B, formalizing 51-conservativity, as follows:

x B y =def ∀z(51(z) → (�(y→̇z) → �(x→̇z))),

where 51(x) is a shorthand for 61(¬̇x).
Now we can give arithmetical meaning to IL-formulas as follows. An arithmetical

translation is a function ∗ from modal formulas A to arithmetical sentences A∗ that
satisfies the following.

1. ⊥
∗

= ⊥,
2. (A → B)∗ = A∗

→ B∗,
3. (A B B)∗ = pA∗q B pB∗q.

Notice that ∗ is uniquely determined when we know p∗ for all propositional variables
p and that (�A)∗(= (¬AB⊥)∗) is equivalent to �(pA∗q). An ILS-formula is arith-
metically valid, or simply valid, when PA ` A∗ for any arithmetical translation ∗.
The following theorem is the main motivation behind ILM.

Theorem 4.2 (Arithmetical completeness of ILM [3], [14]4) ILM ` A if and only
if for all ∗, PA ` A∗.

5 Motivation

In this section we analyze interpolation in ILM. As a preparation let us see why
(each instantiation of) the M schema is true. That is, we show that for all first-order
formulas ϕ, ψ , and η,

N |H pϕq B pψq → pϕ ∧ �pηqq B pψ ∧ �pηqq. (2)

Suppose pϕq B pψq. Also suppose that π is some 51-sentence provable in
PA+ψ ∧�pηq. Then PA+ψ proves the51-sentence �pηq → π , and thus PA+ϕ
proves �pηq → π as well; conclusion: PA + ϕ ∧ �pηq proves π .

Now let us consider a well-known counterexample, due to Ignatiev, for interpola-
tion in ILM. We have

ILM ` �(p ↔ �q) → (r B s → r ∧ p B s ∧ p), (3)

but for any I , with propositional variables among {p}, we do not have both

ILM ` �(p ↔ �q) → I

and
ILM ` I → (r B s → r ∧ p B s ∧ p).

For a proof see [17].5

Suppose we could express 61-ness by an IL-formula with one propositional vari-
able, say 61(p). The above proof that the M schema is true actually shows that the
following schema is true:

61(C) → (A B B → A ∧ C B B ∧ C).

Moreover, that argument can be carried out in PA and that shows that these principles
are arithmetically valid. Since �(C ↔ �D) → 61(C) is arithmetically valid as
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well, and ILM is known to prove all arithmetically valid formulas, we would have an
interpolant for (3) (namely, 61(p)).

The rest of this paper is devoted to adjoining an operator to ILM, for which we
stipulate that its arithmetical meaning is 61-ness.

6 The Logic ILM(S)

In this section we develop a modal logic which can talk about51-conservativity and
61-ness. We give a modally complete and arithmetically complete axiomatization
and give a counterexample for interpolation.

Definition 6.1 (ILS-formulas, SL-formulas) ILS-formulas are built up using some
fixed set of propositional variables, the propositional connectives, unary modal oper-
ators � and 61, and the binary operator B. ILS-formulas that do not contain B will
be referred to as SL-formulas.

Definition 6.2 (SL) With SL we denote the following set of schemata.
L1 �(A → B) → (�A → �B),
L2 �A → ��A,
L3 �(�A → A) → �A,
S1 61 A ∧61 B → 61(A ∧ B),
S2 61 A ∧61 B → 61(A ∨ B),
S3 61 A ∧ �(A ↔ B) → 61 B,
S4 61 A → �61 A,
S5 61⊥,
S6 61�A,
S7 6161 A,
S8 61 A → �(A → �A).

By translating SL-formulas in the obvious way to arithmetical sentences (that is, by
translating the new modal operator 61 to a formula 61(x), which asserts that x is
the code of a 61-formula) it is shown in [9] that SL is arithmetically complete. Also
let us note that SL is more expressive than GL. This follows immediately from the
fact that GL has the interpolation property whereas SL does not (this is shown in
[9] but also follows from Section 6.1 below). So in particular the implication in S8
does not reverse. (This latter fact already follows from a result by Beklemishev [2].)
However, in this paper will we skip an explicit treatment of SL and immediately
move on with the full range of ILS-formulas.

