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A SET OF AXIOMS FOR THE PRO POSITIONAL

CALCULUS WITH IMPLICATION AND

NON-EQUIVALENCE

ANJAN SHUKLA

It is well-known that implication and non-equivalence constitute a

complete system of independent primitive connectives for the propositional

calculus. In this article it is the intention of the author to give an inde-

pendent set of axioms by means of the two connectives mentioned above,

the rules of inference being substitution andmodus ponens.

In §1 we state the axioms and prove some preliminary theorems. In §2

we solve the decision problem. Finally, we establish the independence of

the axioms and rules in §3. In the matter of notation we shall follow Alonzo

Church1.

§1. Axioms and Preliminary Theorems, The axioms of our logistic

system, say P, are the seven following:

Axiom 1. p D q -Dp

Axiom 2. S D [ / > D # ] D ° S D P D S D #

Axiom 3. p Dq ~Dp Σ)p

Axiom 4. p D [/> 4 q]z> q D p φ q

Axiom 5. p φ q-D- p ~Dq~Dq

Axiom 6. p φ q D p "D q D S

Axiom 7. p£ q~D- qφ p

In fact, as is evident from the above set, any formulation of the

implicational propositional calculus and Axioms 4-7 will suffice. We note

that from the present formulation the deduction theorem—to be henceforth

referred to as D.T. —follows immediately.

We now go on to prove some theorems.

1. Church, A. Introduction to Mathematical Logic, I. Princeton, N. J., 1956.
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Theorem 1. ί ^ D ^D ίDS

Proof:

By Axiom 6, p φ q, q, ph-s

Hence by D.T., \—p ^ D ? D / > D S

Theorem 2. r D . p φ r D . p D #

Proof:
By Theorem 1, r,/> ̂  rι—£ D #
Hence by D.T., \—r D' p φr D- p -Dq

Theorem 3. rD pp qφrD'pDqφr

Proof:

We have, r,p,q φ r, p Dq h-q
Again by Theorem 2, r, p, q φr} p DqY-q D pD qφr
Hence, r,p,q φ r, p DqY-p Dq φ r
Hence by D.T., r,p,q φ r\-p Dq D p Dq 4 r
Hence by Axiom 4, r,p,qφr\—rD-pDqφr
Again we have, r, p, q φ r \—r
Hence, r,p, q φrγ-p Dq φr

Hence by D.T., Y-r z> p D qφ r D p Dq φr

Theorem 4. r D p D q D p φ q φ r

Proof:
By Theorem 2, p,q,pφq\-pφqφr
Hence by D.T., P,q, \-p φ q D - p φ q φ r
Hence by Axiom 4, />, <? h r D p φ q φ r
Hence, r, p, q \—p φ q φr
Hence by D.T., \—r D p D q D * p φ qφ r

Theorem 5. q D [p φ q]D p D p φ q

Proof:

We have, q D [p φ q], q \—p φ q

Hence by Axiom 7, q D[P φ q], q \—q φp
Hence by D.T., q D [p φ q] \— q D q φp
Hence by Axiom 4, q D[P φ q\\—p D q φ p
Hence, q D [p φ q]} p\-q φp
Hence by Axiom 7, q D [p φ q], p \—p φ q

Hence by D.T., I— q D[P φ q]D p D p φ q

Theorem 6. r D- p D- q φ r D- p φ q

Proof:
By Theorem 1, r,q φ r \-q D p φ q
Hence by Theorem 5, r,qφr \—p D p φ q
Hence, r,p,q φr\-pφq
Hence by D.T., Y—r D p D q φ r D p φ q
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Theorem 7. rz)'q~D'pφr^>'pφq

Proof:

By Theorem 1, r,p φ r \—p D p φ q
Hence by Axiom 4, r,pφr \—q D p φ q
Hence, r}q,p φ r Y-p φ q
Hence by D.T., \—r D q D p φ r D p φ q

Theorem 8. rzi pφr^-qφr D-pφqφr

Proof:

