Notre Dame Journal of Formal Logic Volume VII, Number 3, July 1966

A SIMPLE VERSION OF THE GENERALIZED CONTINUUM HYPOTHESIS

ROLF SCHOCK

An understanding of the use of the following expressions of Zermelo-Fraenkel-Skolem set theory without the axiom of choice is presupposed: 'Sx' ('The set of all subsets of x'), '2' ('The set whose only members are the empty set and the set whose only member is the empty set'), ' $x^{y'}$ ('The set of all functions from y into x'), ' $x \approx y'$ ('There is a one-to-one correspondence between x and y'), and 'x is finite'.

Definition 1. $x \preccurlyeq y$ if and only if there is a z in Sy such that $x \approx z$; $x \prec y$ if and only if $x \preccurlyeq y$ and not $y \preccurlyeq x$.

Definition 2. AC if and only if, for any x, if the members of x are non-empty and disjoint, then there is an s such that, for any m in x, there is exactly one d in both m and s;
GCH if and only if, for any x, if x is not finite, then there is no y such that both x ≺ y and y ≺ 2^x.

The following theorems are well-known:

- Theorem 1. AC if and only if, for any x and y, either $x \preccurlyeq y$ or $y \preccurlyeq x$.
- Theorem 2. If either x or y is finite, then either $x \preccurlyeq y$ or $y \preccurlyeq x$.

Theorem 3. If GCH, then AC.

From theorems 1 and 2 we have

Theorem 4. AC if and only if, for any x and y, if both x and y are not finite, then either $x \preccurlyeq y$ or $y \preccurlyeq x$.

This version of the axiom of choice suggests a nearly identical version of the generalized continuum hypothesis.

Definition 3. G if and only if, for any x and y, if both x and y are not finite, then either $x \preccurlyeq y$ or $Sy \preccurlyeq x$.

Theorem 5. G if and only if GCH.

Received August 15, 1963

Assume first **G**, x is not finite, and $x \prec y$. Hence, $x \preccurlyeq y$ and not $y \preccurlyeq x$. But then y is not finite and so $Sx \preccurlyeq y$ by **G**; that is, since $2^x \approx Sx$, $2^x \preccurlyeq y$ and so not $y \prec 2^x$.

Assume on the other hand GCH, both x and y are not finite, and not $x \neq y$. By theorems 3 and 4, $y \neq x$; hence, by GCH, not $x \neq 2^{y}$ and so, by theorems 3 and 1, $2^{y} \neq x$. But $Sy \approx 2^{y}$ and so $Sy \neq x$.

This version of the generalized continuum hypothesis is claimed to be simple both because it is economical in its symbolism (having only ' \prec ' and 'Sy' where the generalized continuum hypothesis has the less fundamental ' \prec ' and '2^x') and because it is very easy to prove.

Theorem 6. If G, then AC.

Assume G. Since $y \prec Sy$ for any y, we then have $x \preccurlyeq y$ or $y \preccurlyeq x$ for any x and y which are not finite; that is, by theorem 4, AC.

Stockholm, Sweden