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TOPOLOGICAL GEOMETRIES AND A
NEW CHARACTERIZATION OF R*

MICHAEL C. GEMIGNANI

INTRODUCTION*. Mathematicians engaged in research in one area of
study may find concepts which have already been defined and studied in an-
other area, and they can therefore draw on those definitions and results
which already exist. In this way, topology has already been used to study
geometry; for example, in certain axiomatizations of Euclidean plane
geometry, "natural" topologies, having as subbasis elements either half-
planes or interiors of triangles, can be defined on the underlying set, and
these topologies can then be used in the formulation of propositions, or
further axioms.

Starting with chapter Π in this paper, however, the underlying set on
which a "geometry" is defined is assumed already to possess the structure
of a topological space. The geometry is an additional structure with axioms
to bind topological and geometric structures together. We may compare
what has been done to the example of a topological group, where two struc-
tures, algebraic and topological, are related by the continuity of the group
operation.

The usual manner by which a structure is given to a point set X is by
the selection of certain distinguished subsets either of X itself, or of
certain sets related to X, or of both. A topology on X is defined using a
family of distinguished subsets of X, while an operation on X is defined by a
subset of (X x X) x X. Classical geometries usually call for, either implic-
itly or explicitly, the existence of distinguished subsets called lines, planes,
or ^-dimensional subspaces. We define a geometry on a set X in terms of
distinguished subsets of X called k -flats, which are generalizations of
^-dimensional subspaces.

*This paper is a Thesis written under the direction of Professor Robert E. Clay and sub-
mitted to the Graduate School of the University of Notre Dame in partial fulfillment of
the requirements for the degree of Doctor of Philosophy with Mathematics as major
subject in October, 1964. The author wishes to express his sincere gratitude to Prof.
Clay for the interest and patience he has shown and the guidance he has given during
the preparation of this work.
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Though the concept of geometry as defined in chapter I seems worthy
of study in its own right, we are primarily concerned in this paper with
properties generalized from the n-dimensional Euclidean geometry on R F ,
and our goal is a surprisingly simple characterization of R™ as the only
space which admits a geometry having certain properties. We remark here
that the n-sphere can also be characterized in terms of the geometries it
admits, but this will be the subject of a future paper.

In Rm, the usual Euclidean geometry, the standard metric, and the
algebraic structure of Rm as a vector space are tightly bound together. In
our initial abstraction we do away with coordinatization, metrics, numbers,
and the algebraic structure of geometries derived from linear manifolds.
We find, however, that if topology and geometry are related in a very
natural way, then we begin to gain back many of the properties we discarded
in order to get the essentials of a geometry. We never regain the algebraic
structure, but we do regain many of its advantages in a more general
setting.

Chapter I will essentially deal with those set theoretic definitions and
propositions that will be of use in later chapters. Chapter II generalizes
convexity, the link between geometry and topology, and deals in large part
with assumptions which enable us to get the order properties of lines.
Chapter ΠI expands on a generalized notion of simplex and gives assump-
tions that insure simplices and flats will behave in a manner which
resembles their behavior in Rm . Chapter IV investigates what happens in
an m-arrangement, the structure developed in chapter III, when the
generalized lines have no end points. Chapter V is concerned with the
effect of a parallel postulate on ra-arrangements. This chapter shows that
a good deal less than Euclidean geometry is needed to force the underlying
space of a geometry to be a product space.

CHAPTER I

BASIC CONCEPTS

Definition 1: Let X be a set. An element of X is called a point. We define
G = {F'1^0,..., Fn} to be a geometry on X if the following axioms are
satisfied:

1) F* ^P(X), the power set of X, -1 ^ i ^ n. An element of Fι is called an
i-flat, or merely just a flat.

2)F~1 = {φ}.

3) /// is an i-flat, -1 ^ i < n, thenf/X.

4α) Every set ofi + 1 points not all contained in some k-flat, k < iy is con-
tained in at least one i-flat y -1 *ζ i *ζ n.

4b) Every set of i + 1 points not all contained in some k-flat, k < i9 is con-
tained in at most one i-flat9 -1 <? i ^ n.
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Combining (4α) and 4b) we have

4) Every set of i + 1 points not all contained in some k-flat, k < i, is con-
tained in a unique i-flat, -1 < i ^ n.

5) The intersection of any two flats is again aflat.

6) If k < i, then no i-flat is contained in a k-flat.

n is called the length of G, and we write l(G) = n. i is called the
dimension of F\ as well as the dimension of any flat / in Ff; we write
dim/ = i. By G* we denote {F~ι,... 9F

n,Fn+% called the augment of G,
where Fn+1 = {x}. X is then considered to be anw+ i-flat. G* satisfies
all the axioms for a geometry except 3); however, for simplicity, all propo-
sitions and definitions in this paper will refer to G*, unless they specifi-
cally state that they apply only to G.

Lemma: 1)-6) are independent.

Proof: independence of 1): X = {θ,l}. F"1 = {φ}, F° = {{0,2}, {1,3}}.
independence of 2): X = {θ,l}. F'1 = {φ,{θ}}, F°={{l}}.
independence of 3): G*, the augment of G, a geometry on X, if a

geometry on X exists;
independence of 4α): X = {θ,l}. F'1 = {φ}, F° = {{θ}}.
independence of 4b): X = {θ,l,2}. F " 1 = {(/>}, F° = {{θ}, {i}, {4, {θ,l}}
independence of 5): X = R2. F " 1 = {φ}, F° = {{x}\x ε R2}, F1 = {l\l is

a straight line in R2}. Since every triple of
non-collinear points of R2 determines a unique
circle, we can set F 2 = {c |c is a circle in R2};

independence of 6): X = R1. F'1 = {φ}, F{ = {H C Rλ\i ^ card̂ fiΓ ^

i + 1}.

LO: Examples of geometries

i) Let MF be an ^-dimensional vector space over a field F. Let Fι -
{x + H\X ε M; H is an i-dimensional subspace of MF}9 0 ̂  i < n-1. (It is
assumed henceforth, in accordance with 2), t h a t F " 1 ={φ}.) G = {iF" 1,...,
F w " 1 }is a geometry on M, and is affine in sense of definition 6 of this
chapter.

ii) X = S2 . F° = {{x,y}\ x antipodal to y}, F1 = {C Ic is a great circle onS2} .
G = {F'1, F°, F1} is a semi-projective geometry (definition 7) on S2.
iii) Let X be an infinite set. Set F* = {H C X \ card/ί =i + l}, 0 ^ i< n + 1
< <».

We assume throughout that the geometries with which we deal have
finite length. Such an assumption will be necessary in later chapters,
though not always in this one.

Prop. 1.1: ΐf f is a k-flat, k £-1, then f £ φ .

Proof: By 6).
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Prop. 1.2: If G = {F'1, ... ,Fn} is a geometry on X, n> -1, then G1 = {F"\
. . . ,Fn~1} is also a geometry on X.

The proof is trivial.

Prop. 1.3: If f is an i-flat and f is a j-flat, then f Π f1 is a k-flat with
k ^ min{ij).

Proof: By 5),/ Π / ' is a flat. We may suppose i ^ j . Suppose dim(f Π/»)
= k > i. Then by 6),/ Π / ' £ /, an obvious contradiction.

Definition 2: A se£ S = {#o, ...,#&} ŝ s<m? to δe linearly independent if
there is no i-flat (in G*) containing S with i < k.

Prop. 1.4: If f andf are k-flats, andfζf, thenf =/\

Proof: If k = -i, #zew / = / f = ψ . Assume 1.4 has been proved for
-I ^ z ̂  &-I, and supposed ^ 0. By 1.1, both/and/' are non-empty. Let
S = {xθ9 . ,Xq} be a maximal linearly independent subset of/, and let 1q(S)
be the q-flat that S determines in accordance with 4). Suppose q<k. Then
by 6), /-f*(S) f φ, hence choose y in/-f^(S). Let f(S U {y}) be a flat of
smallest dimension which contains Su{y}. 1.3 implies then that
f q(S) Π f(S U {y}) is a flat of dimension less than or equal to q which con-
tains S, hence it must be that dim(f^(S) Π f(S U {y})) = q, or else S would
not be linearly independent. Therefore, by the induction assumption,
iq(S) Π f(S U W) = iq(S). If dimf(S U {y}) = q, then f ̂ (S) = f(S U {y}), also
by the induction assumption, contradicting the choice of y in f-1q(S). If
dimf(S U {y}) < q, then by 1.3, dim(f^(S) Π f(S U {y})) < ^, contradicting
dimίf^ίS) Π f(S U {y})) = q. If dimf(S U {y}) >q, then S is not a maximal
linearly independent subset of /. Therefore it must be that q = k. But if
f φf\ then, since S<Ξ /<Ξ / ' , we have a contradiction of 4).

As an immediate consequence of the proof of 1.4 we have

Cor. 1.4.1: If S is a maximal linearly independent subset of a k-flat, then S
contains k + 1 points.

Prop. 1.5: If i ^ k, and f is a k-flat, and / f is an i-flat, thenf Π / τ is an
i-flat ifff c /.

Proo/: Case 1: i = k. By 1.4, / = / n / ' =/'. Case 2: i < &. Clearly if
/ f <Ξ/, then/ Π / ' =/f is an z-flat. Suppose/ Π / f is an z-flat. then since
/ n / ' c / ' , w e have by 1.4 that/ Π / ' =/', i.e./1 c /.

Definition 3: A seί S = {#o,... ,xm *} ^ α δ#szs /or α k-flat f if i) S is
linearly independent, ii) SC/, αwd iii) S is not contained in any flat of lower
dimension than k.

At times we shall employ the notation 1q(S) to indicate the #-flat deter-
mined by the set S, i.e. fq(S) is the minimal flat which contains S. To show
f̂ (S) is unique we suppose that iq(S) andf^(S) are minimal flats which con-
tain S. Then iq(S) Π f»($) is a flat contained both inf?(S) and inf^(S), and
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which contains S, hence Vp(S) = 1q(S) Π Vp{S) = 1q{S) by the minimality of
1p(S) and 1q(S). The lettersg* and h may also be used to designate flats for
convenience of notation.

Prop, 1.6: Any k-flat f has a basis consisting of k + 1 points.

Proof: Let Sbe a maximal linearly independent subset of/. Then by 1.4.1,
cards = k + 1. Clearly S is a basis for /.

Prop. 1.7: If f is any k-flat, then every basis, of f contains exactly k + 1
points.

Proof: Let S = {x0,... 9xm} be a basis for /. Since S is linearly independ-
ent and S <Ξ f OT(S), m < k would imply that S is not a basis for /. If m > k,
then 5 is not linearly independent since S<Ξ/, therefore m = k.

Cor. 1.7.1: We may replace definition 3 by
Definition 3 f: A set S = {x0,... ,xk} is a basis for a k-flat f iff i)S is
linearly independent, and ii) S <Ξ /.

Cor. 1.7.2: Every linearly independent set of k + 1 points is the basis of a
unique k-flat.

Proof: 4) and 1.7.1.

Prop. 1.8: Let S = {x0,... ,xm} be a linearly independent subset of a k-flat
f. Then S can be extended to a basis of f.

Proof: lϊ k = m, then by 1.7.1, we are finished. If m>k, then S is not
linearly independent; therefore, suppose m < k. There is xm+1 in f-im(S)
with Si = {x m +1} U S linearly independent, or else we would have / Q f „ (S),
a contradiction of 6). If m + 1 = k, we are finished; otherwise, we may con-
tinue in the obvious fashion until we arrive atS# ={xm+q} U Sq-if a maxi-
mal linearly independent subset of / with SQSq. Sq is clearly a basis for
/, and m+q = k.

Prop. 1.9: If T Qf, then iq(T)Qf.

Proof: T c jq(τ) Π fQ f, but since 1q(T) is the minimal flat which contains
Γ, and 1q(T) Π / is a flat by 5), it must be that iq(T) Π f = fq(T), i.e.
U(T) c /.

Cor. 1.9.1: If S = {x0,... ,xm } is a basis for/, and S^. f, thenfQf1.

Prop. 1.10: Every subset of a linearly independent set is linearly inde-
pendent.

Proof: Suppose S1 = {x0,... ,Xk} is a linearly independent set; let
Sτ = {̂ o, ,Xq\ ̂  S. 5 can be assumed to be ordered so that S" = {x0,...,
Xm\ m ^ q, is a maximal linearly independent subset of Sτ; then
S< Qfw(S f t) c jk(s) by 1.9.1. Let * ? + y be the firstxq+j, 1 ^j ^ k-q, such
thatΛΓf+ Ί is not in fOT(SM). Then Sx = {x0,... ,xm<,xq+jι} gives f^+JSi) with
fOT(SM) Q fOT+1(Si) £ f^(S). Proceeding similarly we eventually obtain
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Sr = {#o,. •.,#« fXq+jit 9χq+it}> a ϋ π e a r l y independent set with
S c iim+r(Sr) and f j(S) 2 f m+ΛSr) 2 . . . 2 f « (S"), but since S is a basis for
f *(S), by 1.7 it must be that m + r = k. Since r ^ &-tf, it follows that m = #,
and r = k - q.

Prop. 1.11: If 0 ̂  i ^ l(G)9 and xzX, then there is at least one ί-flat con-
taining x.

Proof: {x} is a basis for some 0-flat by 4). Suppose xεf, an z-i-flat.

Choose y in X-f {? φ by 3)); then %εf({;y}u/). K S is a basis for/, then

S U { y} is a basis for f({;y}u/), and card(S u { y}) =i + 1, h e n c e

1({y} U /) is an ί-flat.

Given a geometry G on X, the flats of G* can be partially ordered by

inclusion to give a complete, finite dimensional lattice which we denote by

IGI. We define / v g to be f(/ u g), i.e. l.u b.(/,#) in IG \.

Pro/>. 1.12: \G\ is upper semi-modular. (For the definition of upper semi-
modular, see the appendix.)

Proof: Suppose /, a &-flat, and/1, an z-flat, i < k, f φf\ cover / Π/ τ , a

#-flat. Since ^ ^ z, if ^ <^ -1, then / could not cover / Π / f , therefore

q = k - 1. By 6), 1.4.1, and 1.5, we also have z = /̂ . Let {x0,..., ΛΓ .̂J} be a

basis for / Π / ' . By 1.8 we can find Λ: and ΛΓ1 such that {ΛΓ0, . . . , %k-uχ} a n ( ^

{%,... Λ-i,^ r} are bases for/and/ τ respectively. Then{#0,... 9Xk-iyX,x^

is a basis for /v/% hence dim(/v/τ) = k+ 1, h e n c e / v / 1 covers both

f and/ 1.

Cor. 1.12.1: dim(/v g) + dim(/ Π ^) < dim/+ dim^ .

Definition 4: The following property 7) will not be needed until chapter III,

but its introduction comes naturally during a discussion of I G| :

7) // dim/= k, and dim/ = i, and/ n / ' f φ, then dim(/v/1) + dim(/ n / ' ) =

k +1.

Or, equivalently,

7') If fφ Φ> then the sublattice of \G\ consisting of the interval [f,X] is

modular.

That 7) is not an unnatural property is attested to by the fact that two
of the three examples given in 1.0 satisfy 7). Example i) satisfies 7) be-
cause the subspaces of a vector space form a modular lattice; example ii)
satisfies 7) because it is semi-projective (cfo supra). In example iii) sup-
pose that n = 6. Let S and Sf be subsets of X each of which contain 6 points,
and such that SOS1 contains a single point. Then dim(S v Sf) +
dim(S Π Sf) = 7+0^6+6- dimS + dimSf. In general, example iii) does
not satisfy 7) if n < <*>, but if n = 00, then 7) is satisfied.
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Definition 5: If f and / τ are both k-flats, then f and f are said to be skew

of order s, written f/jSf if i ) / n / f = φ, and n)fvf is a k + s-flat.

If / = / ' , or if/ΛΛ then we say /is parallel to/', and write f\\f\

Definition 6: A geometry G on X is called affine if given any k-flat f,
0 ^ k ̂  l(G), and any x in X, there is one and only one k-flat which contains
x and is parallel to f.