Definition 6.3 (ILM(S)) ILM(S) is the set of schemata IL + SL together with the
schema M(S):

61C ∧ (A B B) → A ∧ C B B ∧ C.

The logic ILM(S) is the smallest set of ILM(S)-formulas which contains all instances
of all the ILM(S) schemata and is closed under modus ponens and necessitation. We
write ILM(S) ` A, or ` A, for A ∈ the logic ILM(S).

We will evaluate ILS-formulas on Veltman frames and Veltman models. The appro-
priate Veltman frames for ILM(S) turns out to be the class of ILM-frames.

Definition 6.4 (ILM(S)-frame, ILM(S)-model) An ILM(S)-frame is an ILM-
frame. An ILM(S)-model is a quadruple 〈W, R, S,〉 such that 〈W, R, S〉 is an
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ILM(S)-frame and  is a relation between elements of W and ILS-formulas that
satisfies the following requirements.

1. For the Boolean connectives and B the same clauses as for Veltman models
apply.

2. w  61 A iff for all w′ such that w(R ∪
⋃

x∈M Sx )
∗w′ and all v and u such

that vSw′u, we have v  A ⇒ u  A.

Of course we can talk in this setting of frame validity as well. And we have the
following theorem.

Theorem 6.5 (Modal completeness) ILM(S) ` A if and only if F |H A for any
ILM(S)-frame F.

Proof We will show the soundness direction since we will need it later. For the
completeness direction see [9].

As usual it suffices to show that each instance of an axiom schema is valid on each
ILM(S) frame. So let M = 〈W, R, S,〉 be some model based on an ILM(S)-frame.
Since 〈W, R〉 is a GL-frame, axioms L1, L2, and L3 are known to hold [4].

S1 and S2: Let w ∈ W and suppose w  61 A and w  61 B. Let w′, x, y ∈ W
with w(R ∪

⋃
u∈W Su)

∗w′ and x Sw′ y. In case x  A ∧ B then both x  A and
x  B and thus y  A ∧ B. In case x  A ∨ B then x  A or x  B. In the former
case y  A and thus y  A ∨ B. In the latter y  B and thus y  A ∨ B.

S3: Let w,w′, x, y ∈ W and suppose w  61 A, w  �(A ↔ B), w(R ∪⋃
u∈W Su)

∗w′, x Sw′ y, and x  B. From x Sw′ y we get w′ Rx, y and thus by the
M-property for M and/or transitivity of R we get wRx, y. So we get x  A, which
gives y  A and thus y  B.

S4: Let w ∈ W and suppose w  61 A. Let v ∈ W with wRv. We have to show
that v  61 A. So take v′, x, y ∈ W with v(R ∪

⋃
u∈W Su)

∗v′, x Sv′ y, and x  A.
We clearly have w(R ∪

⋃
u∈M Su)

∗v′. And thus, indeed, y  A.

S5: This is clear.

S6: Let w,w′, x, y ∈ W with w(R ∪
⋃

u∈W Su)
∗w′, x Sw′ y, and x  �A. We have

to show that y  �A. So pick z ∈ W with y Rz. By the M-frame property we have
x Rz and thus z  A.

S7: Let w, x, y ∈ W and suppose x Sw y, x  61 A. We will show that y  61 A.
So let y′ be such that y(R ∪

⋃
u∈W Su)

∗y′. We then also have x(R ∪
⋃

u∈W Su)
∗y′

and thus if zSy′ z′ and z  A we obtain from x  61 A that z′  A.

S8: Let w ∈ W and suppose w  61 A. Let x ∈ W with wRx  A. We have
to show that x  �A. So let y ∈ W with x Ry. By Item 2b of the definition of a
Veltman frame we have x Sw y and thus by w  61 A we get y  A.

J1: Letw ∈ W such thatw  �(A → B). Take x ∈ W such thatwRx and x  A.
We have to show that for some y with x(Sw)∗y we have y  B. Since x  A → B
we can take y = x .

