
Notre Dame Journal of Formal Logic

Volume 45, Number 3, 2004

There Are No Maximal Low D.C.E. Degrees

Rod Downey and Liang Yu

Abstract We prove that there is no maximal low d.c.e degree.

1 Introduction

A natural extension of the notion of a computably enumerable (c.e.) set is that of a

d.c.e. set which is a set obtained as the difference of two c.e. sets A = W −V . Equiv-

alently, a d.c.e set A is a set for which there exists a computable function f (x, s) so

that A(x) = lims f (x, s), f (x, 0) = 0, and ∀x |{s, f (x, s) 6= f (x, s + 1)}| ≤ 2.

As well as being interesting in their own right, the d.c.e. Turing degrees can be stud-

ied both to give insight into the c.e. Turing degrees and into the 10
2 degrees. The

investigation of the present paper can be viewed as contributing to all three of these

goals.

The uppersemilattice of the d.c.e. degrees is not elementarily equivalent to that of

the c.e. degrees by Arslanov [1] and Downey [5]. Perhaps the most striking differ-

ence between the d.c.e. degrees and the c.e. degrees comes from the following two

theorems.

Theorem 1.1 (Sacks [9]) The c.e. degrees are dense.

Theorem 1.2 (Cooper, Harrington, Lachlan, Lempp, Soare [4]) The d.c.e. degrees

are not dense. Indeed, there is a maximal d.c.e. degree a. That is, a < 0′, and there

are no d.c.e. degrees b with a < b < 0′.

Also notice that density properties allow us to compare the d.c.e. degrees and the10
2

degrees. By an unpublished result of Lachlan, there are no minimal d.c.e. degrees,

yet Sacks constructed a minimal 10
2 degree. Actually there is a very interesting

theme here that “toward 0” the d.c.e. degrees are like the c.e. degrees and “toward

0′” they resemble more the 10
2 degrees.1

Received February 7, 2004; accepted June 16, 2004; printed October 26, 2004
2000 Mathematics Subject Classification: Primary, 03D28

Keywords: D.c.e. degrees, Turing degrees

c©2004 University of Notre Dame

147

http://www.nd.edu/~ndjfl
http://www.nd.edu

148 Rod Downey and Liang Yu

One of the fundamental operators in computability theory is the jump operator.

Quite early on it was found that there were noncomputable sets which were indistin-

guishable from the computable sets by the jump operator.

Definition 1.3 A set A is low if A′ ≡T ∅′.

A recurrent theme in computability theory, and particularly the study of the c.e. sets

and degrees, is that low sets should resemble computable sets in their properties.

Technically, many results in this vein rely in one form or another on a method in-

vented by Robinson. Robinson proved the following theorem, which is a combina-

tion of the well-known Sacks Splitting Theorem and Density Theorem.

Theorem 1.4 (Robinson [8]) For any low c.e. set L and c.e. set A >T L, there are

two c.e. sets B0, B1 so that L <T B0, B1 <T A and A ≡T B0 ⊕ B1.

The lowness hypothesis of L in Robinson’s Theorem is necessary as witnessed by

Lachlan’s Nonsplitting Theorem [7].

Robinson’s Theorem introduced the technique, now called the Robinson tech-

nique, which allows us to use lowness for c.e. sets. We will discuss this technique

in detail in the proof of our main result. Here it suffices to say that the technique

used the lowness of L to, in the limit, answer 6L
1 questions within the construction,

and relied on the enumerability of L to “certify” certain “no” answers within the

construction. (This will be explained in detail in the construction below.) Recently,

Arslanov, Cooper, and Li [2] claimed a sweeping generalization of the Robinson

technique by claiming that Theorem 1.4 could be proven without the hypothesis that

L is c.e. Unfortunately their proof contains a fatal flaw.

We do not know if their claimed result in its full generality is correct.

Question 1.5 Given a low set A and a c.e. set B with A ≤T B, do there exist

c.e. sets B1, B2 with B1 ⊕ B2 ≡T B and B1 ⊕ A|T B2 ⊕ A? What about B = ∅′?

One of the consequences claimed by Arslanov, Cooper, and Li was the following.

Theorem 1.6 There is no maximal low d.c.e. degree.

It is the goal of the present paper to give a proof of Theorem 1.6. We believe that

our proof of Theorem 1.6 is interesting in its own right as it introduces a method of

applying the Robinson technique outside of the c.e. degrees and relies upon special

properties of the d.c.e. degrees to allow its application. Our methods do not seem

to allow us to split 0′ over all low d.c.e. degrees, and hence the following question

weakening Question 1.5 also suggested by the Arslanov-Cooper-Li claims remains.2

Question 1.7 For any low d.c.e. set L, is there a c.e. splitting A0 ⊕ A1 = ∅′ so

that Ai ⊕ L <T ∅′?

2 Intuition of the Proof of Theorem 1.6

2.1 The Robinson technique for c.e. sets We remind the reader how the Robinson

technique works for the Sacks Splitting Theorem and with L c.e. We need a lemma.

Lemma 2.1 For any low set L, X (L) ≤T ∅′ where X (L) = { j : ∃n ∈

W j ∃m(n = L ↾ m)}.

Maximal Low D.C.E. Degrees 149

The classical application of the Robinson technique is to split any c.e. set A over a

low c.e. set L, meeting Sacks type requirements of the form

N i
e : Ai 6= 8

A1−i ⊕L
e .