Prop. 1.13: Let G be a geometry on X such that for some integer k,
1 < k ̂  l(G), the intersection of any two distinct k-flats is always a
k-l-flat. Then 1{G) = k.

Proof: Suppose l(G) ̂
k + 1, and let / and/'be

distinct k-flats. Since it //v/τ " 7 ' 7

is assumed that dim(/Π / I I

/") = k - 1, we have by 1 1 /

1.12 that dim(/n/f) = / ' / " " - / - L
k + 1. Choose xif v/1; I / I j " z 7

then (/ v/ ')Π ik+1 ({x} \y \fnf /
U/) =/. Suppose g is a /Γ /• " \ ^ '
^-flat in fΛ+1 ({x}uf). / \ ! /
Then g n Γ c f Λ + 1 ({^} / \ \ /
Uf)Πf\ Since/'gfA+1 ^ — ^ _ _ _ ^ j /
(Wu/), 1.3 together f*+i<Wu/) " /
with 1.5 implies that \f
dim(f^+1({4u/) Π/τ) ^
k - 1, but since / u Γ Q
WWu/)n / f , it must
be that dim(f fc+1({#} U /) Π p) =k - 2. Therefore, using 1.4, we haveg Π / τ

= f fe+i ({#} U /) Π / τ = / Π / f . Since ^ was an arbitrary & -flat contained in
f AH-I(W" U / ) , it must be that any two distinct &-flats in f^+1({^} u /) inter-
sect each other in / Π / \ Choose y in fA+i({#} U /) - ( / f Π / ) , and let S =
{3;,^!,... ,Xk+1} be a basis of f k+! ({Λ:} U / ) . Then the distinct &-flats con-
tained in ik+ι({x} U /) determined by S^A^} andS-{j\:2} contain y in their
intersection, hence yzf* Π / , contradicting our choice of y.

Definition 7: A geometry G on X is called semi-projectiυe if, given any two
distinct k-flats, f and f , which are contained in the same k +l-flat in{G*),
then f Π f is a k-l-flat.

Prop. 1.14: A geometry G on X is semi-projective iff \G\ is modular.

Proof. Assume G is semi-projective. Suppose / v /* covers / and/ τ ,
f ff\ in | G | . An argument similar to that used in 1.12 shows that dim/=
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dim/1 =k, and dim(/ v / ' ) = k + 1, hence dim(/ Π/τ) = k - 1, thus | G | is

lower semi-modular. Since \ G\ is upper semi-modular by 1.12, \G\ is

modular. Assume G is modular, and/ and/1 are distinct &-flats contained

in the same &+l-flat. Then d i m ( / v / ' ) + dim(/Π/ τ) = dim/+ dim/1 =

k+l+άim(f Π/1) = 2k, hence dim(/ Π/1) = £-1, and G is semi-projective.

Cor. 1.14.1: Any semi-projective geometry satisfies 7) {definition 4).

Definition 8: Z,#£ F £ X, and G be a geometry on X. The geometry induced

on Y by G is defined as follows: F'1 = {</>}; for k > 0, F* = {fΛ(S) Π r | s =

3>o> ĵ fe}? 5 <Ξ F, arcd S linearly independent in x}. Set Gγ =

Fy1,... ,Fy] where there is some M+l-flat which contains Y, but no flat

of dimension less than M + l which contains Y. M is said to be the dimen-

sion of Ywith respect to G, written δ(Y)M.

Prop. 1.15: If Y fi φ, then Gy is a geometry on Y.

Proof: 1)-3) are clearly satisfied. 4) follows since every set of points
linearly independent in Y is linearly independent in X. Since (/ Π Y) Π
(f* Π Y) = (/ Γϊ/«) Π 7 where / and/' are arbitrary flats of G, 5) holds.
By definition of Gy, every &-flat of Gy contains at least one set of k+1
points which is linearly independent in X, hence no k -flat could be contained
in some flat of lower dimension in Gy, thus 6) holds.

Cor. 1.15.1: If f is a k-flat, k £ -1, then Gf is a geometry on f of length
k-1; moreover, by 1.9.1, f is aflat in Gfifff'Qf, and f is aflat in G*

Definition 9: A property *) is hereditary if, given any geometry G having
*), then, if f is any flat of G, f fi φ, Gf also has * ) .

Prop. 1.16: Property 7) is hereditary.

Proof: Assume G has 71), and/ is a non-empty flat of G. Then |G/| =
[φ,f] ίΞ I G | . K/ fε IG/I, and/' f φ, then [f\f] is an interval of the modular
lattice [f\X], hence is modular.

Prop. 1.17: The property of being semi-projective is hereditary.

Proof: K Gis semi-projective, then by 1.14, I G| is modular, hence i f/ε |G |
then [φ,f] = IG/I is modular, hence by 1.14, G/ is semi-modular.

Prop. 1.18: The property of being affine is hereditary.

Proof: Let g be some &-flat, k ^ -1, of an affine geometry G. If k = 0, or
I, then Gg is trivially affine. Assume k > 1. If / i s any &-flat of G, then/
is a flat of Gg iff / is properly contained ing (1.15.1). Let /be an z-flatof
Gg with i > 1, and let y be any point in g-f. There is a unique z-flat/1 of G
which contains y and is parallel to /. / v / f is an i + i-flat of G*, and, if S
is a basis of / , then S U {y} <ΞL g is a basis of / v / f , hence by 1.9.1,
/ v/ f c £•. Since / ! is the only z-flat of G containing 3; and parallel to/, it
is the only z-flat of G* containing y and parallel to /, hence Gg is affine.
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CHAPTER II

BASIC PROPERTIES OF TOPOLOGICAL GEOMETRIES.
A STUDY OF I-FLATS

For the remainder of this paper X is assumed to be a topological
space.

Definition 1: A subset W of X is convex with respect to G, a geometry on X,
if the intersection of W with any flat of G is connected. Where no con-
fusion can result, convex will stand for convex with respect to the particu-
lar geometry (or any member of a class of geometries) under
consideration.

Prop. 2.1: A subset W of X is convex iff i) given any O-flat g, g Π W is

connected, and ii) given any 1-flat f, / Π W is connected.

If W is convex, then the intersection of W with any flat is connected,
hence i) and ii) hold. Assume i) and ii) hold. By assumption then the inter-
section of W with any flat of dimension less than or equal to 1 is connected.
Suppose f is a &-flat k >2, such that W Π/» = A U B, A Π B = φ9 A and
B non-empty and relatively open inWΠ/ 1 , Choose xεA9 yεB. Because of
i)> {x,y\ is linearly independent. Then fι(x,y) Π W = [A Π ii(x,y)] U
[B Π ix{x,y)}, hence ix{x,y) Π W is not connected, contradicting ii). It must
be then that WΠ/' is connected, hence W is convex.

Cor. 2.1.1: If F° = {{#}|#ε-X}, then a subset W of X is convex iff f Π W is
connected, where f is any 1-flat.

Cor. 2.1.2: If each O-flat consists of a discrete set of points, then a subset
W of X is convex iff f Πψ is connected, where f is any 1-flat, and W
contains no more than, one point from any O-flat.

Prop. 2.2: A subset W of a 1-flatf is convex iff i) W is connected, and ii) if
g is any O-flat, then W Π g is connected.

Proof: Suppose i) and ii) hold. Then by assumption, the intersection of W
with any fl-flat is connected. Let f be any i-flat. Ίi f = f, then f Πw =
W, which is connected. K/1 / /, then/τ Π / is either φ, or some O-flat,
and, in either case, / τ Π W is connected, hence W is convex by 2.1. If W is
convex, then by 2.1, i) and ii) hold.

Cor. 2.2.1: If F° = {{x}\xεx}, then a subset of a 1-flat is convex iff it is
connected.

Cor. 2.2.2: A subset of a 1-flat {great circle) in S2 is convex iff it is con-
nected and contains no two points which are antipodal (cf. 1.0, example ii).



66 MICHAEL C. GEMIGNANI

Cor. 2.2.3: If each O-flat consists of a discrete set of points, then a subset
of a 1-flat is convex iff it is connected, and contains no more than one point
from any O-flat.

Prop. 2.3: If W is a convex set in X, and if f is any 1-flat, thenf Π W is
convex.

Proof: Let / ' be any i-flat, or O-flat of X. Then f'Π(fnW) =
(f'Of)nw. K / τ = / , then / τ Π / = / . H p f f, then / f Π / is either φ,
or some O-flat. In any case, by 2.1, (/' Π /) Π W is connected, hence by
2.1, / Π W is convex.

Prop. 2.4: //W zs convex, then W is connected.

Proof: Since X is a flat of G*, X n W = W is connected if W is convex.

Definition 2: A geometry G on a space X is said to be topological if i) each
flat is a closed subset of X, and ii) */{^λlλεΛ Z 5 any family of convex sub-
sets of X, then ( | W\ is convex.

Λ

Prop. 2.5: If φfi Y <Ξ X, then if G is a topological geometry on X, and Y is
given the subspace topology, then Gy is a topological geometry on Y.

Proof: W <Ξ Y is convex with respect to Gy iff it is convex with respect to
G, hence ii) of definition 2 is satisfied. Since every flat of Gγ is the inter-
section of Y with a closed subset of X, each flat of Gγ is closed in Y.

Cor. 2.5.1: The property of being topological is hereditary (cf. chapter I,
definition 9).

Prop. 2.6: A geometry G on X is topological iff i) every flat is closed)
ii) given any O-flat g and any family {τ̂ λ}λεΛ of convex subsets of X,

g Π (I \W\) is connected; and iii) given any l-flat,f, G/ is a topological
A

geometry on f (with the subspace topology).

Proof: If Gis topological, then i), ii), and iii) hold by definition 2 and 2.5.
Suppose i), ii), and iii) hold. Because of 2.1 it only remains to be shown
that, given any i-flat / and any family {Wχ}χεΛθf convex subsets of X,

f Π {f)wλ) is connected. / Π ( f l wλ) = Π if n wλ) By 2.3, each
Λ Λ Λ

/ Π Wχ is convex with respect to G, hence each / Π Wχ is convex with

respect to G/. By iii), therefore, f\{f Π Wλ) is convex in /, hence is con-
nected by 2.4. Λ

Cor. 2.6.1: If each O-flat consists of a discrete set of points, then a geom-
etry G on X is topological iff conditions i) and iii) of 2.6 apply.

Proof: If each O-flat consists of a discrete set of points, then no convex
set can contain more than a single point of any O-flat, hence in ii) of 2.6,

g Π ( Π Wλ) could consist of at most one point.
Λ
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Cor. 2.6.2: If F° = {{x}\xεx}, then G is topological iff i) every flat is

closed, and ii) given any family {l̂ λlλεΛ of connected subsets of any given

1-flat, then ( | W\ is connected.
A

Proof: 2.6 and 2.2.1.

Prop. 2.7: If G is a topological geometry on X such that each O-flat con-
sists of a discrete set of points, and if f is any 1-flat of G*, and if W is any
convex set which is contained in f, then any minimal disconnecting subset
of W consists of exactly one point.

Proof'. Suppose M is a minimal disconnecting subset of W. Since W is
connected, card M^ 1. Suppose cardM^£; choose xεM. Setting T = M-
{x}, we have W-T is a connected subset of /. Since W contains no more
than one point from any O-flat, W-T also has this property, hence W-T is
convex by 2.2.3. Similarly, W-{x} is convex, but (W-T) Π (W-{#}) = W-M
is not connected, hence is not convex, contradicting definition 2, ii).

Cor. 2.7.1: The usual geometry on RP{2), the real protective plane, is not
topological.

Proof: Since F° = {{x}\xεRP(2)}, and each line is connected, by 2.2.1, each
line is convex, hence it would have to be that a minimal disconnecting sub-
set of any given line consists of only one point, but this is clearly not true.

We remark, however, that the great circle geometry on S2 is topologi-
cal. We thus see that even though a geometry G on X may be topological,
the "identification" geometry on the identification space obtained by
identifying all points in the same O-flat need not be topological.

We assume for the remainder of this chapter:

A1: F°={{x}\xεX}.

Cf. 2.1.1, 2.2.1, and 2.6.2.

A2: G(any geometry under consideration) is topological.

Definition 3: Let S ς i , Set Δ(S) = {w ί l i) W is convex, and ii) W 2 s}.

The convex hull of S, written C(S), is defined by C(S) = I I W. If x and y are
WZA(S)

distinct points of X, then C({x,y}) is denoted by xy,and is called the segment
joining x and y.

Prop. 2.8: The following statements are equivalent:

a) every 1-flat in G* is connected]
b) every flat of G* is convex',
c) Δ (S) £ φ for any S c X.

Proof: a) implies b): Let / be an arbitrary 1-flat of G*, and suppose / τ is

any flat of G*. Then dim(/ Π / τ ) < 1 by 1.3, hence / Π / f is connected. By

2.1.1 we have, therefore, that/' is convex, b) implies c): Since X is a flat

of G*, X is convex, hence XεΔ(S) for any S^X. c) implies a): Setting
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S = X, since Δ(X) f φ, X is convex, hence every I-flat must be connected
by 2.1.1.

To A1 and A2 we add

A3: Every 1-flat in G* is connected.

If X f φ is Tί9 then X admits at least one topological geometry with
F° = {{#}|ΛrεX}, namely the trivial geometry where any k-flat is merely a
subset of X which contains k + 1 distinct points. The only sets convex with
respect to this trivial geometry are φ and the one point subsets of X. No
general condition has yet been found for deciding whether an arbitrary (7\
and connected) space admits a topological geometry which satisfies A3 and
A1. The following properties of C( ) are trivial and are presented without
proof.

Prop. 2.9: α) S <^C(S).

b) IfSζ T, then C(S) QC(T).

ό)lfS is convex, then C{S) = S.
e) C(C(S)) =C(S).

f) // W is convex, andSQW, then C(S) <Ξ W.

Prop. 2.10: A subset W of X is convex iff {x,y} ^W, x / y, implies xy <Ξ W.

Proof: If W is convex and {x,y} <Ξ W, then by 2.9f), ~xy <Ξ W. Suppose
{x,y} c w implies xy QW. Let / be any I-flat. If card(/ Π W) = 0, or 1,
then/ (Ί W is connected. Suppose card(/ Π W) ^ 2. Choose any two distinct
points x and y from / Π W. Since / is convex, by 2.9f) xy Q / . xy QW by
assumption, hence xy c / n W. We have then by 2.4 that ΛΓ and y are both in
the same component of f Π W, hence, since x and y were arbitrary points of
f Π W, f d Wis connected. W is therefore convex by 2.1.1.

The following corollaries are now clear:

Cor. 2.10.1: A subset W of Rm is convex with respect to the usual
Euclidean geometry of Rm iff it is convex in the usual sense.

Cor. 2.10.2: The usual Euclidean geometry on Rm is topological.

Prop. 2.11: If f is aflat in G, then f is nowhere dense in X.

Proof: Since / is closed we must show that / does not contain any non-
empty open set. Suppose U^f, U f φ, and U is open in X Choose xεU,
and yεX-f. U Π i^x^y) is an open neighborhood of x in iι{x,y). Since iχ(x,y)
is connected, Fr(U Π iλ{x,y)) in ix{x,y) is non-empty. Since / is closed,
CltfC/. If zεFr(U Π i^x^)) in ix{x,y), then z εi ^x ,y), and^εClί/Q/, but
{x,z} is a basis for iι(x,y), hence by 1.9.1 f1(x,;y) <Ξ/. Since y was an
arbitrary point of X we have that every point of Zmust be in /, i .e./ = X, a
contradiction of 3), definition 1, chapter I.

Cor. 2.11.1: If S = {x0,... ,Xk\ is linearly independent, and k ** l(G), then
C(S) is nowhere dense in X.
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Proof. C(S) £ f*(S) by 2.9f) and 2.8. By 2.11, 1k(S) is nowhere dense inX.
Since 1k(S) is closed, C1C(S) !Ξ fΛ(S), hence C(S) is nowhere dense i n Z .

Cor. 2.11.2: Ifi<ik, and f is an i-flat contained in a k-flat f, then f is
nowhere dense in f.

Proof: 1.15.1, and 2.5.1 and 2.8, i.e. A1-A3 are hereditary properties.