J2: Let w ∈ W such that w  (A B B) ∧ (B B C). Take x ∈ W such that wRx
and x  A. We have to show that for some y with x(Sw)∗y we have y  C . Since
w  A B B we find some y′ with x(Sw)∗y′ and y′  B. Thus since w  B B C
there exists some y with y′(Sw)∗y, and thus also x(Sw)∗y, with y  C .
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J3: Let w ∈ W and suppose w  (A B C) ∧ (B B C). Let x ∈ W such that wRx
and x  A ∨ B. We need a y with x(Sw)∗y and y  C . In case x  A we find a
required y using w  A B C and in case x  B we use w  B B C .

J4: Let w ∈ W and suppose w  A B B and w  ♦A. Thus for some x with wRx
we have x  A and thus there exists a y with x(Sw)∗y and y  B. By Item 2a of the
definition of a Veltman frame we get wRy and thus w  ♦B.

J5: Let w, x ∈ W with wRx and suppose x  ♦A. Thus for some y with x Ry we
have y  A. By Item 2b of the definition of a Veltman frame we have x Sw y and thus
we have shown w  ♦A B A.

M(S): Suppose w  61C and w  A B B. If wRx , x  A ∧ C then for some y
with x(Sw)∗y we have y  B. Since w  61C implies that C is “preserved along
Sw” we get y  C . �

An obvious adaption of the definition of an arithmetical translation for IL-formulas
to ILS-formulas gives us the following theorem. A proof can be found in [9] and
is basically a combination of the arithmetical completeness proof for ILM ([14] and
[3]; see also [12]) and the one for HGL [8].

Theorem 6.6 (Arithmetical completeness) ILM(S) ` A if and only if for all arith-
metical translations ∗ we have PA ` A∗.

6.1 Interpolation

Theorem 6.7 (Failure of interpolation) There exist formulas A and B such
that ILM(S) ` A → ¬B but for no formula I which contains only proposi-
tional variables contained in both A and B we have ILM(S) ` A → I and
ILM(S) ` I → ¬B.

Consider the following two formulas.

As = A(p, q, s) =def ¬61q ∧61s ∧ �(s → q) ∧ �(p ∧ q → s),

Br = B(p, q, r) =def ¬61q ∧61r ∧ �(r → q) ∧ �(¬p ∧ q → r).

Before we prove that these formulas constitute a counterexample for the interpola-
tion property, let us see what would be needed for an interpolant to exist. A sufficient
addition for an interpolant is 61-interpolability (61-interpolability was first investi-
gated in [11]), which is formalized by the following first-order formula.

I61(x, y) =def ∃z(61(z) ∧ �(x→̇z) ∧ �(z→̇y)).

Now let ∗ be any arithmetical translation. Let us first make three obvious observa-
tions and prove a lemma.

PA ` A(p, q, s)∗ → I61(pp∗
∧ q∗q, pq∗q). (4)

PA ` B(p, q, r)∗ → I61(p¬p∗
∧ q∗q, pq∗q). (5)

PA ` 61(pq∗q) ↔ I61(pq∗q, pq∗q). (6)

Lemma For all ϕ0, ϕ1, and ψ ,

PA ` I61(pϕ0q, pψq) ∧ I61(pϕ1q, pψq) → I61(pϕ0 ∨ ϕ1q, pψq).
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Proof Reason in PA. Assume that for some σ0, 61(σ0), PA ` ϕ0 → σ0 and
PA ` σ0 → ψ . And assume that for some σ1, 61(σ1), PA ` ϕ1 → σ1 and
PA ` σ1 → ψ . Then PA ` σ0 ∨ σ1 → ψ and PA ` ϕ0 ∨ ϕ1 → σ0 ∨ σ1.
Since 61(σ0 ∨ σ1), this concludes the proof. �

So, by the above lemma,

PA ` I61(p¬p∗
∧ q∗q, pq∗q) ∧ I61(pp∗

∧ q∗q, pq∗q) → I61(pq∗q, pq∗q).