The basic idea is the same as for the Sacks Splitting Theorem. At a stage s, if we

see ℓ(e, i, s) > x where ℓ(e, i, s) = max{y : ∀z < y : 8
A1−i ⊕L
e (z) = Ai (z)[s]},

we will attempt to preserve A1−i ⊕ L ↾ ϕ(x)[s].We do this by asking that elements

below this use entering A after stage s should be directed into Ai and not A1−i . Then

we so preserve the use of the left-hand side and argue that, if we fail to diagonal-

ize, then A is computable, since eventually all but a computable part of A will be

directed into Ai rather than A1−i . However, there is a slight problem with this plan.

The set L is not under our control. We can preserve A1−i [s] ↾ ϕe(ℓ(e, i, s))[s] as

much as we like, but it is up to the opponent to decide whether this also preserves

A1−i ⊕ L ↾ ϕe(ℓ(e, i, s))[s]. The problem is that if we preserve this computation,

then the use might be L-incorrect. However, we will have directed some small num-

bers perhaps into Ai , which might fatally injure some lower priority requirement

trying to preserve Ai . This key insight can be turned around into a proof that not

every c.e. degree can be split over all lesser ones [7].

Here is where we use the fact that L is low and c.e. Since L is low, by

the Limit Lemma, there is a computable function g(j, s) so that for every j ,

lims g(j, s) = X (L)(j). For each argument x , Robinson’s idea is to build a com-

putably enumerable set Ux = W j (x) whose index is given by the Recursion Theorem.

This set allows us to use X (L) to “L-certify” computations as follows. Suppose, as

above we see ℓ(e, i, s) > x . We need to decide if we should preserve the left-hand

side of the computation. Our action would be to put the index n of L ↾ ϕe(x)[s] into

the test set Ux . By waiting or speeding up the L-enumeration we may assume that

n immediately enters Ux . Now if this L-configuration is correct, g(j (x), s) should

eventually output 1. Thus we can now mark time and run the enumerations of g

and L until a stage t ≥ s is found when either L t ↾ ϕe(x)[s] 6= Ls ↾ ϕe(x)[s], or

g(j (x), s) = 1. In the latter case, we will declare the computation to be L-certified

and impose restraint. In the former case, we see that the computation8
A1−i ⊕L
e (x)[s]

now appears wrong. Furthermore, since L is assumed to be c.e., we actually know

that for all t ′ ≥ t , L t ′ ↾ (ϕe(x)[s]) 6= Ls ↾ (ϕe(x)[s]). In this case we impose no re-

straint for any y ≥ x . We would repeat this process each time we see ℓ(e, i, s) > x .

If we see infinitely many L-certified computations we actually restrain, then we will

impose only finitely much overall restraint for x , and we can show that the overall

restraint is finite for a fixed N i
e .

2.2 The problem where L is 1
0
2
. We can still try to use a process as above with L

no longer c.e. Indeed we can have an enumeration of L given by the Limit Lemma,

L = lims Ls , meaning that for each z Ls(z) 6= Ls+1(z) only finitely often.

Imagine that we attempt the above construction with L simply low but not c.e. At

some stage we again see ℓ(e, i, s) > x . Again we need to decide whether to impose

restraint on A1−i ↾ ϕe(x)[s]. Of course, we can put n as above into some test set

Ux . If we receive a “yes” answer with an L-certified computation then, as before, we

could impose restraint. But suppose that we get a “no” answer at t . That means that

L t ↾ (ϕe(x)[s]) 6= Ls ↾ (ϕe(x)[s]).We have a choice. Should we impose restraint or

not?

150 Rod Downey and Liang Yu

If we do impose restraint, then we are back to square one. Now the restraint could

be infinite since 8
A1−i ⊕L
e (x) 6= Ai (x) because of unbounded use on the left-hand

side. Thus the overall restraint could restrain the noncomputable part of A from

A1−i , killing lower priority requirements.

If we don’t impose restraint (the method suggested by Arslanov, Cooper, and

Li), then perhaps small numbers enter Ai at stage t . However, perhaps really

L ↾ (ϕe(x)[s]) = Ls ↾ (ϕe(x)[s]). This is because, quite distinct from the c.e. case,

L t ′ ↾ (ϕe(x)[s]) = Ls ↾ (ϕe(x)[s]) for some t ′ > t . Perhaps elements enter and

then leave, or vice versa. But now, since we did not impose restraint at stage t , A1−i

might have changed. The crucial point is that now the set Ux is useless. That is, now

Ux really does contain an index of a prefix (an initial segment of) L, and henceforth

g(j (x), s) can simply return 1.

There does seem to be a class of low sets for which the Robinson technique seems

to work. These low sets are sets with not only a lowness certification, but a “low

enumeration.” We will explore this idea elsewhere.

2.3 The proof of our theorem We will assume that we are given a low d.c.e. set

L. We will construct a10
2 set1 and a d.c.e. set A so that1 �T L ⊕ A and A �T L.

We satisfy the requirements below.

Me : A 6= 9L
e .

Ne : 1 6= 8L⊕A
e .

The easiest requirements to deal with are the M-type requirements. For the M-type

requirements, we apply the Robinson technique and Friedberg-Muchnik strategy.