Prop. 2.12: Suppose fζf where f and f are flats in G*. Iff disconnects
f\ then f is a closed, minimal disconnecting subset of f.

Proof: Set T = (/'-/) U {x}, where x is any point in /. Let w,zε T, w f z.
Then since any i-flat not contained in / intersects / in at most one point,
ϊϋx U xz lies entirely in T and is connected. Since w and z were arbitrary
points in Γ, T must be connected, which shows / is a minimal disconnecting
subset of/1, / i s also closed in/ 1 since both/ and/1 are closed.

Since any subset of a i-flat is convex iff it is connected (2.2.1), topo-
logically a 2-flat is a connected Γx space in which the intersection of any
family of connected subsets is again connected. If x and y are distinct
points of a 2 -flat /, then xy is the intersection of all connected subsets of /
which contain both x and y, thus we see

Prop. 2.13: xy is the unique subset of f which is irreducibly connected
about x and y.

We set Ίntxy = xy - {x,y}.

Prop. 2.14: If zεlntxy, then a) xy =xz u zy, and b) x~z Π ~zy = {z}.

Proof: a) By 2.9f), xz U zy <Ξ xy, xz U zy is a connected (hence convex)
subset of fι(x,y) which contains both x and y, hence again by 2.9f), Icy <Ξ ϋ
U Fy, b) follows directly from Wilder [9], chapter 1, 10.15.

Prop. 2.15: If C is any connected subset ofxy which contains either x or y,
then xy-C is connected.

Proof: Cf. Wilder [9], chapter 1, 11.2O

Cor. 2.15.1: x and y are the only non-cut points ofxy.

Proof: Since xy is irreducibly connected about x and y, if zεlntxy, then
xy -{z} is disconnected, hence z is a cut point of xy. Since {x} and {y} are
connected subsets of xy which contain x and y respectively, j?y-{#} and
5>-{y} are connected by 2.15, hence both* and y are non-cut points of xy.

Prop. 2.16: z is a cut point of a 1-flatf iff zεlntxy for some pair of distinct
points x and y off.

Proof: Assume 2 is a cut point of/. Then f-{z\ =AUB,A,B non-empty,
and relatively open in /with A Π B = φ. Choose xεA,yεB, lϊzjέxy, then
xy - {xy Γ\ A) u {xy Π B), hence xy would not be connected, a contradiction
to 2.13. Suppose z is not a cut point of/. Then f-{z} is convex since it is
connected, hence if x and y are distinct points of f-{z}, then xy <Ξ f-{z} by
2.9f).
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Cor. 2.16.1: If zεlntxy, then z is a cut point ofboth xy(2.15.1) and fι(x,y)
(2.16).

Cor. 2.16.2: The set of cut points of any 1-flat is non -empty.

Proof: Let/ be a i-flat; then card/ ^2. Choose x, y εf, x φy. xy is con-
nected and Tl9 hence card(Intry) ^ No> but every point of ίntxy is a cut point
of /by 2.16.

Definition 4: A space X with topological geometry G is said to be locally
convex if every point of X has an open neighborhood basis consisting of sets
convex with respect to G.

2.2.1 shows

Prop. 2.17: A 1-flat is locally convex iff it is locally connected.

Prop. 2.18: A locally convex space is locally connected.

Proof: 2.4.

Prop. 2.19: If Y is a convex subset of a locally convex space X, then Y with
the sub space topology is locally convex with respect to Gγ.

The proof is clear.

Definition 5: Let Y <Ξ:X, a locally convex space. Then x and y are said to
be polygonally connected in Y if there are points x0 = x,xx,...,xn = y, with
n < °o, such that xoxx U x1x2 U . . . UxnmΛίxn - Y Y is said to be poly-
gonally connected if every two points of Y are polygonally connected in Y.

Prop. 2.20: If Y is polygonally connected, then Y is connected.

Proof: if x9y εF, since any set of the form xoxx u xxx2 U . . . u xn-\Xn is
connected, x and y belong to the same component of Y. Since x and y were
arbitrary, Y is connected.

Perhaps the most important property of locally convex spaces is given
by

Prop. 2.21: If U is an open, connected subset of X, a locally convex space,
then U is polygonally connected.

Proof: Let xε U. Let A ={y εϋ\ x is polygonally connected to y in u}, and
B - U-A. A is open since if yεA, then some convex neighborhood V oί y is
contained in ίί If wε V, then wy c Fby 2.10, therefore wεA, hence V^A.
By a similar argument B is open. Since U = A U B, and A Π B = φ, either A
or B must be empty, but xε A, thus B = φ.

To A1-A3 we add assumptions

A4: X is locally convex.

A5: If x,y, and z are distinct points of some 1-flat, then xy u yz = xy, yz,
and/or xz.

RP(2) is an example of a space with geometry which satisfies A1, A3,
and A4, but not A2 (2.7.1)o The great circle geometry on S2 satisfies A2,
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A3, and A4, but neither A1, nor A5. If R2 with its usual geometry is given
the discrete topology, we have an example of a space with geometry which
satisfies A1, A2, and A4, but neither A3, nor A5; on the other hand, if R2 is
given the indiscrete, or trivial topology, then we fall short of satisfying
A1-A5 only in that each flat is not closed, and A5 does not hold. It should
be noted that each of these examples also satisfy property 7) (chapter 1,
definition 4). A1, A2, and A3 are necessary prerequisites for A5 for if any
one of these is not satisfied, then the existence of xy for any given points x
is uncertain.

The following examples, all subspaces of R 2, with geometry
G = {F~\F0}, F° = {{x}\xεX}, illustrate both the independence of A4 and A5,
and what "pathological" condition each assumption is intended to eliminate.
Each example satisfies property 7) and A1-A3. Example 1 satisfies neither
A4, nor A5; example 2 satisfies A4, but not A5; and example 3 satisfies A5,
but not A4.

Ex. 1: X, ={(x,y)\y = 0, or y = ̂ - [ 3>

x, for n a natural number}. >v j

Ex. 2: X2 = {(x,y )\y = 0, o r x = θ}. ^2^2^^. '
Clearly z~^z~2 U z2zx f z0z2 , ~~ - - ~ ^ N ' , ^ ^ ^ x

z2~Γι, o r z~^l. χχ j ^ \ ^ \ ^ ^ ^

Ex. 3: X3 = {(x,y)\ (x,y) = (0,0), or ! X^ ^ ^ ^

y = sin-, x > θ}. X3 can be

totally ordered by < , where I

(^o,̂ o) < {xl9yι) MίxQ<xι,
 2

but the order topology is not
induced topology on X3, for
if it were, then the map • 1
p:X3->{(x,y)\y = 0,x>0}= ° ι

R+ defined by p((x,y)) = x X2

would be 1-1, onto, and or-
der-preserving between two ,3>
spaces with the order topol- j
ogy, hence p would be a Π j A Γ\ /~^
homeomorphism, but R+ is U \ /
locally connected, and X3 is ι \ /
not at (0,0). Nevertheless, (0,0) 1J t " \ ~Γ x

with this ordering, z0 < zx vft I \ /
implies zozί ={zεX3\z0 < ι\|()\J W \ _ / X3

z^zj. '

We now proceed to show that assuming A1-A5, we can order any 1-flat
/ in such a way that the order topology is the subspace topology of /.

Prop. 2.22: If y is any cut point of a 1-flat f, then there are A and B,
closed, connected subsets of f such that A Π B = {y}, and A U B =/.
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Proof: Set Γ = / - {y}. Fix # oεΓ. T is open in /. Set A1 = {xεT\x is
polygonally connected to x0 in T}, and B% = T - A\ A1 is connected by 2.20.
Suppose wεA1, and 27 is an open, convex neighborhood of w in/ which
excludes y. Then M zεU, wz ^U, hence Z7^ A1, which proves that Af is
open. Suppose wεBf, and £/ is an open, convex neighborhood of w in/which
excludes y. Suppose we can find zεU Π A1; then since wz <Ξ U, wεA' also,
contradicting wεB\ Thus Af and £ f are both open subsets of /, hence are
both open subsets of T, hence are both open and closed in T. Both A1 and
B1 are non-empty, or else T = A1, and T would be connected. Since A* is
closed in T, A1 = T Π F, where F is some closed subset of /. If y ψF, then
A* = F, hence A1 is open and closed in/ and/ could not be connected, hence
yεF, hence A' U {y} = F = CIA'. Similarly B' U {y} = CLB\ Set A =
Af u {y} and 5 = £ f U {y}. Since Af is connected, A = CL4f is connected.
The proof of 2.22 is completed by the following proposition.

Prop. 2.23: The set B' described in 2.22 is also connected.

Proof: If B1 is connected, then it is a convex, open subset of a a locally
convex space (namely, of /), hence by 2.21,
B' is polygonally connected. Therefore if

ί ϋ v / Z?1 is not connected, we can choose w, zεB*
^s^} y such that yεwz Π x~^w Π x~^z. By 2.14 we

/J*^' have
^ ' * wλε =ΛΓOW u XoZy xεw Π xoz ={xo} if xoεϊϋz;

y^\ f XQW = WZ U X^Z, WZ Π x^z = {z} if zεxow;
x^z = ϊϋz U ΛΓO ,̂ w?i Π x^w = {w} if wεx^z.

It follows at once that xotfwz, wfeoz9 and

Z^XQW. Consider xow u F^i. By A5 xow u ΛΓ0̂  = ΛΓÔ ? χ o z , o r w^ K ^o^y

then zεxow; if J^i, then wεx^z; and if ϊt i , thenΛroεiί^i, a contradiction in
any case, hence B* must be connected.

Prop. 2.24: An y 1-flat contains at most two non-cut points.

Proof: Suppose #i,#2>*3c/> a i-flat, are all distinct non-cut points of /.
B y 2 . 1 6 t h e n XitfΊntxjXk, i j ,k = 1 , 2 , 3 , i f j , j f k , i f k . B u t x 1 x 2 U x 2 x 3 =
XχX2, X2%3t or X1X3, and, in any case, we obtain contradiction.

Prop. 2.25: If x,yεf, a 1-flat, x fi y, then Intxy is open inf.

Proof: Let #ε Lit3ry. Then zε U, a convex open subset of X which excludes
x and y. Set V= U Π /. Suppose there is wε V - Intiry. If ΛΓM; U ̂  = xy,
then wεxy, contrary to assumption, hence by A5, either xy <Ξ wy, or
xy <Ξ w^. In either case, we know that ^ϊ) U wy = zw, ϊϋy, or zy. If ^ , then
yεV, contrary to assumption. Ίizy, then wεzy, and since 3Fy = xz u ^ , we
would have wεj^. It must be then that zw u ϊvy = wy. We also know that
xz U zw= zϊϋ, ~xz, ovxΊJb. If zw, then ^ ε 7 ; if 3ci, then wεxy, thus it must
be also that xz U zw = xw. We have shown therefore that z εxw Π wy.
Suppose that xy <Ξ £03;. Then x ε ̂ , and ̂ 3? = "wx U ^ " and ̂  Π ̂  =
{ΛΓ}(2.14) but zεxy Π 3m;, hence z -x, a contradiction. If we assume in-
stead that x~y <Ξ w£, then j εϊί^, hence ~xy \l~yw =wx, andxy Π yw = {y}, but
>ε εxy Π M^, hence we again have a contradiction. It must be therefore
that V !Ξ Int3ό;, hence Int^J is open in / .
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Definition 6: We now define a total ordering on a 1-flat / as follows: Let
y0 be a cut point off. We see from 2.22 and 2.23 that f - {yo}= A1 U B\
A1 Π B1 = 0, mzd A1 <z?&i i?τ αrβ both connected, hence convex by 2.2.1. We
recall that A = A' U {;y0}, <md B= B' U {y0}. Define > by

1) iεA f implies x> y for any yzB.
2) ΛΓ ε̂Λ*, x fi y implies x> y iff xy0 2 yyQ. W0 /zofe £te£ xy0 U j ^ ; 0 =
jϊFy cannot occur since A1 is convex, giving xy <Ξ A1 (2.9f)).
3) xzB* implies y0 > x.
4) x,yzB\ x ^ y implies x > y iffxyOl c yy0.

We note without proof (since these facts are never needed anywhere in
this paper) that 1) the order given by > is independent of the choice of the
cut point y09 and 2) if A* and £ f were interchanged (i.e. if Af were called B\
and B1 were called Aτ), we would obtain an ordering >̂ such that x > y iff
y > x. Define x < y if y.> x, and y ^ x if y > x, or y = x.

Prop. 2.26: Γte ordering of f given by > is a total ordering.

Proof: i) x ^ y implies x > y, or y > x. The only cases of any consequence
occur when {#,3;}^ A*, or {x,y}^B\ In either case, xy~^VyyZ= xy^, or
3 ^ . By 2A4 xY^ = yy~0 iff x = y. ii) x > y, y > z implies x > z. If xzA ,
y,zzB, or x,yzA, zzB, the result is trivial. Otherwise the resultfollows
from the transitivity of set inclusion.

Prop. 2.27: If x <y, then xy = {z \x ^ z ^ y}.

Proof: a) xy c {z\ % < z < 3;}: Suppose wεjry.
Case 1: {ΛΓ,̂ } <Ξ A. T h e n 3 ^ c 3^7, therefore yox {j xy = yy0 and y~^x Π 3̂ 7
= {x}. Then xyΓ0Όxw = yQw, since 3o^u3^ = jαί; would give yozA\ and
3o^ U xw = xyΓ0 would imply that xy0 Πxy^ {x}. Since this gives x~y~Q c 3 ^ ; ,
x ^ w\ similarly y ow c 3̂ 3̂  hence w < 3;.
Case 2: {#,3;} c 5. Entirely similar to case lo

Case 3: xzB, yzA. If wzB, then w ^ y, but if w<x, then jry 0 is properly
contained in wy0> thus wtfxy0, hence w could not be in xy. K wzA, then
w ^ x, but w > y would imply that wy0 ^yy0, whence wtfyy0, and wtfxy~0.
Therefore again we have x ^ w < 3;.

b) {z \x < >ε ^ 3;} Q ^3;: Suppose Λ: < w < 3;. By A5 xw Ό ϊΰy = xw ,
^3;, or JC3;. If 3αϊJ, then yzxϊv , hence by a), x< y<w; if ϊvy, then Λ εwό;,
hence also by a), w < x<-y\ in either case we have a contradiction of 2.26.
It follows then that xw U zvy - Icy, hence w zxy.

a) and b) together imply 2.27.

Cor 2.27.1: If x < y, then {z \ x < z < 3;} is o/>en zw/.

Proo/: By 2.25.

Cor. 2.27.2: 77z£ s^ίs {z\x < 2} αwd {ε |x> z} are open in f.

Proof: We prove {z \ x < z} is open in /; the proof for {z \x > z} is analogous.
Let zz{z\x<z}. If there is wzf, w > z, then 2 ε Intjαϊ; c {z | χ< z}bγ 2.27.
If there is no w > z, let Ube any convex, open neighborhood of z which ex-
cludes x. Then U Π {y\y ^ x} = φ, ίov My ^ x, zndyzU Π /, then^λi Q U Π f
by 2.10, which would imply that xzU Π/.
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Cor. 2.27.3: The order topology off is equivalent to the subspace topology
and is T2.

Let U be an open, convex neighborhood of x in /. If there are u,vεU
such that u < x < v, then xε Intwϊ>" ζ U. Ji x ^ w y or x ^ w9 for all wε U9 then
Λ; is contained in an open set which is contained in Z7of the form described
in 2.27.2. Since Intuv - {w\u< w < v}(2.21), we have shown that every
open, convex neighborhood of x in the subspace topology contains an open
neighborhood of x in the order topology. On the other hand, sets of the
form given in 2.21 Λ and 2.27.2 form a basis for the order topology, and
these are open in the subspace topology of /, hence the order and subspace
topologies of / are equivalent. The order topology is always Γ2.

Prop. 2.28: A 1-flat ordered as described in definition 6 satisfies the
Dedekind cut axiom.