By Theorem 2, r,p φ r, q φr, P Φ q\—p ^ q
Again by Axiom 5, r,p 4 r> q Φ r, P Φ q \—P ^ Q ̂  q
Hence, r,p 4 r, q 4 r, p 4 0. \-Q
Again by Theorem 2, r,p 4 r, Q Φ r, p 4 Q ϊ— 4 ̂  ' P Φ 4 Φ r
Hence, r,pφr, qφr, pφq\-pφqφr
Hence by D.T., r}p φ r, q φ r \—p φqo>-pφqφr
Hence by Axiom 4, r, p φ r, q φ r \—r D p φ q φ r
A g a i n w e h a v e , r}p φ r, qφr \—r
H e n c e , r,p φ r , qφr \—p φ qφr

H e n c e b y D . T . , \—r -D pφr^ qφr^-pφqφr

Theorem 9. p / p 5 D | ) D S D ? D S

Proof:

We have, p D S, S D [p φ q], p \—p φ q

Hence by D.T., P~D s, s^[pφq\ \-p ^. pφq

Hence by Axiom 4,pDs, s Z)[p φ q] \—q D . p φ q
Hence, p-DS, q, s Z)[p φ q][-p φ q
Hence, p φ q D S , p D S , (7, 5 D[/> ^ ^] h-s
Hence by D.T., p φ q DS, p DS, ^ μ-s D [ / ) ^ ] D S

Hence by Axiom 3, p φ q D S, p D S, ̂  μ-s

Hence by D.T., I—/? φq^s^°pΌS-D*q Ds

§2. 77*£ Decision Problem

Metatheorem 1. Every Theorem of P is a tautology.

This Metatheorem can be easily established. We omit the proof.
Metatheorem 2. Let B be a wff of P, let αx,α2, . . . , α» be distinct variables
among which are all the variables occurring in B, and let a^a^ . . . , α« be
truth-values. Let C be any theorem of P i.e., h- C. Further, let Af be αz or
α, Φ C according as αf is t or f; and let Bf be B or B φ C according as the
value of B for the values a^a* . . . , an of αi,α2, . . . , αw is t or f. Then
AX,A2, . . . , An h-B*.

Proof: In order to prove that

(1) AX,A2, . . . , A n h B '

we proceed by mathematical induction with respect to the number of
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occurrences of D and φ in B. If there are no occurrences of D and φ in B,
then B is one of the variables 04. Hence Bτ is the same wff as A, , and (1)
follows trivially. Suppose that there are occurrences of D or φ or both in
B. Then B is either Bx D B2 or Bi Φ B2. By the hypothesis of induction

(2) A2,A2, . . . , An \-B{

(3) AX,A2, . . ., An h-B2

f

where B{ is Bx or Bx Φ C according as the value of Bx for the values
a^a* . . . , an of αiα2, . . . , α» is t or f, and B2

f is B2 or B2 φ C according
as the value of B2 for the values a^a* . . . , an of cii,α2, . . . , αw is t or f.

Case 1. If B is Bi 3 B2

(In the treatment of this and the next case it shall be tacit that h-C.)
In case B2 is B2, we have that Bτ is B1 DB 2 , and (1) follows from (3) by

Axiom 1. In case BI is Bx Φ C, we have again that B1 is Bx D B2 and(l)
follows from (2) by Theorem 2. There remains only the case that B[ is Bx

and B2 is B2 ΦC, and in this case Bf is Bi Z) B2φC, and (1) follows from
(2) and (3) by Theorem 3.

Case 2. If B is Bx Φ B2

In case BJ is Bx and B2 is B2, we have that B* is Bλφ B2 φ C, and (1)
follows from (2) and (3) by Theorem 4. In case B[ is Bx Φ C and BJ is
B2 Φ C, we have again that Bτ is Bx Φ B2 φ C, and (1) follows from (2) and (3)
by Theorem 8. In Case B\ is Bx and B2 is B2 ΦC, we have that Bτ is
Bi Φ B2, and (1) follows from (2) and (3) by Theorem 6. There remains only
the case that Bl is Bx φ C and B2 is B2, and in this case again Bτ is Bx φ B2,
and (1) follows from (2) and (3) by Theorem 7. Therefore Metatheorem 2 is
proved by mathematical induction.