Now by (6) we have

PA ` ¬61(pq∗q) ∧ I61(p¬p∗
∧ q∗q, pq∗q) → ¬I61(pp∗

∧ q∗q, pq∗q).

And thus by (5)

PA ` B(p, q, r)∗ → ¬I61(pp∗
∧ q∗q, pq∗q). (7)

So, combining (4) and (7), if we could express 61-interpolability in ILM(S), by
a formula J (u, v) say, then the formula J (p ∧ q, q) would be an interpolant for
As → ¬Br .

Let us now return to the proof of Theorem 6.7. First let us see that
ILM(S) ` As → ¬Br . On the one hand we have

ILM(S) ` 61s ∧61r → 61(s ∨ r). (8)

On the other hand we have

ILM(S) ` �(p ∧ q → s) ∧ �(¬p ∧ q → r) → �(q → s ∨ r)

and
ILM(S) ` �(s → q) ∧ �(r → q) → �(s ∨ r → q).

Thus
ILM(S) ` As ∧ Br → �(q ↔ s ∨ r). (9)

Combining (8), (9), and S3 it follows that

ILM(S) ` As ∧ Br → 61q,

from which ILM(S) ` As → ¬Br follows at once.
To show that no interpolant exists, the usual approach is to define two models

M and M ′, based on frames for which ILM(S) is sound. Then one shows that for
some m ∈ M and m′

∈ M ′ we have, on the one hand, m  As and m′  Br and
that, on the other hand, m and m′ force exactly the same modal formulas that only
use propositional variables among {p, q}. We will follow this idea. The necessary
machinery is contained in the following definitions and lemmas.

Definition 6.8 (SL-bisimulation) Let M and M ′ be SL-models and P a set of
propositional variables. A binary relation Z ⊆ M × M ′ is an SL-bisimulation with
respect to P if the following conditions hold.

1. If wZw′ then for each p ∈ P , w  p ⇔ w′ ′ p.
2. If wZw′ then for all ŵ, v, u ∈ M , if w(R ∪

⋃
x∈W Sx )

∗ŵ and vSŵu, then
there exist ŵ′, v′, u′

∈ M ′ such that vZv′, u Zu′, w′(R ∪
⋃

x ′∈W ′ Sx ′)∗ŵ′, and
v′Sw′u′.

3. Same as 2 with M and M ′ interchanged.

Definition 6.9 (IL-bisimulation) Let M and M ′ be two models and P a set of
propositional variables. A relation Z ⊆ M × M ′ is an IL-bisimulation with respect
to P if the following conditions hold.



Interpretability Logic of PA 189

1. If wZw′ then for each p ∈ P , w  p ⇔ w′ ′ p.
2. If wZw′ and wRv then there exists v′ such that vZv′, w′ Rv′ and for each u′

with v′(Sw′)∗u′ there exists some u such that u Zu′ and v(Sw)∗u.
3. Same as 2 with M and M ′ interchanged.

If M = 〈W, R, S,〉 is an ILM(S)-model then with M∗ we denote the model
〈W ′, R′, S∗,′

〉, where S∗ is the unique ternary relation on W such that for each
w ∈ W we have (S∗)w = (Sw)∗. We clearly have W = W ′ and R = R′. The next
lemma shows that we also have =′.

Lemma 6.10 Let M = 〈W, R, S,〉 be a model and let M∗
= 〈W, R, S′,′

〉.
Then for any ILS-formula A and any w ∈ W we have w  A if and only if w ′ A.

Proof Induction on A. The cases that A is a propositional variable and the cases for
the Boolean connectives are trivial. So suppose that A ≡ A0 B A1. Let w ∈ W and
suppose w ′ A. We will show that w  A. Let x ∈ W such that wRx and x  A0.
By (IH) we have x ′ A0 and thus for some y with x(S′

w)
∗y we have y ′ A1. Since

S′
w = (Sw)∗ and ((Sw)∗)∗ = (Sw)∗ we also have x(S′

w)
∗y. Also by (IH) we have

y  A1 and thus we are done. The case w  A is even easier.
Now suppose A ≡ 61 B. Let w ∈ W and suppose w  A. We will show w ′ A.