Proof: Suppose C and D are two non-empty subsets of / such that i ) C U D
= / , and ii) xεC,yεD implies y <x. Suppose neither C has a smallest
element, nor D a largest. Then C is the union of open sets of the form
{z \z > x}, and D is the union of open sets of the form {z\z < χ\ hence C and
D are non-empty, disjoint, open subsets of / whose union is /, thus / is not
connected, a contradiction of A3.

Prop. 2.29: xy is compact.

Proof: Let {ϋa} be a collection of open sets (of X) covering #5. We con-
struct a Dedekind cut of ix(x,y) (ordered by >) as follows: zεC if 1) z <x
(we assume x <y), or if 2) x ̂  z ^ y9 and a finite number of the Ua cover
x~z. Set D = f ι(x,y)-C. lϊ xy <Ξ C, we are done; otherwise C and D give a
cut. Therefore by 2.28 there is w0 largest in C, or smallest in A Since
wQε xy- {y}, woεUao, give one of the Ua. By 2.27.3 and the local convexity
of fi(x,y) (2.19), there is uv <Ξ UQo with x < u < w.o < v. Regardless of
whether w0 is in C or in D, uεC, therefore a finite number of the Ua cover
xΰ, thus vεC, but v > w0, a contradiction.

Prop. 2.30: If X is metrizable, then xy is homeomorphic to [θ,l].

Proof: Cf. Hocking and Young [δ], theorem 2-27.

Cor. 2.30.1: If X is metrizable, then X is arc-connected.

Prop. 2.31: Any segment xy is locally periphically countably compact.

Proof: A basis for the open sets of xy consists of sets of the form
{w \w > z}, {w \w < z}, or {w \u < w < υ} (2.27.3). In any case, the frontiers
in xy of these sets consist of at most two points.

Cor. 2.31.1: If xy is separable, then x~y is homeomorphic to [θ,l].

Proof: Cf. Wilder [9], 11.14, chapter I.

Cor. 2.31.2: If X is second countable, then X is arc-connected, and every
segment in X is homeomorphic to [θ,l].
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Proof: If x,yεX, x f y, thenxy is second countable, hence separable, xy is
therefore home om or phi c to [θ,l] by 2.31.1, hence xy is an arc connecting
x and y.

Definition 7: Let S = {x , . . . ,χk}. Then C(S) is called a k-simplex iff S is
linearly independent. Suppose C(S) is a k-simplex. C({x0,... ,Xi,... ,Xk\),
denoted also by FiC{S), is called the ith face of C(S); x{ indicates Xi has
been deleted. FlC{S) is a k-1-simplex.

k

We define άC(S) = ( J FιC (S), and Intθ(5) = C(S) - άC(S), called the in-
; = 0

terior of C(S). Set ExtC(S) =[χ - C(S)]Π fA(s); ExtC(S) is called the exter-
ior of C(S). This chapter was primarily concerned with the properties of
2-flats. We now begin a discussion of the structure of X as a whole.

CHAPTER III

m- ARRANGEMENTS

Definition 1: A topological space with geometry G of length m-1^0 is
called an m-arrangement if the following conditions are satisfied:

3.1: F ={{x}\xεX}.

3.2: G is topological.

3.3: Any 1-flat of G* is connected.

3.4: X is locally convex {with respect to G).

3.5: If x,y, and z are distinct points of a 1-flat, then xy u xy = xy,Yzy or xz.

Since 3.1 - 3.5 are nothing but A1-A5 of chapter II, the results and
definitions there are applicable in this chapter.

3.6: If S = {x0,...,xk}.is linear-
ly independent, and k ^ 1, then

C(S)= U xjc- A*° f /\° f

XZF°C(S) / \J^~ / \ J~~^

3.7: If C(S) is a k-simplex and / / / \
f is any 1-flat in f &(S) such that / = ^ > / I
/ Π IntF*C(S) consists of a single I I I ]
point for some if then f Π IntC(S) (*i / (^i /
= φ . ^ - -JX2 \ - 'x2
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3.8: // C(S) is a k-simplex, thendC(S)^ FrC(S) in 1k(S) {in G*), i.e. the
topological boundary in a flat f of G* of C(S), where S is a basis of f, is
contained in the "geometric boundary" of C(S).

3.9: If f and f are flats of G* such that f Of ^0, then dim/+ dim/' =
dim(/ v/τ) + (/ Π/ f). This is property 7) (definition 4, chapter I).

In general the independence of these postulates has not been estab-
lished; however, we may make the following observations:

(i) Any topological space with geometry of length 0 which satisfies
3.1-3.4, also satisfies 3.6-3.9. The examples cited in chapter Π to
illustrate the independence of 3.4(A4) and 3.5(A5) also satisfy 3.6-3.9,
hence 3.4 and 3.5 are definitely independent.

(ii) Let X = R3 with the usual Euclidean geometry G = {F~\ . . ., F2}.
Set Gr = ̂ mml,F°,F1}m Then Xwith geometry Gf satisfies all the axioms for
a ^-arrangement except 3.8 and 3.7. This example offers a clue to the role
played by 3.8 and 3.7 in the sequel, namely of links between the length of G
and the "dimension" of X.

(in) Let Y be the cube in R3 with vertices (i,j,k), i,j,k = 0, or 1. Let

X= Y - [(O,O,l)(O,l,l)u(l,O,l)(l,l,l)]u{(O,^,l),(l,^,l)}.Then X with the

1 (0,1,1) (1>1>1) subspace topology and
(0,-, 1) ,'Λ 7 ^ geometry induced by the

,'"" +**( 1_ -ι\ usual Euclidean geome-
(0,0,1)* (l,O,l)\ {1'2' } try on R3 satisfies 3.1-

3.8, but not 3.9; in par-

ticular, dimf2({ (0,0,0),

y^φJJ) —) (1,1,0) (0,1,0), (0,^,1)})+ dimf2

, u— r {{(\,o,i),(^,i,i),(o,ι,i)})
(0,0,0) (1,0,0) 2 Z 2

= 4=3+ 0= dimX + dim

[f2({(0,0,0),(0,l,0),(0,|,l)})Πf2({(|,0,I),(|,l,l),(0,|,I)})].

Unless specifically stating otherwise, all remarks, propositions, and
definitions of this chapter refer to an m -arrangement, m^ 1.

Prop. 3.10: If f is a k-flat, k £ -1, then f with geometry Gf and the sub-
space topology is a k-arrangement.

Proof: 3.1, 3.6, 3.7, and 3.8 are trivially verified. 3.2 follows from 2.5;
3.3 from 2.8 and 2.11; 3.4 from 2.19; 3.5 from 2.10; and 3.9 from 1.16.

Prop. 3.11: If U is a non-empty, open, convex subset of X, then U with
geometry Gv and the subspace topology is an m-arrangement.

Proof: Suppose/ is a &-flat for which/Π U { φ. By 1.9 U(f Πί/)c/, hence
by 6), definition 1, chapter I, i ^k. But/ Πί/c 1{(f ΠU), and since f^U is
somewhere dense in/, f/(/ΠC/) is somewhere dense in/ . By 2.11.2 this
is impossible unless i^k, hence i = k. Therefore by 1.4, f, (/ ΠZ7) =/. It
follows at once that/ Πί/" contains a basis for /. We have therefore shown
that δ(U)=m- 1 (definition 8, chapter I), and that 3.9 holds since dim(/ Πf/)
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that δ(U) = m-l (definition 8, chapter I), and that 3.9 holds since dim(/Π£7)
in Gυ = dim/ in G iίfnujφ. 3.2 holds by 2.5; 3.3 by 2.3 and 2.4; 3.4 by
2.19; and 3.5, 3.6, and 3.7 by the convexity of U. If A ί= U, then Fr^ in
U = A-{A° in U), but since U is open, ,4° in U = A0, thus Fr.4 in U =FrA,
hence 3.8 also holds.

Prop. 3.12: // C(S) is a k-simplex, k^l, then IntC(S) ̂  φ.

Proof: 3 .12 i s c l e a r l y t r u e if k = 1; a s s u m e 3 .12 h o l d s fork-1^1.
S u p p o s e S= {x0, . . . ,Xk} i s l i n e a r l y i n d e p e n d e n t . B y t h e i n d u c t i o n a s s u m p -
tion we can select wεlntF°C(S). If 1i(xo,w)nF°C(S) ^{w}, then F°C(S) would
contain a basis for ii(pco,w), hence by 1.9.1 we would have ii{xQ,w) c
1k-i(S-*{w}), and therefore S c ί&_i(S-{w;}), contradicting the linear inde-
pendence of S. Therefore 1ιfyo,w) nintF°C(S) = {w}, and by 3.7 1i(xo,w) Π
IntC(S) jέ 0, hence IntC(S) ^ 0.

Prop. 3.13: ĥz y k-simplex C(S) is closed.

Proof: Fr C(S) in ̂ (S) c dC(S) c C(S) by 3.8, hence C(S) is closed in f*(S),a
closed set, therefore C(S) is closed in X.

Pro^). 3.14: If C(S) is any k-simplex, then άC(S) is closed.

Proof: FrC(S) in, ik(S) c dC(S), therefore Fr(dC(S)) in f̂ (S) c άC(S), hence
dC(S) is closed in 1k(S), hence in X

Prop. 3.15: ijf C(S) z*5 an m-simplex, i.e. S is a maximal linearly inde-
pendent subset of X, and if FrC(S) ^ φ, then FrC(S) disconnects X.

Proof: From Fr(X-C(S)) = FrC(S) ^ φ, we have at once that .4 = (X-C(S)) U
FrC(S) is closed and X-C(S) £ φ. AΌ C(S) = X and A Π C(S) = FrC(S). Since
A £ C(S), we have by lemma 1 of the appendix that FrC(S) disconnects X.

Cor. 3.15.1: If C(S) is a k-simplex contained in a k-flat f, k ^ 1, and
FrC(S) in f ^φ, then FrC(S) disconnects f.

Proof: 3.10.

Prop. 3.16: If C(S) is an m-simplex, then Int C(S) is open in X.

Proof: IntC(S) = C(S) - άC(S) = (C(S)° U FrC(S)) - dC(S) = C(S)° - dC(S).
Since dC(S) is closed by 3.14, C(S)° - άC(S) is open.

Cor. 3.16.1: If C(S) is a k-simplex, then IntC(S) is open in f&(S).

Proof: 3.10.

Prop. 3.17: If C(S) is an m-simplex and ExtC(S) / φ, then dC(S) dis-
connects X.

Proof: ExtC(S) = X - C(S) is open, hence X - άC(S) = ExtC(S) u IntC(S), the
union of two disjoint, non-empty, open subsets of X.

Prop. 3.18: Suppose S = {xo,xhx2} and C(S) is a 2-simplex. Suppose
yιZlτά%ιX2. Then x0 yλ disconnects C(S) into two convex components, one
containing xυ and the other containing x2.
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Proof: ssξz Since C(S)cf2(S) by 3.10 we may

/ \ regard X= f2(S). Set A = C({c0iyx,x2})

yS \ and JB = C{{xQ,y^Xi^)', then #^y7 c C{S\

jr W———\z2 x° y i ~ Λ Π B' S u P P ° s e there is
/s'^^^Γ' A wε(A Π B) - 3cô T. Then there must be

/V/^ I ^ \ Zιεyλxh and z2εxTyϊ such thatwεΛΓ^Π

X Q ^ V V 1 *S*I (3.6), thus fi(λr0^) = ίi(*o,*i) =

° N. \ ^ f 1(̂ 0^2) = fifeu^) = fifcjΛ) which im-

\ s . ^ x plies that S is not linearly independent.

^ \ ^ ^ We have therefore that A Π B = x^yl,

^ ^ ^ ^ ^ ^ ^ and since A and B are closed, lemma 1

^^vĵ  of the appendix implies that xoyx dis-

connects A \J B. It is an immediate

consequence of 2.14 and 3.6, however, that AΌ B = C(S), hence xoyi dis-

connects C{S).

Let w and z be arbitrary, but ^ - ^ ^ " " l * 2

distinct points of A - xQyγ. By 3.6 ^

t h e r e are £3^4 ε^^i-ί^ih with ^ ^ ^ ^ E

 z

wεx^l and zεx^l. ^ s ^ w^—•

Case 1: z3 = z4. By 2.15x oz3 - {ΛΓ0} s ' ' ^ ' —

is connected, hence it is convex by ^ ^ ^ ^

2.2.1. Since {w9z}^x^z~3 - {x0}, by ^ v ^ I *^" ^ 4

2.9f) ^ i c x^zl - {Λ;0}. 5wi Λ;0^3

 n ^ ^ ^ ^ G

^oy"i = {̂ o}, hence Έz^A- xQyl9 ^ ^ - - ^ _ _ /

Case 2: zz{ zA9 i.e. {^0,^3^4} is ^

linearly independent. Set E = C({Λ; 0^3^2})> ί* = C({^0,^3,^4}), and G =

C({#0,£4,3;i}). Then by an argument similar to that used earlier in this

proof, A = EUFUG, and FOG = x^zl. By 2.9f) wz<^F. Since z3 fz%

wz ΓIX0Z4 = {z}, hence wzΠG = {z}, but z^xoy^ hence ŵ i ̂  ^ - xoylm We

have therefore shown that A - xoy1 is convex (2.10), hence connected (2.4);

similarly B - xoyi is convex and connected, and 3.18 follows at once.

Prop. 3.19: Let C(S) be α k-simplex with S = {*r0, . . . yXk}, and letF*C(S)

andFjC{S) be distinct faces of C(S). Set Sitj = S-{xifXj}. ThenFiC(S)Π

F*C(S) = C(Si.j).

Proof: 3.19 is t r u e for k = 1. Suppose it h a s been proved for k - 1^1. Set

A = FiC(S)ΠFίC(S)f where C(S) is a &-simplex. Certainly C(Sitj)<^ A.

Suppose wεA - C(Sitj). C(Sifj) = F^^CiS)), and applying 3.6 to F^CiS) we

can find zεC(Si,j)such that wεxjz. It follows therefore that 1i(w,z) = fifo,£).

Since {w,z}<^ F'C(S),#,εf&-i(i^C(S)), contradicting the linear independence

of S.

We note in passing that if S = {x0, . . . ,xk} is linearly independent and

k

we define dC(S)= ΣJ (-1)^0(S) as in simplicial homology theory, then
ί=o

3.19 enables us to say that 39 = 0. This leads to the conjecture that a
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meaningful homology can be defined on X using convex hulls, a subject still
to be investigated.

Cor. 3.19.1: No point of a k-simplex C(S) is contained in more than k faces
ofC(S).

Proof: 3.19.1 is true for k = 1; assume it has been proved for k - 1 **• 1.
k k

Suppose wε fl F*C(S). dF{C(S) = \J C{Sitj), but by 3.19 C{Sίtj) = F*C(S) Π

FjC(S), hence wεC(Sitj) for all tfi, hence wis in all faces of F*C(S) contra-
dicting the induction assumption.

Prop. 3.20: If S = {x0, . . . ,Xk\ is linearly independent, then IntC(S) is
convex.

Proof: We first prove 3.20 for k = 1. If w,z εlntxoxl9 we can assume
w ^ z, and x0 < x1 (cf. definition 6, chapter II). Then x0 < w ^ z <.Xi,but
~wz = {y\w ^y ^z\ by 2.27, hence wz c Int^ro^i, therefore Int^0 %i is convex
by 2.10.

Assume 3.20 is true for k - 1^1,
but is not true for k. Then there are
z,wεlntC(S) such that zwΠάC(S) f φ9 XQ

hence we can choose a point y in this ^ — y K

intersection. By 3.19.1 we may as- ΛL^< ' \
sume y$F°C(S) (by renumbering the s^ \ ^ " ' ' ^ ^ ^ X
Xi's, if necessary), hence by 3.6 we χ / J*'' I \
have 3̂1,3̂2 2-^^(5) with zεxoyu and "C / ' ' z / \
wεx0y2. S ince ^,^εIntC(S), yί9y2ε x/ / \
lntF°C(S) by a simple argument using ^ 1 ^ S \ . •' \
1.9.1, hence by the induction assump- r /'ς^^^^-^L ^\x
t i o n ^ 7 3 ^ (or just {3̂ 1} if 3>i = 3>2) ^ 3̂ 2

IntF°C(5). Since z,wεC({xo,y1,y2}), y

is also in C({xo,yi,y2}), therefore we can find 3;3 εϊhy~2 such that y εx^yl, but
since yεdC(S)-F°C(S), y3 must be in άF°C(S) contradicting the induction
assumption.