The only action for such requirements is to put some numbers into A and, in the full

construction, restrain those numbers from leaving A.3

The action of Me is the following. We pick a follower x and wait until9L
e (x) = 0

at some stage s. As above, we put the L-use n = Ls ↾ ψe(x) into Ue. Precisely as

above, we find the least t ≥ s such that either n 6= L t ↾ ψe,s(x), or g(j, t) = 1,

in which case we L-certify the computation and put x into At . We will protect

this number’s removal from A with priority e. We put x into At only when the

computation is L-certified. It may later happen that we were wrong, but this happens

at most finitely often by the definition of g. Notice that once we put x into A, we

only need to pick a new follower x ′ if we see some stage s′ with 9L
e (z) = A(z)[s′]

for all z ≤ x . That is, inductively all the followers we have put into A for the sake of

Me must be incorrect. This entails that all of the apparent initial segments of L ever

put into Ue must also be wrong. This happens at most finitely many times. The point

is there is at most one n ∈ Ux,s so that n = Ls ↾ m for some m at any stage s. The

usual argument for this is to ensure that U is a prefix free set. There are some minor

problems to ensure this.

The argument for the N-type requirements is significantly more subtle. For

N-type requirements, we also apply the Robinson technique and the Friedberg-

Muchnik strategy. We never put any numbers into (but may extract some numbers

from) A for these requirements. For every requirement Ne , we try to ensure that

1(x) 6= 8
L⊕A(x)
e for some x by putting x into (or pulling x out of)1 at most finitely

often. Fixing x , we try to ensure 1(x) 6= 8A⊕L
e (x). Let n = Ls ↾ ϕe,s(x). Again

we enumerate n into a c.e. set V which we shall build during the construction. Again

we may assume that we have in advance an index j such that V = W j . Again we

Maximal Low D.C.E. Degrees 151

find the least t ≥ s such that either n 6= L t ↾ ϕe,s(x), or g(j, t) = 1. In the case

that g(j, s) = 1, we L-certify the computation and change1(x). This case can only

occur finitely often, as usual.

It is what we do in the case that g(j, t) = 0 and n 6= L t ↾ ϕe,s(x) that causes us

problems. We will ensure that there is at most one n ∈ Vs so that n = Ls ↾ m for

some m at any stage s. We will ensure that V is a prefix free set. Suppose that we

are in this case. There are two basic possibilities:

(i) Some z ≤ ϕe,s(x) leaves L after stage s. (We refer to this as “L moves

right.”)

This is the good case. The set L is d.c.e. and hence this z can never return.

Thus “g(j, s) = 0” is also L-certified.

(ii) L moves left. That is, L t ↾ ϕe,s(x) ⊃ Ls ↾ ϕe,s(x).

This is the real problem. Now it might in the future be possible for

Ls ′ ↾ ϕe,s(x) = Ls ↾ ϕe,s(x).

The main idea is that should such a future stage s′ occur, with g(x, s′) = 1,

we will be able to claim that we can make As ′+1 ↾ ϕe,s(x) = As ↾ ϕe,s(x)

by extraction of numbers from A. That is, we are claiming that since we have

not been left of Ls , Av will not have been left of As for any stage v with

s ≤ v ≤ s′.

It is by no means clear that we will be able to so restore A, and this is the core

of our construction. It would well seem that perhaps the first time we saw some

potential stage to act, we had some p in As , and some other Nk might act before

stage s′ in the sense of the above, perhaps causing elements to leave Av for some

stage v with s < v ≤ s′. (Recall that only N-type requirements extract elements

from A.) If this could occur then we would have no hope of making A d.c.e. and

still meeting the requirements. The section below is devoted to the analysis of two

N-type requirements above an M-type one and showing that “timing” considerations

make this scenario impossible.

2.4 Two N -strategies above one M-type requirement Suppose there are two re-

quirements N0 and N1 above a requirement M0. Suppose at the current stage s,

n ∈ V1,s ′ for some s′ < s and n is an initial segment of Ls ↾ ϕ1,s ′(x1) and

g(j1, s) = 1.

Thus, at stage s, N1 desires to restore the computation at stage s + 1 back to

the stage s′ configuration ≤ ϕ1(x1)[s
′]. We would like to be able to pull all of

the elements z < ϕ1,s ′(x1) which are in As but not in As ′ out of A. We claim

As ↾ ϕ1,s ′(x1) ⊇ As ′ ↾ ϕ1,s ′(x1). Otherwise, there must exist some number

z < ϕ1,s ′(x1) which was in As ′ but was pulled out at a stage s′′ between s′ and s.

Since we do not extract numbers for the action of M-type requirements, z must have

been pulled out by N0 or N1.

(i) z was pulled out by N1 itself. Then, inductively, we must have restored

a computation at stage s′′ to an earlier stage t < s′ (since z ∈ As ′ but

z /∈ As ′′). Since L is d.c.e., there cannot be any number y < ϕ1,t re-

moved from L t between stage t and s′′. Otherwise, the computation at stage

t cannot be restored. But the computation at stage t was destroyed by L, so

L t ↾ ϕ1,t ⊂ Ls ′ ↾ ϕ1,t . Thus Ls ′′ ↾ ϕ1,t = L t ↾ ϕ1,t ⊂ Ls ′ ↾ ϕ1,t .

