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Some Open Questions for Superatomic
Boolean Algebras

Juan Carlos Martínez

Abstract In connection with some known results on uncountable cardinal se-

quences for superatomic Boolean algebras, we shall describe some open ques-

tions for superatomic Boolean algebras concerning singular cardinals.

1 Superatomic Boolean Algebras

A superatomic Boolean algebra is a Boolean algebra in which every subalgebra

is atomic. Suppose that B is a Boolean algebra. It is a well-known fact that B is

superatomic if and only if its Stone space S(B) is scattered. For every ordinal α,

the α-derivative of S(B) is defined by induction on α as follows. S(B)0 = S(B);

if α = β + 1, S(B)α is the set of accumulation points of S(B)β ; and if α is

a limit, S(B)α =
⋂

{ S(B)β : β < α }. Then, S(B) is scattered if and only

if S(B)α = ∅ for some α. This process can be transferred to the Boolean al-

gebra B , obtaining in this way an increasing sequence of ideals Iα which are

defined by transfinite induction as follows. We put I0 = {0}; if α = β + 1,

Iα = the ideal generated by Iβ ∪ { b ∈ B : b/Iβ is an atom in B/Iβ }; and if α is

a limit, Iα =
⋃

{ Iβ : β < α }. Then B is superatomic if and only if there is an

ordinal α such that B = Iα . As usual, we abbreviate ‘superatomic Boolean algebra’

as ‘sBA’.

2 Open Questions

Suppose that B is an sBA. We define the height of B by ht(B) = the least ordinal

α such that B/Iα is finite. For every α < ht(B), we denote the cardinality of the

set of atoms of B/Iα by ‘wdα(B)’. The cardinal sequence of B is then defined by

CS(B) = 〈wdα(B) : α < ht(B)〉. If κ is an infinite cardinal and α is a nonzero
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ordinal, we say that B is a (κ, α)-sBA, if ht(B) = α and wdβ(B) ≤ κ for every

β < α.

The countable sequences of cardinals that arise as cardinal sequences of super-

atomic Boolean algebras were characterized by La Grange on the basis of ZFC set

theory (see Koppelberg [6]). However, the situation becomes more complicated

when we want to gain insight into uncountable cardinal sequences. In [3], it was

shown by Juhász and Weiss that there is an (ω, α)-sBA for any α < ω2. This result

is, in a sense, the best possible, since it is known that the existence of an (ω, ω2)-sBA

is independent of ZFC (see Baumgartner and Shelah [1] and Just [4]). Yet it is not

known whether there exists an (ω1, ω2)-sBA. Nevertheless, it was proved in Koepke

and Martínez [5] that under V = L, there is a (κ, κ+)-sBA for every regular cardi-

nal κ . Also, it was shown in Martínez [7] that if κ is an infinite cardinal such that

κ<κ = κ , then there is a cardinal-preserving partial order that forces the existence

of a (κ, α)-sBA for every α < κ++. It is not known whether these results can be

extended to singular cardinals. So the following question appears to be open.

Question 2.1 Let κ be a specific singular cardinal, for example, κ = ℵω. Is it

consistent with ZFC that there exists a (κ, κ+)-sBA ?

Another interesting class of superatomic Boolean algebras with an uncountable car-

dinal sequence is the class of the so called thin-thick Boolean algebras. Suppose

that B is an sBA. Let κ be an uncountable cardinal. We say that B is κ-thin-thick

if ht(B) = κ + 1, wdα(B) ≤ κ for every α < κ , and wdκ(B) ≥ κ+. And we say

that B is κ-very thin-thick if ht(B) = κ+ + 1, wdα(B) ≤ κ for every α < κ+, and

wdκ+(B) ≥ κ++. It was shown by Baumgartner in [1] that the consistency of the

existence of an inaccessible cardinal implies the consistency of the nonexistence of

an ω1-thin-thick sBA. However, it was shown by Weese in [9] that GCH implies the

existence of a κ-thin-thick sBA for every infinite cardinal κ . In contrast with this

result, it can be easily checked that under GCH we have that, for any infinite car-

dinal κ , there is no κ-very thin-thick sBA. Nevertheless, it was proved in [5] that if

κ<κ = κ and there is a simplified (κ+, 1)-morass, then there is a cardinal-preserving

partial order that forces the existence of a κ-very thin-thick sBA. However, we do not

know whether the cardinality assumption “κ<κ = κ” can be omitted in this theorem.

Thus the following problem is open.

Question 2.2 Let κ be a specific singular cardinal. Is it consistent with ZFC that

there exists a κ-very thin-thick superatomic Boolean algebra ?

Also, the following general question seems to have some interest.

Question 2.3 For a specific singular cardinal κ , what are the cardinal sequences

θ = 〈κα : α < κ〉 such that it is consistent with ZFC that there is a superatomic

Boolean algebra B with CS(B) = θ?

With respect to Question 2.3, we hope to prove in a future paper that if GCH holds

and θ = 〈κα : α < κ〉 is such that κα ≥ κ for each α < κ , then there is a cardinal-

preserving partial order that forces the existence of an sBA B with CS(B) = θ .
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On the other hand, in [8], Ruyle studied the notion of a PCF structure—a refine-

ment of the notion of partial order introduced by Baumgartner in [1]—in which some

conditions are added in order to reflect the fundamental properties of the PCF opera-

tor on {ωn : n ≥ 1}. Then every PCF structure T has associated with it a superatomic

Boolean algebra B = B(T ) which satisfies that |B| = |T | and wdα(B) ≤ |α + ω|

for every α < ht(B) (see [8]). The interest of the notion of a PCF structure lies

in the fact that in the proof of Shelah’s theorem that 2ℵω < ℵω4
if ℵω is a strong

limit cardinal, it is shown by means of a combinatorial argument that there is no PCF

structure of size ≥ ω4 (see Burke and Magidor [2] and [8]). Then one could improve

Shelah’s bound on 2ℵω to ℵω3
by showing that in ZFC there is no PCF structure of

size ω3. In [8], it was proved by Ruyle that it is consistent with ZFC that there is a

PCF structure T such that B(T ) is an (ω, ω2)-sBA, and so we cannot hope to im-

prove Shelah’s bound on 2ℵω to ℵω2
, at least by using the original argument given by

Shelah. In [8], it was also proved that for any ordinal α < ω2 an (ω, α)-sBA can be

constructed in ZFC from a PCF structure. However, the following question remains

open.

Question 2.4 Is it consistent with ZFC that there is a PCF structure whose asso-

ciated superatomic Boolean algebra is an (ω2, ω3)-sBA ?

If we could answer Question 2.4 in the affirmative, we could not hope to use PCF

theory to improve Shelah’s bound on 2ℵω to ℵω3
.
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