Cor. 3.20.1: A segment wz c C(S\ a k-simplex, but which is not contained
wholly in dC(S), can touch a face of C(S) only at w or at z.

Proof: Suppose yεΙntmεndC(S), but wz <£: άC(S). If both w and z are in
IntC(S), then 3.20 is contradicted; therefore suppose wεdC(S). By 2.16.2
c&rdwy^tio, but the number of distinct faces of C(S) is only k + 1, hence
if wy c dC(S), then at least two distinct points of wy would have to be in the
same face of C(S), hence by 1.9.1 and 2.9f) we would have that wz c dC(S), a
contradiction. Therefore we can find WiClnt^-dC(S), and, similarly,
w2εlnt;yi -dC(S). Then 3;εlnt^i^2^ IntC(S), contradicting yεdC(S).
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Cor. 3,20.2: If C(S) is a k-simplex, k^ 2, then no 1-flat can intersect
three distinct faces of C(S) in an interior point, i.e. in IntF'C(S).

Proof: If 3.20.2 is false, let x,y,z be distinct points of the intersection of/
with the interiors of three distinct faces of C(S). Either yεxz, or zzxy, or
xεyz; in any case 3.20.1 is contradicted.

Cor. 3.20.3: If C{S) is a 2-simplex, and f is a k-flat, and C(S) <£f, thenf
cannot contain interior points from all three faces of C(S).

Proof: By 1.3 dim (/Πf2(S))^ 1. If C(S)gf, but / contains interior points
from all three faces of C(S), then /Πf2(S)is a i-flat which contains interior
points from all three faces of C(S), contradicting 3.20.2.

Prop. 3.21: Suppose S= {x0>xl9x2} is linearly independent. Suppose f is a
1-flat, f^x0x2 / φ, and /ΠΙntC(S) ^ φ. Then f intersects at least one other
face of C(S); moreover, if xoεf, thenfΠlntx1x2 ^φ.

Proof: Case 1: f^x^ = {*0}. Select
wεf OlntC(S). Then wεx^y for some

3>ε#I#2 (3.6), hence / = fi(w,y) = fifyo,w) XQ

implies f ΠxTx^ = {y}. Since wεΙntC(S). S\\
3>8lnt#iJ\r2. / \

Case 2: /ΠΛΓ0ΛΓ2 ={*}> ̂ ε l n t ^ ^ J . Select / \ \
M;ε/ΠIntC(S). By 3.18 zx[ separates C(S) / I \
into convex components C({xo,x2,z}) - x~^z / / \
and C({xisX0,z}) - x~[z. Since zw - {z} is / / \
connected (2.15), either zw QC({xhx2>z}) or A"x / \
zw^C({x^xQ9z}). If zw ^C{{x^x2,z]i, then ^ V s ^ v O ; I
also by C a s e 1, / C\ x^xl / φ. If zw / ^ " 'χ2
C({xl9x0,z}), then also by case l,fΠχ^xΊ *
= Φ- s>Xo

Case 3: fdx0x2 ={x2} . As in case 1. / \

Cor. 3.21.1: If C(S) is any 2-simplex, and / \
f is any k-flat, k^l, such thatff)dC(S)£ 0, / \

and f ΠΙntC(S) ^ 0, then f intersects at ~/~~~~ * - ^ ^ - f
least two distinct faces of C{S). / ^~** \

Proof: If C(S)£f, then 3.21.1 is trivially * Λ c Z Γ " ' ' ~
true. If C(S)£ f, then fn12(S) is a I-flat, " — 1*2
hence 3.21.1 follows at once from 3.21.

y'V. Prop. 3.22: If S = {xo,Xi,x2} is linearly
/ ^^v independenty and if f is a 1-flat of f2(S)

/ N^C(S) such that f HintC(S) f φ, then f inter-
zZL \ sects at least two distinct faces of
/ ^^s. , / \ C(S), and at least one of these faces in

I ^ \ ^ / \ an interior point.

°^v / y N V \ Proof: Choose yε/nintC(5). Then

^ s . ^v I ^εlnt^T for some >2:εIntΛ:0Λ:i. Set
\ ^sj A = C({z,x0fx2}) and B = C({z,xlfx2}\
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Since C(S) = ΛUB (3.18 proof), and fQ 12(A) = 12(B) = f2(S), we have by 3.7
that/ΠInM ^ 0 and/Hint JB ^ 0. Therefore by 3.21 / intersects another
face of both A and B. If both intersections occur in the same face Xi XJ ,
then XiXj^f which implies that yεdC(S), a contradiction. If at least one of
these intersections does not occur in the interior of some face, then clearly
both intersections must occur in the same face, i.e. at Xj and Xj, hence in
Xi XJ, which was just shown to be impossible.

Since 3.12 could have been proved using 3.6, 3.22 was the first
proposition in this chapter which really required the use of 3.7. The
following corollary is the first time that 3.9 will have been used in this
chapter.

Cor. 3.22.1: If C(S) is a 2-simplex, and fis an m-l-flat such that C(S)£f,
butf ΠΙntC(S) £ 0, thenf intersects at least two distinct faces of C(S).

Proof: By 3.9/ Πf2(S) is a I-flat inf2(S). The result now follows from 3.22.

Prop. 3.23: If S = fa^x^x^ is linearly independent, and f is an m-l-flat
such that x^cl^f, but f Πlnύc^xΊ ̂  0, thenf intersects at least two distinct
faces of C(S).

Proof: By 3.9/Πf2(S) is a I-flat in f2(S) which intersects xtfCi in a single
point. 3.23 then follows from 3.21.

Prop. 3.24: If C(S) is a k-simplex, and f is a 1-flat in fk(S) such that
/ΠΙntC(S)/ 0, thenfΠάC(S) contains at least two distinct points.

Proof: 3.24 is true for k = 1, and is also true for k = 2 by 3.22. Assume
3.24 is true for k - I ̂  2. Suppose S = {x0, . . . ,xk} is linearly independent,
k ^3, and/ is a 1-flat such that /ΠΙntC(S)^ 0. Since fQik(S) we have that

/ΠΙntC(S) is open in / by 3.16.1. If/ΠIntC(S) consisted of only a single
point x, then {x} would be both open and closed in /, hence/ would not be
connected. We therefore can find u,v distinct points in/ΠΙntC(S), and
Zi,z2 εlntF°C(S) with uεx^zΊ and υεx0z2 (3.6).
Case 1: zΣ = z2. Then / = iχ(u,v) = 1 λ(xQyZj, hence x0 and^j. are two distinct
points of/(ΊdC(S).
Case 2: zλ ^ z2. Then 1i(zι,z2) fϊdF°C(S) contains two distinct points wx and
w2 by the induction assumption. Then xozx U ~x^T2 <Ξ C{fyo,Wι,w2}), hence
/ ΠdC(|vo^i>w2}) contains at least two distinct points, but άC({xo,wDw2})^
dC(S).

Cor. 3.24.1: /, the 1-flat described in 3.24, intersects άC(S) in exactly two
distinct points from distinct faces of C(S).

Proof: If / contains two distinct points, i.e. a basis, from any one face of
C(S), then/ΠC(S) CdC(S), which gives / ΠΙntC(S) = 0, a contradiction.
Suppose x,y,z are distinct points of/(ΊdC(S). We may suppose that in the
ordering of/, x <y<z, hence yεlnt^ε by 2.27. Then ~xz ΠdC(S) = {x,z}, a
contradiction of 3.20.1.

Prop. 3.25: If f is an m-l-flat which disconnects X, then f disconnects X
into two convex, open components.
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Proof: If / disconnects X, then we can ^ ->^
find x,yεX-f such that Intxynf¥<t>. yS ^ X
Set A = {wεX-f\wxΠf = φ}f and B = yS wλ \
{uεX-f\ΰjnf = φ}. Choose any zεX-f. χ V \»2 >
If {x,y,z} is linearly independent, then / A \ y^
by 3.23 e i t h e r f ΠTntzx fφ, or / J^Y
fΠlntzy^φ. By 3.20.3 both these - / \ V
intersections cannot be non-empty at / ^}y I
the same time, hence either zεA, or I £*^*~ B /
zεB. Tϊ {x,y,z}£f'9 a I-flat, and \ Z /
fΠxz and /Πj^are both non-empty, ^ ^ s^χ

then using 3.5 we would have f1 ^ /, a

contradiction. Therefore again, either zzA, or ££JB, hence J - / = i U B .
Suppose wl9w2εA. If {x,Wi,w2} is linearly independent, then since/ inter-
sects neither xwl, nor £w^ by 3.24 fΠw1w2=φ. If {&,Wi,t02}c/f, a i-flat,
then since by 3.5, xw[\J xw~2 = wλw2, xwl, or ~xw~2 it is clear that fΠWίW2 £ φ
would imply that either fΠxwl £ φ, or f^xw2 φ. φ9 a contradiction in either
case. Therefore, A and B are connected (2.4). If A Π 5 ^0, then
i U ΰ = X-f is also connected contrary to assumption. Therefore 4̂ andB
are disjoint. If for every convex, open neighborhood U of a point wεA9

there is zεUPiB, then since zw ̂  U by 2.10, there must also be vεf.ΠU.
This implies that wεClf = f, a contradiction to wε^4. Therefore Z7^^4,
hence 4̂ is open; similarly, 5 is open.

Cor. 3.25.1: If f is an m-l-flat which disconnects an open, convex subset
U, thenf separates U into two convex, open components.

Proof: 3.11; then set X = Uin 3.25.

Prop. 3.26: If U is a convex, open subset of X, then a given m-l-flat f dis-
connects U iff there are points x and y in U such that f disconnects xy.

Proof: If / disconnects U, then there must be points x and y in U as
described. Suppose there are points x,yεU such that / disconnects xy.
Using 1.3 and 2.15.1 we have that fΠxy consists of a single point in Int^y.
Set A = {wεU-f\ywdf= φ}&ndB = {wεU-f\xwnf= φ}. Arguments similar
to those used in 3.25 show A uB = U-f, and A and B are open, convex sub-
sets of U. Suppose wεADB. If {c,y,w\ is linearly independent, then since

fΠxwφ φf either fΠxwφ 0? or f Πywφ φ, a contradiction. Suppose {x,y,w} c
/', a I-flat. By 3.5 xyUyϊv = xy, ~yw, or ~yw but xw a n d ^ are impossible
since these segments would then contain xy, hence a point of /. If
xy\jyw = 'xy, then wεlnϋcy, hence by 2.14, Icy = xwuyw and xwΠyw = {w},
hence again either fdϊvxΦ φ, or f^yw fi φ, another contradiction. There-
fore Af)B = φ, hence U-f is disconnected.

Cor. 3.26.1: An m-l-flat disconnects X iff it disconnects some segment
xy — X' Moreover, if f disconnects Icy, then x and y are in different
components of X-f.

Proof: 3.26 with U = X;xεA and yεB.
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Cor. 3.26.2: If f is a k-l-flat contained in k-flatp, k ^ 1, then f disconnects
Γ iff f disconnects some segment xy in f\ If f disconnects xyC.ff, then x
and y are in different components of p-f.

Proof: 3.10 and 3.26.1.

Prop. 3.27: Suppose l(G)^ 1. Then if xw and zy are any two segments in
X, then xw and zy are homeomorphic.

Proof: Case 1: x = z, w / y, and {x,w,y} linearly independent. Choose

w uεlntwy; then xΰζ C({xyw,y}). For
^^T\ each sεxΰ, 1i(w,s)Πxy consists of a

s^ J \ single point by 3.21; denote this point
yS / \ by μ(s) to obtain μ:xΰ —>xy. μ is 1-1

/ / ^ ^ ~ ^ \ since if μ(sL) = μ(s2), then wμ(Si) =
/ ls^^ \ wμ(s2) therefore wμisj Π xΰ ={s1} =

/ y / \ S ^ y wμ(s2) C\x~ΰ = {s2}. μ is onto: Choose
/ ^s \ ^s^ vεxy. Then wvOxΰ £ φ if v^x since

%l^-^^ \ι0^-~*^^ xΰ disconnects C({x,y,w}) in a manner
β(s) which puts w and v in different com-

ponents (3.18 proof). If v = x, then vεxΰ. xΰ and xy can both be totally
ordered so as to have the order topology (cf. 2.26 and 2.27.3) and, without
loss of generality, we may assume x<u (in xΰ) and x<y(inxy). Suppose

u is not order-preserving. Then we

can find Sχ,s2 εxΰ with Sj.<s2 such Λt\
that μ(s2)< μ(si). It is impossible / ί\ ^v
that μ(u) = x, for then w would have / I \ N.
to be in xΰ, hence we may assume / / \ \
at least one of the μ(si), say μfci), is / / \ \
in IntJ*Fy. Then wμ(sι) disconnects / / \fî -\̂
C(fy),x,y}) into two convex com- / / ^ ^ * J ^ \

ponents (3.18), Cx containing x, and / Cx

 sΌr^^^ / \
Cy containing u and y.CxΓ\xy= / ^ ^ ^ \ . yS Cy \

{vεxylvKμisj} by 2.14 and 2.27, XΔ<^ , )?^<^ < \ \

therefore μ(s2)?Cx. But Cx ΠxΈ = ^ - ^ ^ ^ W ? J \y

{sεxΰ\s<C Si}, hence s2εCx, there-

fore wμis^ΠIntwμis^^φ since wμ{sι) must disconnect wμ(s2). wμ(sι) and

wμ(s2) therefore contain two points in common, hence 1i(w,s2)=fl(w,sl), and

it is impossible that fi(w,s2) intersect xΰ in more than one point, hence

Si = s2,
 a contradiction. Since u:xΰ ->xy is 1-1, onto, and order-preserving

it is a homeomorphism. A similar argument shows xΰ is homeomorphic to

xw, hence ~xw is homeomorphic to ~xy.
Case 2: x,w,z,y are all contained in the same .2-flat/. Choose uεX-f.
Then xw is homeomorphic to xΰ and zy is homeomorphic to zΈ, both by
case 1. Either xΰ = zΰ, or at least xΰ is homeomorphic to Έΰ by case 1,
hence xϊv is homeomorphic to "zy.
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Case 3: x,y,z,w are all distinct, but are not all contained in the same
i-flat. By case 1 xw is homeomorphic to wy which is homeomorphic to zy9

hence xw is homeomorphic to zy.
Note that all I -flats of X are not necessarily homeomorphic to each

other, e.g. let X = { ( ^ ε R 2 ! * 2 + y2 <l}u{(x,y)εR2\x> 0, x2 + y2 = l}, and
give x the induced geometry and topology from R2. Then some 1-flats of X
have two non-cut points, some one, and others none at all.

CHAPTER IV

OPEN m -ARRANGEMENTS

4.0: In this chapter and the next we shall deal with m -arrangements which
have special properties. Using the theory developed in chapter II (cf. 2.26,
etc.), we shall consider that all I-flats have been totally ordered by > so as
to have the order topology.

Suppose γ:/-*/1 is an order-reversing map from a I-flat/ into another
I-flat f\ If we define a new order @ on f by # © y iff y > x for all
χ,yεf'9 then p with the o r d e r © still satisfies 2.26 and the subsequent
propositions of chapter II; γ then becomes order-preserving. We see then
that in dealing with a map from one I-flat into another which is either
order-preserving or order-reserving, we lose no generality in assuming
the map is order-preserving.

Definition 1: An open m-arrangement is an m-arrangement in which every
point is a cut point of every 1-flat (in G*) which contains it.

Unless specifically stating otherwise, the propositions of this chapter
will refer to a space X with geometry G such that X and G form an open
m-arrangement. Since a O -arrangement consists of a space which contains
only one point and the geometry G = {F"1}, we shall also assume that m ^ I.

Prop. 4.1: If f is a k-flat of G, k f - I , then f with geometry G/ and the
subspace topology is an open k-arrangement.