Let w′
∈ W such that w(R ∪

⋃
u∈W S′

u)
∗w′. Suppose x S′

w′ y and x ′ B. Since for
each u ∈ W we have S′

u = (Su)
∗, we have w(R ∪

⋃
u∈W Su)

∗w′. By (IH) we have
x  B and thus y  B. Again by (IH) we get y ′ B and we are done. The case
w ′ A is even easier. �

Lemma 6.11 Let P be a set of propositional variables. Let M = 〈W, R, S,〉

and M ′
= 〈W ′, R′, S′,′

〉 be models and let Z be an IL-bisimulation (respectively,
SL-bisimulation) between M and M ′ with respect to P. Then for any IL-formula
(respectively, SL-formulas) I that only contains propositional variables among P
and all x ∈ M and x ′

∈ M ′ such that x Z x ′, we have x  I if and only if x ′ ′ I .

Proof Let Z be an IL-bisimulation as stated. We proceed with induction on I . The
case that I is a propositional variable and the cases for the Boolean connectives are
trivial. So suppose I ≡ I0 B I1 and suppose that x  I . We will show that x ′ ′ I .
So suppose x ′ R′y′  I0. Now there exists some y ∈ M with x Ry and y Z y′. By
(IH) we have y  I0 and thus for some z with y(Sx )

∗z we have z  I1. For some
z′

∈ M ′ we have y′(S′

x ′)
∗z′ and zZz′. By (IH) we get z′ ′ I1 and we are done. The

case x ′ ′ I goes similarly.
Now suppose that Z is an SL-bisimulation. We proceed with induction on I . The

case that I is a propositional variable and the cases for the Boolean connectives are
trivial. So suppose I ≡ 61 J and suppose that x  I . We will show x ′ ′ I . Suppose
x ′(R ∪

⋃
t ′∈W ′ St ′)

∗ x̂ ′, y′S′

x̂ ′ z′ and y′ ′ J . There exist x̂ , y, and z with y Z y′, zZz′

x(R ∪
⋃

t∈W St )
∗ x̂ and ySx̂ z. By (IH) we get y  J and thus z  J . Again by (IH)

we have z′ ′ J and we are done. �

Before we finish the proof of Theorem 6.7 we prove two more lemmas. In what fol-
lows we will write D = D(p) to indicate all possible occurrences of a propositional
variable p in the formula D. D does not necessarily contain p, and D might contain
more variables different from p. The purpose of this notation is to indicate that with
D(A) we mean the formula that is the result of subsituting A for p in D.
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Lemma 6.12 For any formula D = D(p) we have

ILM(S) ` �(A ↔ B) → (D(A) ↔ D(B)).

Proof Induction on D. Suppose D is a proposition variable q . If q 6≡ p we have
D(A) ≡ D(B). If q ≡ p then D(A) ≡ A and D(B) ≡ B. Thus the claim is obvious
in these cases. The cases for the propositional connectives are trivial.

Suppose D(p) ≡ D0(p)B D1(p). For i ∈ {0, 1} we have by (IH), necessitation,
and L1 that

ILM(S) ` �(A → B) → �(Di (A) ↔ Di (B)).

Thus using J1 we get for i ∈ {0, 1} that

ILM(S) ` �(A → B) → (Di (A)B Di (B)) ∧ (Di (B)B Di (A)).

The claim now follows by J2.
Suppose D(p) ≡ 61 D′(p). By (IH), necessitation, and L1 we have

ILM(S) ` �(A → B) → �(D′(A) ↔ D′(B)).

The claim now follows using S3. �

For a formula D and a propositional variable p, we say that p occurs modalized in
D if any occurrences of p in D are under the scope of a B or 61. (So in particular p
might not occur in D at all.)

Lemma 6.13 Let p be modalized in D = D(p). Then for any formula A of the
form A0 B A1 or 61 A′ we have

ILM(S) ` ��⊥ → (D(A) ↔ D(>)).