152 Rod Downey and Liang Yu

(ia) ϕ1,t ≤ ϕ1,s ′ . It means there is a number below ϕ1,s ′ which left L by stage s,

and so the computation at stage s′ cannot be restored, a contradiction.

(ib) ϕ1,t > ϕ1,s ′ . Note that, by the use principle, Ls ′ ↾ ϕ1,s ′ cannot be an initial

segment of L t ↾ ϕ1,t . This means that there is some number p below ϕ1,s ′

which entered L after stage t and will still be in L at stage s, a contradiction,

since the assumption is that N1 wished to restore to the stage t configuration

before stage s and this would therefore necessitate p not being in L t and

hence not in Ls as L is d.c.e.

(ii) z was pulled out by N0. Then, inductively, we must have restored a compu-

tation of N0 at stage s′′ to an earlier stage t < s′ (since z ∈ As but z /∈ As ′′).

Since L is d.c.e., there cannot be any number y < ϕ0,t leaving L t between

stage t and s′′. Otherwise, the computation at stage t cannot be restored. But

the computation at stage t was destroyed by L, so L t ↾ ϕ0,t ⊂ Ls ′ ↾ ϕ0,t .

Thus Ls ′′ ↾ ϕ0,t = L t ↾ ϕ0,t ⊂ Ls ′ ↾ ϕ0,t .

(iia) ϕ0,t ≤ ϕ1,s ′ . It means there is a number below ϕ1,s ′ which left L by stage s,

and so the computation at stage s′ cannot restored. The point here is that we

did nothing for N0 at stage s′, and hence L t ↾ ϕ0,t must be right of Ls ′ ↾ ϕ0,t ,

a contradiction.

(iib) ϕ0,t > ϕ1,s ′ . Since L is d.c.e., there cannot be any number y < ϕ1,s ′ removed

from Ls ′ between stage s′ and s. Otherwise, the computation at stage s′

cannot be restored. But the computation 8
As′ ⊕Ls′

1,s ′ (x1) was destroyed by L

at stage s′ + 1. So Ls ′ ↾ ϕ1,s ′ ⊂ Ls ′′ ↾ ϕ1,s ′ = L t ↾ ϕ1,s ′ . This means

there is some number below ϕ1,s ′ which entered L before stage s′ and left L

between stage s′ and s′′. So the computation8
As′ ⊕Ls′

1,s ′ (x1) cannot be restored,

a contradiction.

We now turn to the formal details of this finite injury argument.

3 The Proof of Theorem 1.6

3.1 Basic module For Me we build a c.e. set U whose index i is given by the

Recursion Theorem.

1. Pick a large fresh follower m.

2. Wait for A ↾ m + 1 = 9L ↾ m + 1[s].

3. Put n = L ↾ ψ(m)[s] into U .

4. Run the enumerations of g and L until

Case (1) g(i, t) = 1. Put m into At+1. Declare that m is used, and restrain

it with priority Me from leaving A.

Case (2) L ↾ ψ(m)[t] changed. Go to step (2).

5. If A ↾ m + 1 = 9L ↾ m + 1[t] and m has been used go back to step (1).

For Ne , we build a c.e. set V . By the Recursion Theorem, we assume V has index j .

1. Pick up a fresh follower m.

2. Wait for1 ↾ m+1 = 8L⊕A
e ↾ m+1[s], or Ls extends some n′ = L ↾ ϕ(m)[t]

already in Vs , and g(j, s) = 1.

Maximal Low D.C.E. Degrees 153

3. In the case that n′ is an initial segment of Ls , go to (5), Case (2), Subcase (1)

below.

4. Put n = L ↾ ϕ(m)[s] into V .

5. Run the enumerations of g and L until

Case (1) g(j, t) = 1. Put (or pull) m into (out of) 1 so that 1(m) 6=

8L⊕A
e (m). Protect this computation by setting up a restriction r .

Case (2) L ↾ ϕ(m)[t] changed.

Subcase (1) n′ = L ↾ ϕ(m)[t] was already put into V at some previous

stage t ′ and g(j, t) = 1. Pull out the numbers which have entered A after

stage t ′. Put (or pull) m into (out of) 1 so that 1(m) 6= 8L⊕A
e (m)[s]. Go to

step (2).

Subcase (2) Otherwise. Go to step (2).

3.2 Construction Order the priorities of the requirements M0, N0,M1, For

every requirement Ne, we build a c.e. set Ve and by the Recursion Theorem, it has

an index j (e), and similarly Ue = Wi(e) for Me. Every set we are constructing

except A and 1 is a local set. We will differentiate between R requiring attention,

and R acting. It will only be in the latter case that R will initialize lower priority

requirements to preserve its action. Also we will use the phrase “speed up the L-

enumeration to wait for . . . to occur.” We will regard this as happening in one step

of the construction, so that any action can be taken at the current stage. This avoids

having stages where nothing is done while we are waiting for some pending decision

for some requirement, and considerably simplifies the notation. We will use the

L-enumeration given by this process within the stage. Thus, if some requirement

receives attention and, while we are examining it, we see some new L-configuration

consistent with some g(i, t) or g(j, t) because some number entered or left L t − Ls ,

then we will regard this version of L, L t , as replacing Ls , when the next requirement

is considered. We will simply always denote the current version by Ls and will

regard its meaning as being clear by context. Requirements will be considered in

increasing order of priority at each stage to see if they require attention. At most one

requirement can require attention and at most once per stage. We say a requirement

R requires attention at stage s + 1 if one of the following holds.