Proof: Since g is a 1-flat of Gf iff g is a I-flat of G, the proposition follows
at once from 3.10.

Prop. 4.2: If X is the space of an open 1-arrangement, then £ =
§xitxy\xyyεX, x / y} is a basis for the topology of X.

Proof: Since X has the order topology, and Intxy = {z\x< z <y} if x<y
(2.27), any open set of X is the union of elements of £ and sets of the form
{z \z > x}, or {z \z < x}. Let w ε {z \z > x}. Since w disconnects X, w εlniΰv for
some u,vεX, and we may assume v>w, i.e. u<w<v. Then x<w<v9

hence wεlntxv c {z\z> x}. Similarly, if wε{z \z< x}, then there is vεX such
that wεlntxv ^{z\z <#}. We therefore have that each set of the form
{z \z <x} or {z \z > x} is the union of elements of <#, hence £ is a basis for
the topology of X.



TOPOLOGICAL GEOMETRIES 85

Prop. 4.3: If U is a non-empty, open, convex subset of X, then U with
geometry Gυ and the subspace topology is an open m-arrangement.

Proof: By 3.11 U and Gυ form an m -arrangement. Let g be a I-flat of
Gff; then g = UΠf where / is a 1 -flat in G*. Let wεg. Since g is an open
neighborhood of w in/, by 4.2 we can find u,vεg such that wεlntΰϋ c u.
Then ιo disconnects g by 2.16.

Cor. 4.3.1: If U is a non-empty, convex subset of some k-flatf, and U is
open in f, then U with geometry Gu and the subspace topology is an open
k-arrangement.

Proof: 3.12, 3.16.1, and 4.3.1.

Prop. 4.4: A necessary and sufficient condition that some m-l-flat dis-
connect an open set Uζ X is that f Π U £ φ.

Proof: The condition is clearly necessary. Suppose / ΠU £ φ, and choσse
yεf Π U. By 2.11 / is nowhere dense in U, hence U-f £ φ. Choose wεU-f
Then ii(y,w) Πf = {y}. Since ii(y,w) PiUis an open neighborhood of y in
U(y,w), by 4.2 we can find u,vεiχ(y,w) Π Z7such that yclnttw <Ξ U. Therefore
/ disconnects uv (2.13), consequently/ disconnects X into two convex, open
components A and B such that uεA and vεB (if ra>i,by 3.26.1; if m = 1,
by 2.22 proof and 2.23). Therefore (U-f) Π A £ φf and (U-f)OB^ φ, but
since/ is closed, U-f is open, hence (U-f) ΠA and(C/-/)ΠB are disjoint,
open subsets of U-f whose union is U-f, hence U-f is disconnected.

Cor. 4.4.1: Every m-l-flat disconnects X.

Cor. 4.4.2: If k^ 1, and f is a k-l-flat contained in a k-flatf1, thenf dis-
connects f1.

Cor. 4.4.3: If f is a k-flat, then no flat of dimension less than k-1 can
disconnect f.

Proof: If / r is any z-flat in/, i <k-l, then/ f is properly contained ing"
where g is some &-l-flat in /. By 4.4.2 and 2.12 g is a minimal discon-
necting subset of /, hence /-/ f is connected.

Together 4.42 and 4.43 give

Cor. 4.4.4: A non-empty flat f disconnects a flat f1 iff i) /<Ξ/', and
ii) dimf= dimf - 1.

Prop. 4.5: If a space X with geometry G is an m-arrangement, then a point
xQ is a cut point of every 1-flat which contains it iff xoεlntC(S) where C(S)
is some m-simplex.

Proof: Suppose x0 is a cut point of every i-flat which contains it. Let
Sf ={#o,3>i, . . . ,ym} be any maximal linearly independent set which con-
tains x0. 4.5 is true for m = 1 by 2.16, hence we may assume m^ 2.
Choose wεIntF°C(&) {^φ by 3.12). Then by hypothesis x0 is a cut point of
U(xo,w), hence there is uεi^XoyW) such that xQεlntwϊί. It follows at once by
3.20.1 that xoεlntC({u,y , . . . ,ym}). Suppose ΛτoεIntC(S) where C(S) is
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some m-simplex. Let / be any I-flat which contains x0. By 4.3.2, x0

disconnects / (Ί IntC(S), a i-flat in Gintc(s), hence by 2.16 there are
u,v εlnt C(S)Πf with Λτoεlntz«;. Then, again by 2.16 x0 disconnects /.

Cor. 4.5.1: ff a space X with geometry G is an open m-arrangement, then
for any xεX and for any k, 1 < k ^m, there is a k-simplex C(S) such that
xεlntC(S).

Proof: 4.1 and 4.5 together with 1.11.

Prop. 4.6: Set £ = {lntC(S)\C(S) is an m-simplex in X}. Then £ is the basis
for a topology on X which is equivalent to the original topology on X.

Proof: If C(S)andC(T) are arbitrary m-simplices, then IntC(S)and IntC(Γ)
are convex, open subsets of X (3.16 and 3.20), hence IntC(S) n IntC(T) is
convex and open. Any xεXΊs in the interior of some m-simplex by 4.5.1.
To complete the proof of 4.6 (including that £ is a basis for a topology on
X), it merely remains to be shown that if Z7 is an open, convex neighborhood
of an arbitrary point x, then there is some m-simplex C(S) c U such that
ΛrεΙntC(S). This, however, follows at once from 4.3, 4.5.1, and the trivial
fact that an m-simplex in U is also an m-simplex in X.

Following E. Kamke [6], by a border element of a totally ordered set,
we shall mean a first, or last element. A totally ordered set is called
unbordered if it is non-empty and has no border elements. An ordered set
is said to be dense if given any sλ,s2εS, sx <s2, then there is s3εS such that
Sι<ss <s2.

Prop. 4.7: If X is the space of an open 1-arrangement, then, if Y is dense
in X, then Y is unbordered and dense.

Proof: Y is dense: Since X f φ, Y£ φ. Choose yλ,y2εY, yχ< y2 (cf. 4.0).
By 2.25 X-lnt~yTy~2 is closed in X. If there were no y3εY Π Int yT^, then
ClY^X-lnfy^y^^ X, and F would not be dense in X, hence we can find
y3εY Π Intyλy2. If y 3 ε l n t 3 ^ a n d yx<y2, then by 2.27, yλ <y3 <y2.

Y is unbordered:: Suppose there is yoεY such that y0 <y for all yεY.
Since y0 is a cut point of X, by 2.16 y0 εlntΰJz, w<yo<z for suitable w,zεX.
Then Intwy^ ΠY ^ φ, contradicting Y dense in X. Similarly, there can be no
yoεY such that y >y0 for all yεY.

Cor. 4.7.1: If X is the space of an open i-arrangement, and Y is a count-
able dense subset of X, then Y is of the same order type as the rational
numbers.

Proof: By 4.7, Y is dense and unbordered, but all unbordered, dense,
countable sets are of the same order type (cf. Kamke [7], p. 71).

Prop. 4.8: If X is the space of an open 1-arrangement, and X is second
countable, then X is homeomorphic to R, the real line.

Proof: Since X is second countable, X contains a countable, dense subset
Y. By 4.7.1, Y is of the same order type as the rationale Q<Ξ R. Let
u:Y —>Q be a 1-1, onto, order-preserving map. Define that μ(^/) = i, for
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all iεZ, the integers. 'yϊl^yϊ is also second countable, hence by 2.31.1
yi-ιyi is horneomorphic to [fc-i,̂ ] = {rεR \i-l ^ r ^ i} by an order-preserving
map Vi (not necessarily an extension of μ\yi-iyi) with ^/(^/_i) = i-1 and
^ΐ(yt) = *• Since yi-iyi n 3^-1^ can consist of at most either y ^ i , or 3^,

if k = 1, we can define v: (J 3̂ 17̂ / -* R by y(&) = y, (ff) for xεyi-iyi. Since
ί'εz

y is 1-1, onto, and order-preserving, it is a homeomorphism; we must now

show that U yi-iVi = X. Choose wεX. Then wεlnt^ for suitable u,vεXby
itz

2.16. Therefore since Y is dense in X, there are aγεuwΐ\Y and a2εwvf)Y
such that wε Inta^. Since Y U 3>/Γϊ3>7, it follows that wεa^a^ \j y~iZϊyϊ

itZ izZ
Cor. 4.8.1: If X is the space of a 1-arrangement {not necessarily open),
and if X is second countable, then X is homeomorphic to {0,1), [0,1), or
[0,l], depending on whether X has no, one, or two non-cut points respec-
tively.

Proof: Case 1: X has no non-cut points. By 4.8, X is homeomorphic to R,
hence to {0,1).

Case 2: X has one non-cut point χ0. Then clearly Xo must be a border
element (of X. Assume x0 is a first element. Then by case 1, X-{xo} is
homeomorphic to {0,1)by an order-preserving map v. Define v':X -*\θ,l)
by v'{xo)= 0, and v'{x)= v{x) for x £ x0. Then v' is clearly a homeo-
morphism onto. If %o is a last element, then we can similarly show thatX is
homeomorphic to {0,1], hence to [θ,l].

Case 3: X has two non-cut points x0 and#i. Then by 2.27, X = x0Xi,
hence by 2.31.1, X is homeomorphic to [0,1].

Definition 2: Let X with geometry G form an m-arrangement. Set

M{X)={C{S)\C{S) is an m-simplex in X\ Define IntX" = U IntC(S), and
'M(X)

BάX = X-IntX We shall call IntZ, the interior of X, and BάX, the border
of X.

Because of 4.5 we have equivalently \ntX= fyεX\x is a cut point of
every 1-flat which contains it}.

Prop. 4.9: IntX is open, and non-empty.

Proof: IntX is the union of non-empty,
open sets (3.16 and 3.12). Since by 1.6 X P^ \ u

has at least one basis oίm+1 points, MζX), ^ ^ x ^ ;
hence IntX, is non-empty. v^^"^ \ ^ 3>

Prop. 4.10: IntX is convex. \ ^ ^ ^ w j

Proof: L e t x a n d y b e a r b i t r a r y p o i n t s i n % \ ^ f /

IntX. Suppose wεIntJ\Fy". Then by 2.16, w \ /
is a cut point of \^x,y). Let / be any other \ / yf

1 -flat which contains w. Choose zεf-{w}. ^ ^ ^ ^ X
Then since x and y are cut points of τ*z
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fite,#) and fife,?) respectively, by 2.16 we can find uεi iz,y) and υεix{z,x)
such that xzlntvz and yεlntuΰ. Then ~xy <Ξ C({z,u,v}), hence fΠϊw^φ by
3.21. But if />εί«; Π/, and wd.ntC({z,u,v})by 3.20.1, then we also have by
3.20.1 that wεlntpzζf, hence by 2.16 w is a cut point of /. Since/ was an
arbitrary 1-flat which contained w, w is a cut point of any 1-flat which
contains it, hence wεϋntX.

Cor. 4.10.1: Let X be a space with geometry G such that X and G form an
m-arrangement. Then IntX with geometry GιmXand the subspace topology
is an open m-arrangement.

Proof: IntXis open and convex by 4.9 and 4.10, hence by 3.11, IntXwith
geometry G I n t X is an m-arrangement. Since every point of IntZ is in the
interior of some ra-simplex, by 4.5 ΛΓεlnLX" is a cut point of every 1-flat in
Gintx which contains it, hence the arrangement is open.

Prop. 4.11: BάX is closed and nowhere dense.

Proof: Since BdX = X-InUΓ, BάX is closed. Suppose some non-empty,
open set Z7<Ξ BάX. Choose xεU, and let Fbe an open, convex neighborhood
of x with F ^ U. Then by 3.11, y contains a basis 5 of X, and by 2.9f),
C(S) c γ% But since IntC(S) c M I we have the contradiction that
ί/ΠIntX^φ.

Prop. 4.12: Let X with geometry G form an m-arrangement. Then an
m-1-flatf in G disconnects X iff f Π iτ&X £ φ.

Proof: Suppose / Π IntX ± φ. Then /ΠlntX is an m-I-flat in GintX (3.11),
hence f ΠlntX disconnects IntX by 4.10.1 and 4.4.1. By 3.26.1, therefore,/
disconnects a segment in IntX<ΞX, hence by 3.26.1 /disconnects X. Suppose
/ disconnects X. Then by 3.25 / disconnects X into two convex, open
components A and B. Since A is open, by 3J1 it contains a basis
& ={#o, . . . yXm } of X. Since B is open and fw-i(S-{v0}) is nowhere dense
in X (2.11), we can find :yoε£-U-i(S-{*o}). Then S= {yOixlf . . . ,xm } is
linearly independent. By2.9f) F°C(S)QA, but since y<βB,f must disconnect
any segment of the form 5j~w", where wεF°C(S). But then/ΠIntC(S) £ Φ
(choose wεlntF°C(S) and apply 3.20.1), hence fnlntx^ φ.

Cor. 4.12.1: Any k-flat /, k^l, contains at least one k-1-flat which dis-
connects it.

Proof: By 3.10 and 4.9, Int/^ φ. Choose xεlntf, and let /< be any&-i-flat
which contains x; p exists by 1.11. Then f disconnects / by 4.12.

Cor. 4.12.2: If a space X and geometry G form an m-arrangement, then no
flat of dimension less than rn-1 disconnects X.

Proof: Let / be an z-flat in X, i <m-l, and let S = {χ0, . . . ,#,.} be a basis
for /. Since / is nowhere dense in X by 2.11, and IntXis non-empty and
open by 4.9, lntX-fέ φ. Choose ΛΓ, + 1 εlntX-f, and extend 5U{*τt +1} to a
basis T = {x0, . . . 9Xi9Xi+u . . . ,xm-i} of some m-I-flat f^iCO. Then by
4.12 and 2.12, f^.^T) is a minimal disconnecting subset of X. By 1.9.1,
/ ί f M - i ( T ) , and since i <m-l, \m-ι{T)-f£ φ, hence X-f is connected.
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In this chapter we have concentrated on results useful in chapter V,
even though there are many interesting propositions and conjectures
pertaining to open ra-arrangements and IntX and BάX which might have
been mentioned herein. The author hopes to discuss these topics more at
length in a future paper.

CHAPTER V

AFFINE m-ARRANGEMENTS

Definition 1: An affine m-arrangement is an m-arrangement which is open
if m = 1, or in which the geometry is affine if m £ 1 (cf. definition 6
chapter I).

Unless specifically stating otherwise, all propositions in this chapter
will refer to a space X and geometry G such that X and G form an affine
M-arrangement In order to avoid trivial cases, we again assume m>l.
The remarks of 4.0 apply also in this chapter.

Prop. 5.1: Suppose f is an m-l-flat and his a 1-flat such that h 0/ consists
of a single point. Then if h< is a 1-flat parallel to h, then k'Πf consists of
a single point.

Proof: If h = h\ we are done. K λ / h\ then by 3.9, (h v h')nf is a I-flat.
Since G is affine, ( h f e ' ) n / intersects both h and h1, but is equal to
neither, hence h'Γ\f = ft'Π [(ft v h')Πf] consists of exactly one point.

Cor. 5.1.1: Suppose f is an m-l-flat and his a 1-flat such that ftfϊ/ = {\r0}.
Suppose p is any m-l-flat parallel tof. Thenf Π h consists of exactly one
point.