Metatheorem 3. If B is a tautology, I—B.

Proof: Let Qi,α2, . . . , αw be the variables of B, and for any system of
values alya^ . . . , On of di,α2, . . . , αw let Ai,A2, . . . , An be as in Meta-
theorem 2. The Bτ of Metatheorem 2 is B, because B is a tautology.
Therefore, by Metatheorem 2,

A1?A2, . . . , An h-B

This holds for either choice of an> i.e., whether an is f or t, and so we
have both

Ai,A2, . . . , An_1? αw ΦC \— B

and

Ai,A2, . . . , Aw-i, αw 1—B

By the deduction theorem,

Ai,A2, . . . , A ^ h - α * ^ C D B
A I , A 2 , . . . , A^.h-On D B
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Hence, by Theorem 9,

AiA, . . . , A ^ h C D B

Hence, since I—C,

Ai,A2, . . . , An-ί \—B

This shows the elimination of the hypothesis Aw. The same process
may be repeated to eliminate the hypothesis A ^ , and so on, until all the
hypotheses are eliminated. Finally we obtain I—B.

In Metatheorem 1 and Metatheorem 3, together with the algorithm for
determining whether a wff is a tautology, we have a solution of the decision
problem of P. The consistency and completeness of P, now follows as
corollaries of this solution of the decision problem.

§3. Independence. The independence of each of the axioms and rules
of inference, with the exception of the rule of substitution, is established by
the standard device of generalized systems of truth-values (see tables
below).

For the proof of independence of modus ponens, it is necessary to
supply also an example of a theorem of P which is not a tautology according
to the truth-table used. One such example is p D p. The independence of
the rule of substitution can be established by a well-known argument.
Finally, since the calculations required to establish the independence of
Axiom 2 are extremely long, the author wishes to point out for the
convenience of the reader that when s, p, q take the values 4, 5, 3 respec-
tively, the axiom yields an undesignated value according to the truth-table
used.

MODUS PONENS

D M I \2\ ^l0]1 \2

AXIOM 1

^0_0__l_2_3_±_ *0 4 4 4 0 0

*2_0_l_0__3_4_ *3_ί_±_±_?L^_

J_o_J_o__o_Σ_ l _ l i l i i _

4 \θ\l \0 \θ \l 1 4 \0 \0 \2\4\4

AXIOM 2

p| o\i \2\3\4\5\ A o\i\2\3\4\5

^0__0_l_2_3_5_5_ ϋAllil.1.
*LJL_LiL±LAJL ί L A l l i l i .
^_2_i_o_3__5_5_ *JLJL5-JL.±LJLJL
J3 o_J__o_2_£_±_ A A l l i l l .

5 \l \l \ l \l \ l \ l 1 5\ fl|fl|fll3l5l5
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AXIOM 3

p | θ\l 2 φ θ\l\2
*_0_j)_l_2_ *0 2 2 0
J__0__0_2_ 12 2 1

2 1 <9 I <9 I 0 I 2 \θ\ 1 [2
AXIOM 4

^o_o_j_ ί̂ _i_i_
i \o\o\ l \i\i

AXIOM 5

p l o l i I ^ M i
^o_i_ *o i o
JL2-1L loo

AXIOM 6
p | O\I 1 ?ί|fl|i

*o_o_i_ ?<L°_Jί

1 1θ\θ\ 1\θ\l

AXIOM 7

PMJ 1 l̂̂ li
*o_o_i_ ^LL
l\o\o\ l \o\i

Remark. Ax. 1, Ax. 2, Ax. 5, Ax. 6, Ax. 7, Th. 9 also constitute a complete
set. For, (1) Ax. 4 follows immediately from Th. 9 by substitution and
modus ponens (p D p is deducible from Ax. 1 and Ax. 2), and (2) in order to
prove the completeness of P, we need Ax. 3 only in one place: to prove
Th. 9.
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