1. R = Me

Case (1) Me has no unused follower, and the length of agreement between

9L and A has just increased. Then our action is to appoint an (unused)

follower ms to Me.

Case (2) Me currently has an unused follower assigned at some stage t < s,

so that me,s = me,t , and As ↾ me,t + 1 = 9
Ls
e,s ↾ me,t + 1. (It will be

the case that As(me,t) = 0 = 9
Ls
e,s(me,t).) Set Ue,s+1 = Ue,s ∪ {n} where

n =def Ls ↾ ψe,s . Speed up the L-enumeration L and g(i(e), s) until a stage

s′ > s so that either Ls ′ ↾ ψe,s(me,t) 6= Ls ↾ ψe,s(me,t) or g(i(e), s′) = 1. In

the former case, do nothing. If g(i(e), s′) = 1 then declare that me,s is used,

and that Me acts. Initialize lower priority requirements. Enumerate me,s into

As+1.

154 Rod Downey and Liang Yu

2. R = Ne.

Case (1) Ne has no follower at stage s. Our action is to appoint a fresh

number m = me,s to follow Ne. Here Ne acts and we initialize all lower

priority requirements.

Case (2) Ne has a follower me,s appointed and not canceled since some

stage t < s, so that me,s = me,t . See if 1s(me,t) = 8
Ls⊕As
e,s (me,t), or Ls

extends some n′ = L ↾ ϕe,u(me,t)[u] already in Ve,s and g(j (e), s) = 1.

Subcase (2.0) No. Do nothing.

Subcase (2.1) Yes and n = L ↾ ϕe(me,t)[s] does not extend some initial

segment already in Ve,s . Speed up the enumeration of L and g(j (e), s) until

a stage s′ > s so that either Ls ′ ↾ ϕe,s(me,t) + 1 6= Ls ↾ ϕe,s(me,t) + 1 or

g(j (e), s′) = 1. In the former case, we do nothing. If g(j (e), s′) = 1 then

Ne acts. The action is to initialize lower priority requirements, and make

1s+1(me,t) 6= 8
Ls⊕As
e,s (me,t).

Subcase (2.2) Yes and n = L ↾ ϕe(me,t)[s] is compatible with, that

is, Ls extends, some n′ = L ↾ ϕe(me,t)[u] for some t < u < s al-

ready in Ve,s . Speed up the enumeration of L and g(j (e), s) until a stage

s′ ≥ s so that either Ls ′ ↾ ϕe,s(me,t) + 1 6= Ls ↾ ϕe,s(me,t) + 1 or

g(j (e), s′) = 1. In the former case, we do nothing. If g(j (e), s′) = 1

then Ne acts. The action is to initialize lower priority requirements,

cause A ↾ ϕe,s(me,t)[s + 1] = Au ↾ ϕe,u(me,t), and make 1s+1(me,t) 6=

8
Ls⊕As
e,s (me,t) (which will happen if we restore 1s+1(me,t) = 1u(me,t).

(Naturally we will need to check that this can be done while making A d.c.e.)

Notice that the follower me for Ne will never be canceled once it is defined provided

that Ne has priority (meaning that we have reached a stage where higher priority

requirements have ceased to act on the construction).

3.3 Verification We prove that every requirement is satisfied and acts and is ini-

tialized at most finitely often, by induction on the priority f . Select the least stage

s0 so that all of the requirements of higher priority than R f have ceased activity.

Note if a requirement receives attention without acting then it will never put (or pull)

anything into (out from) A and/or 1. Suppose all of the following lemmas are true

for every requirement of priority higher than R f . Suppose R f is Me or Ne . Define

Ve = ∪t≥s Ve,t and Ue = ∪t≥sUe,t .

Lemma 3.1 For each Me-requirement, Ue is prefix free, A 6= 9L
e , and Me acts

only finitely often.

Proof We work after the stage s0 where Me will never again be initialized. First, we

prove Ue is a prefix free set. It suffices to prove Ue,s ′ is prefix free for every s′ ≥ s0.

Suppose we put an initial segment ns ′ = Ls ′ ↾ ψs ′(me,s ′) into Ue,s ′+1 at stage s′ + 1.

If Ue,s+1 were not prefix free, then there must a segment nt = L t ↾ ψt (me,t) com-

patible with ns ′ which has been put into Ue,t+1 at some stage s0 ≤ t + 1 < s′.

1. ψt (me,t) < ψs ′(me,s ′) and Ls ′ ↾ ψt (me,t) = L t ↾ ψt (me,t). If me,t < me,s ′

then we will have acted for me,t to have appointed me,s ′ , As ′+1(me,t) =

At+1(me,t) = 1 6= 0 = 9
L t
e,t (me,t) = 9

Ls′

e,s ′(me,t). Hence Me would not

Maximal Low D.C.E. Degrees 155

have received attention at stage s′, a contradiction. If me,t = me,s ′ , then by

the basic properties of uses for reductions the corresponding nt and ns ′ cannot

be compatible.