Proof: Should hΠf consists of more than one point, then by 1.9.1, ft c / f an
impossibility regardless of whether f = f, or f'Πf φ φ, hence ftΠ/» consists

of at most one point. Select yεf\ If
not, let hf be the unique I-flat which / * jh1

contains y and is parallel to h. By / /
5.1, h'Πf consists of exactly one / / 7 /
point. Since if / = / ' , the proposi- / j ! y/
tion is trivial, assume fΠf φ φ, /_ / / /f
Then since ftfc/t, h'Πf consists 7 7
of y alone, but then f Π h consists / /
of exactly one point by 5.1. / /

Prop. 5.2: Any affine m-arrange- / / I S^
ment is open. / :

 x° ! JS
L. ί Sf

Proof: 5.2 is true for m = 1 by J

definition. Suppose 5.2 has been proved for m-1^ 1, and let X and G form
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an affine m -arrangement, m^ 2. If 5.2 is false, we can find some I-flat /
and x&f such that x0 is not a cut point of/. It is clear from 2.16 that

%o must be a border point of / . sS*~~~~\ \
Select 3>iεIntX'-/(^φ by 2.11 and 4.9). y J Λ
By 3), definition 1, chapter I, we may / /* \ .
se lect y2, . . . , y' m-i such that / [ \ ,

{xnyuyv . ,ym.-i} = Sis linearly / ^ - 4^ ^ ^ \
independent, and y, εf*(/U f, -i \ \ / w -i( s ) \
(frαOΊ, ,Λ-i})λ 2^i^m-l. Then : £ )
f«-i(S)n/= fo}. #3> 4.12, f ^ S ) I * V ^ ^ ^ _ /
disconnects X into two components i4 \ ^ "7̂  "^ ^ /
and B (3.25). Since / - f *-i(S) =/- {x0} \ ^ ^

is connected, it must be either in A or in B; we may assume it is in A .
Choose zεB and let g be the unique m -i-flat which contains z and is
parallel to im- Jβ) Since g - f OT-i(S) = g is connected, g^B. Then by
5.1.1, / Π£ ^ φ9 hencefΠB^ φ9 a contradiction.

Prop. 5.3: If k is any k-flat of G, k ^ -1, then f with geometry Gf and the
subspace topology is an affine k-arrangement.

Proof: If k = 1, 5.3 follows from 5.2 and 4.1. For k ^ 1, then 5.3 follows
from 1.18 and 3.10.

Prop. 5.4: Suppose f is a k-flat contained in ah + 1-flatf and his a 1-flat
in f1 which intersects f in exactly one point. Then if hf is a 1-flat inf
which is parallel to h, thenf Π h' consists of exactly one point.

Proof: 5.3 and 5.1.

Prop. 5.5: Suppose m^ 2, yzf, a 1-flat, and {y} = AΓ\B,AUB=fas in
2.22. Then A and B are homeomorphic.

Proof: Let f1 be any I-flat which Q /^^
contains y, but is distinct from/. f (/yr .Γ\V^ /V

r Ί J lV o y l / ^^""^r^^.
Then / Π p = {y}. y is a cut point of / >v

/ f by 5.2, and therefore determines / \

sets C and D such that C n D = {y}, V / \
and C U Z> = / f as in 2.22. Choose hΛxΓ^ / , Λ 1
jCiε-A, and ΛroεC. We first define ^ M V*/ I
μ;̂ 4 -^Cas follows: Set μ(3;) = y, and / >, \ 4̂ ^ ^ ^

μ(xi) = x0. For any K i - {3;,^}, ^ " / ^ - - ^ \ ^
consider Ẑ iCv), the unique 1-flat

which contains x and is parallel to fi(#0>#i). By 5.4, since /', hι{x), and
fiC^o^i) are all in the same 2-flat, h1(x)O f1 consists of a single point;
define this point to be μ(x). If xεlntyxl* then μ(*;)εC by 3.7 and 3.21.
Suppose xεA-yxΊ. Then by 3.26.2, ίi(xOfXi) disconnects f2({y,^0^1}) such
that x and 3; are in different components. Since hι{x) Π 1i(xo,Xi)=φ, a
simple argument reveals that hx{x) Π/ fQ C - 3 ^ . Therefore μ:A —>C. μ is
1-1: Suppose # ^ Λ;T, Λτ,̂ fε̂ 4, but μ(x) = μ(x'). Then /*i(#)and hiίp1) are both
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parallel to f i(x09Xχ) and both contain μ(x), a contradiction since G is affine.
μ is onto: Suppose wεC. Let h^w) be the unique 1 -flat which contains w
and is parallel to ii(x09Xi). Then by 5.4, h^w) Π /consists of a single point
x. Then hι(x) = hι(w), hence μ(x) = w. μ is therefore 1-1 and onto.

μ is order-preserving (cf. 4.0): Suppose x<x\ x,x'εA. We suppose

s/^*^*C y <w for all w in either A or C.
^^^^^ If x = y, t h e n since μ is 1-1,

Φ^y<^l Φ')£y> hence {y,x,μ(x)} is linearly

jy
//^^si independent. Suppose y < μ(#f) <μ(x).

s^ / \ Then by 2.27, μ(x1)εlntyμζx)r hence
v/' / \ by 3.7 and 3.21, either hλ(x') Πyx^φ,
^ ^ ^ ^ / \ or hι(x1)Γ)xμ(x)^φ. If the latter is

^ - 2 L ^ ^ \ true, then h±{x) and hifpc1) are both

/ / v " \ ί - ^ _ £ — parallel to fi(#0,#i) and have a point
1 hifr1) i n common, contradicting G affine.

Since x'tfyx> ^ h^x') Πyx ̂  φ, then h1(x1)=f, hence hiix1) could not be
parallel to 1i(xo,w). Therefore μ is order-preserving.

Since μ is 1-1, onto, and preserves order, μ is a homeomorphism
between A and C. An entirely similar argument shows that B and C are
homeomorphic, hence A and B are homeomorphic.

Prop. 5.6: Any two 1-flats are homeomorphic.

Proof: Let / and p be arbitrary ^^CμM
1 -flats. If / = /', 5.6 is trivially y C ^ ^ ^ \
true. Assume///', hence m ̂  2. \ jr^ \
Case 1: / Π/f consists of a single x. v^J J

point y. Choose Xo£f-{y} and Xι ^ S s O ! ^ ^ / /
Γ-{y}. We define μ./->/' as X \ ^ / AiW
follows: Set μ(Λro)

 = ̂ i and μ(^) = 3;. >^ ^ y ^ ^ * - ^ ^ J
For Λ:ε/-{Λ;o,y}, let ^(y) be the / / * * 'y^
unique 1 -flat which contains x and X f (x ? ^ j
is parallel to fi(#0>#i)« /> /S and *

hi(x) are all contained in the 2-flat ^2({y,XofXi})9 therefore ^iCv)n/T consists
of a single point by 5.4. Let this point be μ(x). By arguments similar to
those used in 5.5, μ is 1-1, and onto. We may assume y<X\, and 3; <ΛΓO

Then the methods of 5.5 show that μ is also order-preserving, hence is a
homeomorphism.
Case 2: / Π/f = φ. Choose wεf and zεf\ Then / and f are both homeo-
morphic to ix{w,z), hence to each other.

5.7: We now coordinatize X. Fix xoεX. Let S = {xo,yu . . . ,ym} be a
maximal linearly independent set which contains x0. The gi(x0, yi),
i = 1, . . . , m, are m distinct 1 -flats, no k + 1 of which are contained in the
same β-flatβ Set Si = S - {yi}, 1 ̂  i ^ m. We define the ith coordinate of a
point xεX, 1^ ί < m, as follows: Let fm-i(x) be the unique m-I-flat which
contains ΛΓ and is parallel to f m-i(Si). Since gi(xo,yi)£ tm-i(Si), 9i(fio,yi)n
.ί OT-i(•$*•) = {̂ o}> hence by 5.1.1, fln-ι(x) Π g/^o^/) consists of a single point
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Xi. Assign Xi as the 2 th coordinate of x. The I-flats gi(#o,yϊ) are called
the coordinate axes, the Xo is called the origin. Each point in X is thus
assigned an ordered set of m coordinates. The notation of this section (5.7)
will be retained for the rest of this chapter.

k k

Prop. 5.8: dim (Π / i- iW) = dim (f| fw-i(5*)) = m - k\ moreover,
1=1 i=l

k k

k-1

Proof: dimfjOT _χ(Si) = m-1. Suppose we have shown that dim ( f | fm _i(S*))
k * = 1

m-h + 1, k-l>l. S^U.dSk) v ( Π f «-!&)), hence dim (f mmml(Sk)v
k * = i k

( Π t» -i(S*))) = m. Applying 3.9, we have dim f| f« - A ) = w - *.
ί = l ί = l

Denote by ^I(Λ:) the unique 1-flat which contains ΛΓ and is parallel to
9I(*Q> yiλ I< f < w. . We first show that g[(ρc)Qfm _\(x) for j ^ f.
Case 1: ΛΓεf m-i(S ; ). By 1.9.1, .gi(tfo>3>ι)£:.f OT-I(^/) if ^V^ hence a basis for
gί(x) vgiO^o,^-) is contained in fOT_i(5; ), hence g[(pc) ^ g[(pc) v g i ^ y ^ c
f«-i(Sy), ifjVi.
Case 2: x4fm-i(βj) T h e ^ dim fe{(#)v g i^y,-)) = 2, hence by 3.9, dim
((gίto) v gi&fo,Λ))"n/i.») = l. ifjί i, and ((gi(x) v gib*y*))nf'»_&)) n
gi(#o,:y*) ^ 0, then/i_xo«r)ngiforo;yi)^ 0, n e n c e s i n c e gi&foιyi)^.*«-i(-Sy)for
< ̂ λ / i Γ i W Π f »-i(Sy) ^ φ. But/«.i&f)l I f^.-iίS;), hencefL-i(?c) = tm-1(Sj),
which implies ΛrεfOT-i(S7 ), a contradiction. This gives ((£"i(#) v gi(xo,yi)) Π
fm-i{x) and "̂KΛΓ) both containing # and parallel to gi(?co,yi), hence^ίCv) =
((gi(ρc) v gi(Λτ0,^)) Π/4 -!(ΛΓ), henceg{(x)ζfi-χ(x) for f ^ j .

For each 1 ^ ί^ m, choose y\zg{ (x) - {x}. If Sf = {v,yl, . . . ,3v} is not
k

linearly independent, then | J gi(x)Qfm-i(x) for some i. But im-i(Si)
7 = 1

intersects giC^oĵ ί) in a single point, hence by 5.1, fOT-i(S, )also intersects
gl(pc) is a single point, but this is impossible if ^ί(v)£/»-iW, which is
parallel to .f«ι-i(S, ). Therefore S1 is linearly independent. Setting
Si = S1 - {y}}, we see that Sf is a basis for fm-χ(x). An argument similar to

* k

that used to show dim ( | ίm-i(Si)=m-k also shows that dim Q fm-i(x) -

yfe-i ik-i

/*-i(κ)ll f *-i(Si). Assume f^/2-i(v) II f| f«_i(Sf). Suppose fc is the

k

unique ra-&-flat which contains x and is parallel to Π f^-i(5^).
k k «=1

Case 1: h= f | tm-i(S?). Then xε f | f »-i(Sί), hence fm-i(x)= tm-i(Sq),
ί = i Λ ί=i

l*ζ qtzk, hence ft= f| /«-i(^)
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k k

Case 2: hφ f] f «-i(S
?
). Then dim (ft v f| f

 OT
_i(S^)) = m-k+1, hence by

k

3.9, dimί/^.xWnίΛ v f| 1M-ΛSq))=m-k. Since / ί- iW I I fw-i(S, ),

& A

l^i^m, we have /«-i(tf) Π (h v f| f«_i(S€)) I I (\im-i(Sq), and hence
q=l q=l

k

h=f
ί

m
-
1
{x)(Λ{h v f) ̂ -

 x
{S

q
)). Therefore h <^f

q

m
-Λx), l^q^k, hence by

q=l

k

1.4, h= f| /L».
w m

Cor.5.8.1: f| /*-i(v) ={A}, αwd f| f
Λ
.-i(S/) ={^

0
}

Proof: Both these intersections are 6>-flats which contain x and Λ;0

respectively.
While proving 5.8, we also proved

Cor.5.8.2: gί^^fl-^Jέi.

Prop. 5.9: J/ΛΓ has Ith coordinate Xi, thenf^-iix) = {wεx\ the Ith coordinate
of w is Xi}.

Proof: Set T = {wεX\the ith coordinate of w is x{}. Clearly fL-i(pc) ̂  T by
the manner in which Xi was defined. Suppose wεT. Since Xίtf^-iiw) Π
/m-iOv) and /«-i(w) and Λ_i(tf) are both parallel to fm-i(S/),/L-iW =
fm-i(w), hence w ε / ^ i W

Cor. 5.9.1: Two distinct points cannot have the same coordinates.

Proof: By 5.9, all points which have the same coordinates as x are in

m

t = l

Cor. 5.9.2: ^1(Λ:), ίftβ unique 1-flat which contains x and is parallel to
gί(#o,:y/) consists of {wεX\jth coordinates of w is the j ^ coordinate of x,
i ί ]}.

m

Proof: By 5.B.2, gi(x)(^fm_1(x\i^j> hence gί(x)=f] fm,1(x). 5.9.2 then

follows at once from 5.9.

Cor. 5.9.3: Given {xly . . . ,xm} with Xiεgi(ρco,yi), 1 ̂ i ^m, there is some
point x whose coordinates are xly . . . ,xm .

Proof: Xι has first coordinate xίm Suppose we have found z having
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coordinates Xi> . . . >Xk-u Wk, . * ,wm. If Wk = Xk, we are done. If not,
we have gi(z), the unique I-flat which contains z and is parallel gi(xo,yk\
By 5Λ, gϊ{z)nfn.-ihck) consists of a single point. By 5.9 and 2.9.2, the
point has the first k coordinates of x.

5.10: (pci, . . . ,Xm.) shall denote the point having coordinates Xi, . . . ,xm .
m

Define γ:X-* ) ( gi(ρco,yi) by γ(x) = (xλ, . . . ,xm ) where Xi, . . . ,xm are
*Γ=i

the coordinates of x. By 5.9.1 and 5.9.3, γ is 1-1 and onto. We now
show that γ is a homeomorphism.

Definition 2: Let a = (a^ . . . , am ) and b = {b^ . . . , bm ) be points of X
such that ai < 6, , 1 ^ i ^ m. Define I(a,b) = {xεX\x = (#!, . . . ,xm ),
Oι < ^ < bi if a{ J bi\ Xi = ai if ai = 6,};

or equivalently by 2.27,

l(a,b) ={xεX\x = (x!,...,xm \ XiZλτύicφi if Oi £ 6, ; x{ = a{ if ai = bi}.

I(a,b) is said to be &-degenerate if α, = 6, for ^ coordinates of a and δ .
Suppose I(«,δ) is ^-degenerate, but non-degenerate in the j * coordinate,
i.e. aj Φ bj. We form a j -cross section of l(a,b), denoted by K; I(α,δ), as
follows: Choose Cjεlntajbj. Then Kjl{a,b) = l{a\b'\ where a' = (al9... ,α ; -i,
Cj,aj+1, . . . ,αO T ) and δ f = (6^ . . . , δ ; _i, c ; , δ ; + 1 , . . . ,bm ). K; I(α,δ) is
k+1 -degenerate. Kjl(a,b) is not unique, but depends on the choice of c ; .
\(a,b) is called a ^-degenerate open box.

5.11: Let l(a,b) and K; l(a,b) (with cy fixed) be as given in definition 2. Then
l(a,b) = {c = (zl9 . . . ,Zj_lyWj,Zj+1, . . . ,zm )εX\(zh . . . ,zhl,ch . . . ,zm )
εKjl(a,b), aj< Wj <bj}. Let x = (zh . . . , 2 / - i , c ; , . . . ,zm )εKjl{a,b). If w e
hold the Zi fixed and allow the 7 t h coordinate to vary over all points in
Intajbj, by 5.9.2 we obtain a subset Tx of g[{x), the unique 1-flat which

contains x and is parallel to gi(xo,yj). It is clear that i)I(α,δ) = U Tx ,
*εK ; I(β, *)

and ii) Tx Π Tx» = φ, if Λ; ̂  # \ We now show that Tx = lnt(zh . . . ,£ ; - i ,
aj,zj+ι, . . . ,zm )(zl9 . . . , Zj_l9bj,Zj+ι, . . . , z m ) . T h i s f o l l o w s a t o n c e
from

/ / Pro/). 5.12: ££ί ^,z;,^ δβ distinct
I I3^~- points of gί(x)y and let Wj, Vj,

s^~\^^. _ ^ ~ ^ ^ \ fm-fo} and Zj be their respective jtlϊ

\ j coordinates. Then υεvoz iff

\ A \ /fl-M viεΈμi.