Proof First notice that in any case we have ILM(S) ` �⊥ → A (if A ≡ A0 B A1
then this follows by J1 and in case A ≡ 61 A′ this follows using S3 and S5). And
thus

ILM(S) ` �⊥ → �(A ↔ >). (10)

We prove the lemma with induction on D. In case D is a propositional variable q
then since p occurs modalized in D we have that q 6≡ p and thus the claim is clear.
The cases for the propositional connectives are trivial.

Suppose D(p) ≡ D0(p)BD1(p). By (10) and Lemma 6.12 we have for i ∈ {0, 1}

that

ILM(S) ` �⊥ → (Di (A) ↔ Di (>)).

So for i ∈ {0, 1} we have ` ��⊥ → �(Di (A) ↔ Di (>)). Thus by J1 and J3 the
claim follows.

Suppose D(p) ≡ 61 D′(p). By (10) and Lemma 6.12 we have

ILM(S) ` �⊥ → (D′(A) ↔ D′(>)).

Thus ` ��⊥ → �(D′(A) ↔ D′(>)) and thus by S3 the claim follows. �

Proof of Theorem 6.7 Consider Figure 1. There are four models displayed there.
In what follows we will use  for each of the four forcing relations. Straight arrows
indicate R relations, the wavy ones indicate Sw relations, and as we will argue below,
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Figure 1 Two SL-bisimulations w.r.t. {p, q}.

Figure 2 (M ′)∗ = (N ′)∗.

the dotted lines are SL-bisimulations. One easily checks that all four models are
ILM(S)-models (for clarity we have omitted the reflexive S relations) and that

m  Br and n  As .

Let I = I (p, q) be a formula that at most contains the variables p and q . We will
show the following.

m  I ⇔ n  I. (11)
This would imply the theorem since if ILM(S) ` Ar → I → ¬Br then n  I and
therefore m  I . But then m  ¬Br , a contradiction.

By Lemma 6.13 we see that on these models any ILS-formula is equivalent to
a formula with no nested modalities, thus, in particular, equivalent to a Boolean
combination of IL-formulas and SL-formulas. To show (11), it is therefore sufficient
to show that m and n force the same SL-formulas as well as the same IL-formulas.
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In Figure 2 we have depicted the models M ′ and N ′ again but have interchanged
in N ′ the two leftmost nodes so that it is clear that we have

(M ′)∗ = (N ′)∗.

So by Lemma 6.10 we have
m′  I ⇔ n′  I.

Thus by Lemma 6.11 it is sufficient to show that there exist IL-bisimulations with
respect to {p, q} between M and M ′ and between N and N ′, as well as SL-
bisimulations with respect to {p, q} between M and M ′ and between N and N ′, in
both cases connecting m with m′ and n with n′.

It is in order here to remark that M and N are not SL-bisimilar (Definition 6.8)
and thus we really need Lemma 6.10 with these two models. After we have finished
the proof of Theorem 6.7 we will argue that our little detour via Lemma 6.10 is in
fact necessary.

Let us also briefly note that the four somewhat isolated nodes to the right of each
of the models are there only to guarantee the existence of the IL-bisimulations. All
other claims made about the models remain valid when these nodes are omitted.

The relation between M and M ′, call it Z , as indicated by the dotted lines, is an
SL-bisimulation with respect to {p, q}. The definition of an SL-bisimulation in this
case simplifies to the following two conditions.

x Z x ′ implies that x  q ⇔ x ′  q and x  p ⇔ x ′  p

and
if x ′Sm′ y′ then for some x, y we have x Sm y, x Z x ′, and y Z y′.

And the other way around. The first claim is easily verified. For the second claim let
us treat the case that x ′ is the left upper node in M ′ and y′ is the middle upper node
in M ′. Then for x and y we can take the left upper node and the middle upper node
in M , respectively. The other cases are verified similarly. The same holds for N and
N ′.