2. Otherwise. Thenψt (me,t)>ψs ′(me,s ′) and L t ↾ ψs ′(me,s ′)= L t ↾ ψs ′(me,s ′).

Again if we assume the two ns to be compatible, it can only be that

me,s ′ 6= me,t , and so me,s ′ was appointed after we acted for Me using

me,t . But then, me,s ′ is appointed as a fresh number and we would have made

me,s ′ to exceed all previous uses seen in the construction at the stage u with

t + 1 ≤ u < s′ at which it was appointed. In particular, me,s ′ , and hence

ψs ′(me,s ′), will exceed ψt (me,t), so this case cannot occur.

Now choose a stage s′ ≥ s0 so that ∀t ≥ s′(g(i(e), t) = g(i(e), s′)). There are two

cases.

1. g(i(e), s′) = 0. Select a stage s′′ ≥ s so that a follower me,s ′′ has been

defined and As ′′(me,s ′′) = 0. Then it will never be initialized and Me will

never require attention after s′′. Ue ∩ {L ↾ n, n ∈ N} = ∅. This means that

9L
e (me,s ′′) is undefined or defined and 6= 0, and so Me is satisfied and will

never require attention.

2. g(i(e), s′) = 1. Since Ue is prefix free, |Ue ∩ {L ↾ n, n ∈ N}| ≤ 1.

So |Ue ∩ {L ↾ n, n ∈ N}| = 1. Select a stage s′′ ≥ s′ so that |Ue,s ′′ ∩

{L t ↾ n, n ∈ N}| = 1 for every stage t ≥ s′′. Then there must be one follower

m ≤ |Ue ∩ {L ↾ n, n ∈ N}| so that 9L(m) = 0. So Me must have acted to

put m into A. So the requirement will never require attention after stage s′′.

�

Lemma 3.2 For each Ne requirement, Ve is prefix free,1 6= 8L⊕A
e and Ne requires

attention only finitely often.

Proof Again we work at stages s ≥ s0 after which Ve is initialized for the last time.

In the following we are proving the lemma above, but not proving here that A is

d.c.e. The construction for Ne only asks us to restore A to earlier configurations.

We will in a subsequent lemma ensure that such restorations are possible while still

keeping A d.c.e. First, we prove Ve is prefix free. Suppose there is a follower me,s

at stage s, and this is the least stage after s0 when Ne picks a follower. Then, by

construction, this follower is immortal. Let me = me,s . Notice that this follower and

any activity after stage s0 cannot affect anything of higher priority than Ne as the

numbers involved are too big by initialization.

It suffices to prove Ve,s ′ is prefix free for every s′ ≥ s. Suppose we put a number

ns ′ = Ls ′ ↾ ϕs ′(me) into Ve,s ′+1 at stage s′ + 1. If Ve,s+1 were not prefix free, then

inductively, if s′ is the least stage where it becomes nonprefix free, there must a num-

ber nt = L t ↾ ϕt (me) which has been put into Ue,t+1 at some stage s ≤ t + 1 < s′

and this initial segment is compatible with ns ′ .

At the stage t +1 when we enumerated nt into Ve, we would have had a computa-

tion 8
L t⊕At
e,t (me) ↓= 1t (me). The way the construction works is that we would not

add ns ′ to Ve. (Rather we would check in Subcase (2.2) to see if we can L-certifiably

via g(j (e), s′) restore A to force a disagreement. Thus this cannot occur.) So Ve

must be prefix free.

Now select the least stage s′′ ≥ s0 so that ∀t ≥ s′′(g(j (e), t) = g(j (e), s′′)).

156 Rod Downey and Liang Yu

1. g(j (e), s′′) = 0. Then Ne will never require attention after s′′. By the

Recursion Theorem, Ve ∩ {L ↾ n, n ∈ N} = ∅. It is immediate that

8L⊕A
e (me) 6= 1(me)

2. g(j (e), s′′) = 1. Since Ve is prefix free, |Ve ∩ {L ↾ n, n ∈ N}| ≤ 1, and since

lims g(j (e), s) = 1, we see |Ve ∩ {L ↾ n, n ∈ N}| = 1. Select the least stage,

say t , t ≥ s at which we put some the ne = L t ↾ ϕe,t (me) ∈ {L ↾ m,m ∈ N}

into Ve,t . Now this is a real initial segment of L and it is in Ve at every stage

after t . There is some least stage t ′ ≥ t, s′′ such that Lu ↾ ϕe,t (me)[u] = ne

for all u ≥ t ′. At such a stage u, we will see that Subcase (2.2) (or

(2.1)) pertains as we have L extending ne. At such a stage t ′ we would

restore At ↾ ϕe,t (me)[t
′] = At ↾ ϕe,t (me)[t], since, by choice of t ′ ≥ s′′,

g(j (e), t ′) = 1. This would create a disagreement which would be preserved

forever, and Ne would never again act. �

Lemma 3.3 A is d.c.e.

Proof If this is not true then there is some number x which enters and leaves more

than once. The only requirements that act in a non-c.e. manner upon A are the Nes.