^^^44/ ^^\V Proof: Suppose vεlntme, but
y> < N <^vr^<"^ Vjtfwμ], By 3.26.1, /4-i(^)dis-

/ v^^^^v connects X such that w and x are
L^^ ^ v \- in d i f f e r e n t components of

^y^^ I i B 1^—^fi (z) X-fm-i{v). Since w,υ, and z are
/ / m~1 distinct, we have fL-i(w) Π

4i(^o»Λ) gi{%) /i-i(^)=φand/ί.-1(ε)n/i.1(t;) =
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0. Since wjwQfL-Λf) a n d J / s C / ^ f c ) (2.9f)) and wμj n/ί_ifc) = 0, it
follows that wyw Ό wy£; U iyi) n fm-dv) = 0* ^ u t then (wyw; U w; £ U 2y#) -

fL-i(v) is connected, thus w and z are in the same component of X-fb-dv).
a contradiction. If VjεlntwμJ, an entirely similar argument yields z εϋίs.

Pro£. 5.13: Any open box l(a,b) is convex, and if l{a,b) is O-degenerate,
then l(a, b) is also open.

Proof: Suppose wεgι(xo,yi). Then fm-dw)disconnectsX into open, convex
subsets A(w) and B(w) (5.2, 4.4.1, and 3.25). By 2.22 (proof) and 2.23, w
disconnects gι(x09yi) into connected sets a and β. We may assume
aQA(w), β UB(w). We may also suppose without loss of generality that for
some uoεa9 uo> w. If there were uεa such that u< w, then wεlntΰφ, but
since by 2.2.1, a is convex, ΰφ c a by 2.9f), hence wεlntύtfϊ. Then
a = faεg&o, yi)\u> w}; and, similarly, β = {vεg&o,yi)\v < w}. .Suppose
x= (xi, . . . ,xm)εA{w). Since G is affine and/^-ife) =/«-i(*),/ί,_i(κ) Π
/ί,-i(w) = 0. Therefore if tfε/«-i(κ), then ^^/L-i(^)-/^- i(^) , hence
z;ε^4(^). Therefore /i-i&f)Q-A(w), hence ^/εα, hence Xi> w. Suppose
^ = (vi, . . . ixm)εX and Xi>w. Then again/m-i(^) = / ^ - i ( ^ ) ^ ^ ( ^ ) since
wεaζ.A(w), hence xεA(w). We have thus shown that A(w)={x = (xl9... ,xm )
εXk t > w}. Similarly, we may show that B(w) = {x = (xι,... ,xm )εX\xi < w}.

Since a^bh 1 < j * m, l(afi) = Π [A(ai) Π Bφi)] Π f) fm^(ak).

This is convex since each set of intersection is convex, and is open if
aj £ bj for 1 < j ^ m.

Prop. 5.14: Set £ = {l(a,b)\l(a,b) is O-degenerate}. Then £ is the basis for
a topology on X.

Proof: Elementary considerations show that the intersection of the
interiors of two segments contained in the same 1 -flat is either 0, or the
interior of a segment. Using this fact that the definition of l(a,b), it is
clear that the intersection of any two O-degenerate open boxes is either
empty, or a 0-degenerate open box. Suppose x = (ΛΓI, . . . ,xm )εX. By 5.2,
Xi disconnects £*i(#o,:y* ), l^i^m, hence by 2.16, Xiεlntdibi for some
«ί A εgi(vo,:yι), aί< bi, l^i^m. Then xεl(a,b) where a = (al9 . . . , am )
and b = (bh . . . ,bm.).

Prop. 5.15: Let x = (xly . . . ,xm )εX, and let U be any open, convex neigh-
borhood of x. Then there is a O-degenerate open box l(a,b) such that
xεl(a,b)ς,U.

Proof: 5.15 is true for m = 1 by 5.2 and 4.2. Assume 5.15 is true for
m - 1^ 1. fm-i(x) Π E7" is a convex, open neighborhood of x in /w-i(#);
therefore, by 5.3 and the induction assumption, there is an open box
I f o S & O ^ / r c - i O * ) n U, a' = (x1}a2, . . . , am ), b' = (xl9b2, . . . ,bm ) s u c h t h a t
Λ εlO^,^), and \{a\b') is degenerate only in the first coordinate by 5.9.

Let {aι}, {bQ, λεΛ be nets of points of gi(#0,3^1)such i) the ordering
© of Λ is total; ii) a^<xx<b^ for all λεΛ, hence by 2.27, x^Inta^b}, for
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all λ; iii) aj -*xu &i -»xλ; and iv) λ x © λ2 implies a\ι bix is properly
contained in a^2 b2

2. We may use 5.5 to verify that such aliet exists. For
each λεΛ set aλ = (a£,a2, . . . , am ) and bλ = (b\,b2, . . . , bm ). Then for
each λεΛ we have the 0-degenerate open box l(aλ,bλ); moreover, I(α τ,δ f) is
a I-cross section of I(β λ ,6 λ ) for each λ. For each z = (xi,z2, > . * >Zm )
zl{a\b') and each λεΛ, set Tz{\) = Int(αi,£2, . . . , zm )(bϊ,z2, . . . ,zm ).

Then I(tf\δλ) = | J Tz(λ) by 5.11 and 5.12. Because of iv) and 5.12, we

also have λ x © λ 2 implying that Tz(λ) is properly contained in Tz(λ2). It
follows at once that if Tz(λ0)ζU then λ © λ 0 implies Tz(λ)ζU. If
l(aλ,bk)<Ξί U for all λ, then for each λεΛ, we can find u\εl(aλ,bλ) - U. By
the remarks at the end of the preceding paragraph, it follows that for some
z1 = (xi,x2, . . . ,z1

m) εl(α f,δ f), for each λεΛ, u\ may be selected from
Tz (λ). Assume this has been done.

Let V be any open neighborhood of z0. Let gl(β')be the unique I-flat
which contains z' and is parallel to gίfco^i). Then Tzi(λ)ζgl(β') for all
λεΛ (cf. 5.11). V ft g{(z')is an open neighborhood of zf in gliz1) hence by
4.2 and 5.9.2, there are u = (d, z2, . . . ,zm t), v = (dlfz2, . . . ,£„, )εg1

1(z')
such that Intϋ;2 V. By iii), there are aλ\bλ' such that Int<zxV f2 IntCiί?!.
Therefore by 5.12, T2»(λf) ^ Intiw, hence u\izV. No w\ is in U, but at least
a subnet of {̂ λlλεΛ converges to z'εU, hencez'zX-U, a. contradiction since
Uis open. We have therefore shown that Λτεl(<zλ,6λ)<Ξ *7for some λεΛ.

Cor. 5.15.1: The topology for which £ of 5.14 is α basis is equivalent to the
original topology on X.

m

Cor. 5.15.2: γ:X—* Y 9i(xo,yi) (cf. 5.10) is a homeomorphism.
ί = l

m

Proof: y is 1-1, onto, and takes a basis forX into a basis for Y gi(xo,yi).

Cor. 5.15.3: X is homeomorphic to Tm where Γ is any topological space
homeomorphic to some 1-flat in X.

m

Proof: By 5.6, all 1-flats in X are homeomorphic to Γ, hence ^ 9i(xo,yi)

is homeomorphic to Γm, hence by 5.15.2, X is homemorphic to Tm .

Cor. 5.15.4: If Γ is as in 5.15.3 and f is any k-flat of X, then f is homeo-
morphic to Tk, where we set Γ"1 =0 and Γ° ={x}.

Proof: 5.3 and 5.15.3 together with g is a i-flat of Gf iίίg^f and ^ i s a
I-flat of G.

Cor. 5.15.5: If some 1-flat is homeomorphic to R, the real line, then X is
homeomorphic to Rm and any k-flat is homeomorphic to Rk.

Proof: 5.15.3 and 5.15.4.
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Cor. 5.15.6: If X is second countable, then X is homeomorphic to Rm .

Proof: If / is a -Z -flat of X, then / is second countable as a subspace. By
5.2 and 4.8, then/ is homeomorphic to R. 5.15.6 then follows from 5.15.5.

Cor. 5.15.7: Rm is the only second countable topological space which
admits a geometry G such that the space and G form an affine m-arrange-
ment.

Proof: Rm with the usual Euclidean geometry forms an affine ra-arrange-
ment, and Rm is second countable. This together with 5.15.6 gives 5.15.7.

APPENDIX

This appendix contains material of the following types: 1) the notation
used in this paper for elementary topological concepts when no universally
accepted notation exists; 2) any lemmas needed in this paper for which no
references can be cited; 3) some concepts and terminology used in this
paper which may not be familiar to the reader because of their limited use
elsewhere. The appendix consists of two sections: A. Topological; and
B. Lattice Theoretic.

A. Topological. φ shall always denote the empty set. Let X be a
topological space. Suppose AζX. The interior of A, i.e. the union of all
open sets contained in A, is denoted by A0. The closure of A, i.e. the
intersection of all closed subsets of X which contain^, is denoted by CIA.
The frontier of A, i.e. C1̂ 4-̂ 4°, is denoted by FrA. A c x is said to be
countably compact if every infinite subset of A has a limit point in A. Xis
called locally peripherally countably compact if given any xεX and any
neighborhood U of x, then there exists a neighborhood V of x such that
UζL V and Fr V is a closed, countably compact subset of X.

Suppose X is connected. Then a subset A of X is said to disconnect
X if X-A is not connected. A point xεX is a cut point of X if {%} disconnects
X; otherwise, x is called a non-cut point. A ζ X is a minimal disconnecting
subset of X if A disconnects X, but no proper subset of A disconnects X. If
A <Ξ X such that no proper connected subset of X contains A, then X is said
to be irreducibly connected to A.

The following lemma is necessary for certain propositions in this
paper. We assume that X is a connected topological space.

Lemma 1: Suppose A and £ are subsets of X such that i) A is not a subset
of By nor B of A; ii) A and B are both closed; and iii) X = AUB. Then
A Π B = C disconnects X.

Proof: A-C = X-B is open, as is B-C. Because of i),A-C and B-C are
non-empty, but (A-C) Π (B-C) = φ.

B. Lattice Theoretic. Let S be a set with partial ordering <, i.e.
i) ^ is reflexive; ii) < is antisymmetric; and iii) ̂  is transitive,, C <Ξ S is
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called a chain if for every pair a,b of elements of C, either a ^ b, or b ^a.
If s,tεS, and s ^ t, then the interval [s,t] is defined as {*τεS|s < x < ί}. If
[s,ί] = {#,£}, then we say that t covers s.

li Aζ S, then bεS is called an upper bound (u.b.) of A if a^b for all
α i n i . b is a least upper bound (l.u.b.) of A if b is an upper bound of A,
and if δf is any other upper bound of A, then b <? &r. Correspondingly, we
may define what is meant by a lower bound and greatest lower bound (g.l.b.)
for A. S (with partial ordering ^ is called a lattice of every two element
subset of S has a l.u.b. and a g.l.b. For each pair s,tεS, define
s v t = l.u.bo {s,t} and s A t = g.l.b. {s,t}. We assume henceforth that S is a
lattice. If A c S, then 4̂ is a sublattice of S if A is closed under the opera-
tions v and Λ as defined in S. S is said to be complete if given any subset B
of S, then l.u.b. B and g.l.b. B exist.

Suppose S is complete, and set 0 = g.l.b. S. For each sεS, set
/f{s}= {C QS\C is a chain of distinct elements of S with C = {a0 = 0,
ai, . . . ,an = s}, n< oo, at ** di+1}. For any CεK(s), set d{C) = n. Define
d(s) = l.u.b. d{C). S is said to be finite dimensional if d(s)<oo for all sεS.

S is called upper semi-modular if s and t covering s*t impliessvί
covers s and t for all s,t in 5. S is called lower semi-modular if s v t
covering s and t implies 5 and t cover s A t for all s,t in S. S is said to be
modular if s,tεS and s ^ t implies s v (t A X) = t A (S V #)for all x in S. S
is modular iff it is upper and lower semi-modular. If S is finite dimen-
sional and modular, then for any s,tεS, d(s) + d(t) = d(s v ί ) + d(s A t). If
S is finite dimensional and upper semi-modular, then d(s) + d(t)^ d(s v t) +
d(s A t).

For a more complete discussion of lattices and the proofs of proposi-
tions stated here, the reader is referred to Garrett Birkhoof, Lattice
Theory, American Mathematical Society (Colloquium Publications, Vol. 25),
New York, 1948.

EPILOGUE

Given below are selected topics for possible future research in the
theory developed in this paper.

1. Independence of the axioms 3.1-3.9 (cf. chapter III, definition 1).
2. Necessary and sufficient conditions for a given space X to admit a
geometry G such thatX andG form an m-arrangement.
3. A characterization of Sm in terms of the usual Riemannian geometry.
4. Homology and homotopy theory for m -arrangements (cf. remark
following 3.19).
5. Let γ:X —> Y be 1-1 and onto. Then if G is a geometry on X, then
defining f to be a k -flat in Y iff f = γ(f) where / is a k -flat in X, we obtain
a geometry, denoted by γ(G), on Y. Two geometries G and G1 on Xare said
to be homeomorphically equivalent if there is a homeomorphism γ oϊX
such that Gτ = γ(G). Are all affine geometries on Rm which satisfy 3.1-3.9
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homeomorphically equivalent? The entire question of homeomorphically
equivalent geometries seems to provide a rich and very difficult area for
future study.
6. What axioms in additions to 3.1-3.9 would allow us to characterize
Euclidean geometry on Rm ?
7. It is known (though not proved in this paper) that every second countable
space which can serve as the space of an open ^-arrangement is an m-
manifold Is it true that any second countable space which can serve as the
space for a closed m-arrangement, i.e. an m-arrangement in which every
2-flat has two non-cut points, is an ra-manifold with boundary? Is every
space of a closed ra-arrangement compact? Is BάX for the space of a
closed m-arrangement compact, and also connected if m **• 2?
8. A semi-projective geometry of length n on a set X is defined to be
projective if F° = {{x}\xεX}&nd spherical if each (9-flat consists precisely of
two points. A discussion of projective, spherical, affine, and semi-
projective geometries and their relations to one another can either follow
classical lines, or branch into subjects hitherto unexplored, such as finite
spherical geometries. We note here the following known propositions:

a) If G is semi-projective, the Gx_f is affine where f is any n-flat.

b) If G is affine and satisfies 3.1 and 3.9, then all 1-flats of G have the
same cardinality and X can be coordinatized as in 5.7. In particular, if
each 1-flat contains q points, then cardX = qn. i

9. In definition 1, chapter ΠI, replace 3.1 and 3.5 by

3.1 \ Each O-flat consists of a finite set of n points.

3.5\ If S - fy,y,z~\ is such that S is contained in some 1-flat but no pair of
distinct points of S is in the same O-flat, then xy U'yz = ~xy, ~yz and/or ~xz.

and add

*; Every linearly independent set has a convex hull.

The structure thus determined has yet to be investigated; in particular, the
following conjecture is believed to be true: For xεX, let M(pc) be any
maximal convex set which contains x. Then there are xx, . . . ,ΛτwεZand

M(pcL)9 . . . ,M(xn) such that X = \J M{xi) and M{xi)ΠM(XJ) = φ for i £j.

10. Assume that X has geometry G such that X and G form an m-arrange-
m e n t 0 D e f i n e Dk(X)£Xk by Dk(X) = {(ρcl9 . . . ,xk)εXk\{xl9 . . . ,xk} is
linearly dependent in X}. Let {Λ,}vεN ^ e a n e t °f flats of G. Define
lim/V = {x\x is a limit point for some \xv}vm , ocvzfj\, limfv = {x\ there is
kΛvzN* χvzfv, *v -»*}. We say that fv -*f if iim/, = limfv = f. If w =
(wι, . . . ,Wk)εXk, let w* denote the set fyvλ, . . . ,wk}QX. A set Q c j is
said to have a &-I-tangent h at yεQ if for each net {wv}QDk{x} such that
wv -* (y, . . . ,3>) in Xk, ik(w*) ~* h Using these concepts, we may be able
to develop a geometric theory of differential calculus.
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Note: Problems 3 and 7 have been solved. The author has made his findings
the subject of future papers.
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