An IL-bisimulation between M and M ′, say Z , with respect to {p, q}, is con-
structed more easily. Between M and M ′ connect both center points, and for all
other points x ∈ M and x ′

∈ M ′, connect x with x ′ if and only if x and x ′ force the
same propositional variables ∈ {p, q}. By construction x Z x ′ implies that x and x ′

agree on {p, q}; thus, to show that Z is an IL-bisimulation it is sufficient to show that

if m Rx then for some x ′ with m′ Rx ′ we have that x Z x ′ and

for all y′ with x ′(Sm′)∗y′ there is some y with x(Sm)
∗y and y Z y′.

And the other way around. For any choice of x ∈ M we simply take x ′ to be one of
the four rightmost nodes in M ′ for which x Z x ′ (that is, the one that forces the same
propositional variables among {p, q} as x). Then a y′ for which x ′Sm′ y′ can only be
x ′ itself, and thus for y we can always take x . Similar for “the other way around.” A
completely similar argument shows that N and N ′ are IL-bisimilar. �

One might wonder whether the current proof can be simplified to the standard case:
two models and a bisimulation between them. For starters, it is easy to see that
there does not exist an SL-bisimulation that connects m with n (so incidentally this
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shows that forcing the same SL-formulas does not imply the existence of an SL-
bisimulation). But we can even make a stronger statement: for our particular coun-
terexample any two models that do the trick are necessarily not bisimilar. For on the
one hand one immediately sees that the above proof shows that As → ¬Br is equally
a counterexample for interpolation in SL as it is for ILM(S). On the other hand, in
[11], the logic of61-interpolability is shown to satisfy the interpolation property. As
this logic is an extension of SL, is also evaluated on Veltman models, is sound for
ILM(S)-models, and the appropriate notion of bisimulation coincides with the notion
of an SL-bisimulation, just bisimulations cannot do the job.

In particular this explains why we have chosen not to take the Sw relations tran-
sitive in the definition of an ILM model (Definition 2.5). The language of the logic
of 61-interpolability is not blind for this property in the sense that Lemma 6.10 does
not hold there. And by the above we needed to exploit some difference between
these logics.

7 Conclusion and Further Research

We have investigated the possibility of extending the language of interpretability
logic with a modal operator which expresses 61-ness. The primary reason for this
investigation is the failure of interpolation in ILM, an important interpretability logic.
We have formulated a modally complete and arithmetically complete logic ILM(S).
Sadly this logic does not have interpolation either. Additionally, from the proofs it is
immediate that the counterexample given in this paper is also a counterexample for
interpolation in SL and, consequently, most likely also for HGL [8].

The reason for this seems to be a gap in expressive power which might be filled
by the notion of 61-interpolability. Ignatiev gave an arithmetically complete logic
for 61-interpolability and showed that his logic does have interpolation. In other
words, extending SL with an operator for 61-interpolability does give the interpola-
tion property. However, recent investigations indicate that a combined logic of inter-
pretability and 61-interpolability is unlikely to have interpolation. More research is
needed to say something more constructive in this direction.

Notes

1. This paper presents the main results from [9].

2. It is worthwhile to note that Beth definability is not an issue here; all interesting inter-
pretability logics have the Beth definability property ([1] and de Jongh and Visser [7]).

3. In [9], ILM(S) was denoted by 61ILM. See also the end of Section 3.

4. We contribute this theorem to Berarducci and Shavrukov, which is correct but somewhat
incomplete. Indeed Berarducci and Shavrukov have independently shown ILM to be the
interpretability logic of PA. By the Orey-Hájek characterization of interpretability this
immediately gives that ILM is the logic of 51-conservativity for PA. In [16], Visser
showed that ILM is not the interpretability logic of the theories I6n , n ≥ 1, but in
Hájek and Montagna [10] it is shown that ILM is the logic of51-conservativity for these
theories as well.
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5. In [17] it is shown that �(p ↔ �q) → (r Bs → ♦r ∧ pBs∧ p) is a counterexample for
interpolation. The proof works unmodified for �(p ↔ �q) → (r Bs → r ∧ pBs ∧ p),
the original unpublished counterexample by Ignatiev, as well.
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