It follows that there must be two requirements Na and Nb where Na acts to take a

number out of A and Nb acts to put it back in. Since Nb acts after Na ’s action, it must

have higher priority than Na , as it was not initialized by Na ’s action (in which case

its numbers would be too big). Now since Na acts to take x out of A at some stage

sa , it can only do so through the action of Subcase (2.2) of the construction. That is,

we must have seen Lsa extending some na in Va . This na was put into Va at some

stage ta < sa . At this stage we would have had an apparent 8L⊕A
a (ma) = 1(ma)

computation not corresponding to some earlier configuration in Va. It must have

been that x 6∈ Ata . Thus x must have entered A at some stage v after stage ta and this

can only happen through the action of some Mk of lower priority than both Na and

Nb since Mk did not initialize them. Since Mk has lower priority and x is smaller

than ϕa(ma), it must have been that Na did not act at any stage before v, since

otherwise x would have been too big. (We remark that here and below, no M-type

requirement can ever re-enumerate a number since whenever they once enumerate

it, if that number is then extracted by some N that N must have had higher priority,

initializing M , causing it to pick a fresh number to follow it.) We can only conclude

that for all stages between ta and v, Lv ↾ ϕa(ma)[ta] ⊃ L taϕa(ma)[ta]. (It cannot

have moved right else it could not ever get back to Lu extending L ta ↾ ϕa(ma)[ta].)

Now if Nb acts to put x back into A, then since it restores A to a configuration

corresponding to a 8L⊕A
b (mb)[q], it must have been that x was already in Aq . Since

this configuration must occur before the stage sa where Na acts to take x out of A,

we must conclude that Lq ↾ ϕa(ma)[ta] ⊃ L ta ↾ ϕ(ma).

But now we have a contradiction. For Na to act before Nb acts, we would need

that L moves right so that Lsa extends L ta ↾ ϕa(ma)[ta]. However, since Nb does

not act before stage sa (lest it initialize Na), we must have that g(j (b), s) = 0

for stages q ≤ s ≤ sa , and this must be L-certified in the sense that Ls cannot

be compatible with Lq ↾ ϕb(ma)[q]. (Otherwise Subcase (2.2) would apply to Nb .)

Since s = sa is a special case of this noncompatibility, Lsa cannot be compatible with

Lq ↾ ϕb(mb)[q]. The conclusion is that Lsa ↾ ϕb(mb)[q] is left of Lq ↾ ϕb(mb)[q].

Maximal Low D.C.E. Degrees 157

This is only possible if ϕb(mb)[q] > ϕa(ma)[ta].But finally we have a contradiction.

Lsa ↾ ϕa(ma)[ta] is right of L ta ↾ ϕa(ma)[ta]. �

Lemma 3.4 1 is 10
2.

Proof It suffices to prove for every uncanceled follower me and e ∈ N, 1(me) ↓.

But every requirement requires attention at most finitely often. So it is true. �

4 Some Comments

It is not difficult to modify the construction above to prove the following.

Corollary 4.1 For any low d.c.e set L, there is a low d.c.e set A with L <T A.

Proof We can replace the Ne of Theorem 1.6 by standard lowness requirements

∃∞s(8A⊕L
e (e)[s] ↓) → 8A⊕L

e (e) ↓ .

Again the argument is finite injury. Now after stage s = s(e) where Ne is initialized

for the last time by higher priority requirements, Ne has the ability to restore A at

will to any configuration involving A ↾ ϕu(e)[u] for stages s(e) ≤ u, and the ability

to protect such restorations by initializing lower priority requirements. Thus we will

use Ve and g in the same way after s(e) (the final incarnation of Ve), to either see

Ls extending something already in Ve which is g-certified (g(e, s) = 1) or we see

a new 8A⊕L
e (e)[u] computation, which we will L-test via Ve and g. Again, by the

definition of g in the theorem and the proof, if lims g(e, s) = 1 then8A⊕L
e (e) ↓ and

if lims g(e, s) = 0 then 8A⊕L
e (e) ↑. So A ⊕ L is low. �

Corollary 4.2 For any low d.c.e degrees, there are infinitely many d.c.e. degrees

above it.

Proof By Corollary 4.1. �

Now we finish with some brief remarks about extensions to our results. We think it is

not hard (but tedious) to show that our argument works for L is n-c.e. (ω ≥ n > 1),

using a nonuniform proof. We have not checked this in detail.

We want to explain why our argument does not work to solve Question 1.7. In

our proof we can ensure A to be d.c.e. since no other requirements force A to change

more often. However, in Question 1.7, we failed to construct such a d.c.e. set since

we must put the numbers into A1−i while we pull them out from Ai . This can

happen many (although finitely many) times for a fixed number. This is the crucial

difference between a Friedberg strategy and a Sacks strategy. Although we do not

know whether Question 1.7 has a positive solution in the d.c.e. degrees, this method

can be used to split every c.e. degree into two ω-c.e. degrees over any lesser low

d.c.e. degree. The trick is that we can bound the times at which both Ai s change by

a computable function.4

Finally we remark that Kučera has observed that there are some limitations on the

interactions of the c.e. degrees and the low degrees. He observed that by Theorem 2

of Kučera [6] in relativized form combined with the low basis theorem, we can show

that given any low degree d there is a low PA degree p > d. Then by his priority-free

solution to Post’s problem, there is a c.e. nonzero degree a < p. The upshot is that

a ∪ d is therefore low.

158 Rod Downey and Liang Yu

Notes

1. There is currently no known elementary difference between the low2 d.c.e. degrees and

the low2 c.e. degrees.

2. Arslanov, Cooper, and Li have announced an affirmative answer to a variation of this

question. Namely, we can split A into Ai of d.c.e. degree so that A0 ⊕ L |T A1 ⊕ L . Their

proof uses different methods again and filters through a theorem of Arslanov, LaForte,

and Slaman [3].

3. Since our construction is a finite injury argument, it will suffice to simply initialize lower

priority requirements for “restraint” as lower priority requirements will then need to work

with “fresh” numbers for their followers, which will be bigger than any seen in the con-

struction before in the usual method for modern presentations of finite injury arguments.

4. This is more or less the method used by Arslanov, Cooper, and Li in their solution to the

generalized version of 1.7, and additionally they arrange things so that you can also use

the Arslanov, LaForte, Slaman Theorem [3].

References

[1] Arslanov, M. M., “Lattice properties of the degrees below 0′,” Doklady Akademii Nauk

SSSR, vol. 283 (1985), pp. 270–73. Zbl 0596.03040. MR 87e:03095. 147

[2] Arslanov, M., S. B. Cooper, and A. Li, “There is no low maximal d.c.e. degree,” Mathe-

matical Logic Quarterly, vol. 46 (2000), pp. 409–416. Zbl 0967.03037. MR 2001e:03076.

148

[3] Arslanov, M. M., G. L. LaForte, and T. A. Slaman, “Relative enumerability in the

difference hierarchy,” The Journal of Symbolic Logic, vol. 63 (1998), pp. 411–20.

Zbl 0911.03021. MR 99f:03057. 158

[4] Cooper, S. B., L. Harrington, A. H. Lachlan, S. Lempp, and R. I. Soare, “The d.r.e.

degrees are not dense,” Annals of Pure and Applied Logic, vol. 55 (1991), pp. 125–51.

Zbl 0756.03020. MR 93a:03045. 147

[5] Downey, R., “D.r.e. degrees and the nondiamond theorem,” The Bulletin of the London

Mathematical Society, vol. 21 (1989), pp. 43–50. Zbl 0628.03030. MR 90j:03082. 147

[6] Kučera, A., “On the use of diagonally nonrecursive functions,” pp. 219–39 in Logic

Colloquium ’87 (Granada, 1987), vol. 129 of Studies in Logic and the Foundations of

Mathematics, North-Holland, Amsterdam, 1989. Zbl 0683.03024. MR 91c:03037. 157

[7] Lachlan, A. H., “A recursively enumerable degree which will not split over all lesser

ones,” Annals of Mathematical Logic, vol. 9 (1976), pp. 307–65. Zbl 0357.02040.

MR 53:12912. 148, 149

[8] Robinson, R. W., “Interpolation and embedding in the recursively enumerable degrees,”

Annals of Mathematics (2), vol. 93 (1971), pp. 285–314. Zbl 0259.02033. MR 43:51. 148

[9] Sacks, G. E., “The recursively enumerable degrees are dense,” Annals of Mathematics

(2), vol. 80 (1964), pp. 300–312. Zbl 0135.00702. MR 29:3367. 147

http://www.emis.de/cgi-bin/MATH-item?0596.03040
http://www.ams.org/mathscinet-getitem?mr=87e:03095
http://www.emis.de/cgi-bin/MATH-item?0967.03037
http://www.ams.org/mathscinet-getitem?mr=2001e:03076
http://www.emis.de/cgi-bin/MATH-item?0911.03021
http://www.ams.org/mathscinet-getitem?mr=99f:03057
http://www.emis.de/cgi-bin/MATH-item?0756.03020
http://www.ams.org/mathscinet-getitem?mr=93a:03045
http://www.emis.de/cgi-bin/MATH-item?0628.03030
http://www.ams.org/mathscinet-getitem?mr=90j:03082
http://www.emis.de/cgi-bin/MATH-item?0683.03024
http://www.ams.org/mathscinet-getitem?mr=91c:03037
http://www.emis.de/cgi-bin/MATH-item?0357.02040
http://www.ams.org/mathscinet-getitem?mr=53:12912
http://www.emis.de/cgi-bin/MATH-item?0259.02033
http://www.ams.org/mathscinet-getitem?mr=43:51
http://www.emis.de/cgi-bin/MATH-item?0135.00702
http://www.ams.org/mathscinet-getitem?mr=29:3367

Maximal Low D.C.E. Degrees 159

Acknowledgments

The first author is supported by the Marsden Fund of New Zealand. The second author

is supported by NSF of China No. 60310213, 19931020 and a postdoctoral fellowship

from the New Zealand Institute for Mathematics and its Applications (Centre of Research

Excellence) under the 2004 Logic and Computation Programme.

School of Mathematics and Computing Sciences
Victoria University of Wellington
Wellington
New Zealand
Rod.Downey@mcs.vuw.ac.nz
yuliang@mcs.vuw.ac.nz

mailto:Rod.Downey@mcs.vuw.ac.nz
mailto:yuliang@mcs.vuw.ac.nz

	1. Introduction
	2. Intuition of the Proof of Theorem 1.6
	2.1. The Robinson technique for c.e. sets
	2.2. The problem where L is 20.
	2.3. The proof of our theorem
	2.4. Two N-strategies above one M-type requirement

	3. The Proof of Theorem 1.6
	3.1. Basic module
	3.2. Construction
	3.3. Verification

	4. Some Comments
	Notes
	References
	Acknowledgments

