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TOPOLOGICAL GEOMETRIES AND A
NEW CHARACTERIZATION OF R”

MICHAEL C. GEMIGNANI

INTRODUCTION*, Mathematicians engaged in research in one area of
study may find concepts which have already been defined and studied in an-
other area, and they can therefore draw on those definitions and results
which already exist. In this way, topology has already been used to study
geometry; for example, in certain axiomatizations of Euclidean plane
geometry, “natural”’ topologies, having as subbasis elements either half-
planes or interiors of triangles, can be defined on the underlying set, and
these topologies can then be used in the formulation of propositions, or
further axioms.

Starting with chapter II in this paper, however, the underlying set on
which a ‘‘geometry’’ is defined is assumed already to possess the structure
of a topological space. The geometry is an additional structure with axioms
to bind topological and geometric structures together. We may compare
what has been done to the example of a topological group, where two struc-
tures, algebraic and topological, are related by the continuity of the group
operation.

The usual manner by which a structure is given to a point set X is by
the selection of certain distinguished subsets either of X itself, or of
certain sets related to X, or of both. A topology on X is defined using a
family of distinguished subsets of X, while an operation on X is defined by a
subset of (X X X) X X. Classical geometries usually call for, either implic-
itly or explicitly, the existence of distinguished subsets called lines, planes,
or k-dimensional subspaces. We define a geometry on a set X in terms of
distinguished subsets of X called k-flats, which are generalizations of
k-dimensional subspaces.

*This paper is a Thesis written under the direction of Professor Robert E. Clay and sub-
mitted to the Graduate School of the University of Notre Dame in partial fulfillment of
the requirements for the degree of Doctor of Philosophy with Mathematics as major
subject in October, 1964. The author wishes to express his sincere gratitude to Prof.
Clay for the interest and patience he has shown and the guidance he has given during
the preparation of this work.
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Though the concept of geometry as defined in chapter I seems worthy
of study in its own right, we are primarily concerned in this paper with
properties generalized from the n-dimensional Euclidean geometry on R™,
and our goal is a surprisingly simple characterization of R™ as the only
space which admits a geometry having certain properties. We remark here
that the n-sphere can also be characterized in terms of the geometries it
admits, but this will be the subject of a future paper.

In R™, the usual Euclidean geometry, the standard metric, and the
algebraic structure of R™ as a vector space are tightly bound together. In
our initial abstraction we do away with coordinatization, metrics, numbers,
and the algebraic structure of geometries derived from linear manifolds.
We find, however, that if topology and geometry are related in a very
natural way, then we begin to gain back many of the properties we discarded
in order to get the essentials of a geometry. We never regain the algebraic
structure, but we do regain many of its advantages in a more general
setting.

Chapter I will essentially deal with those set theoretic definitions and
propositions that will be of use in later chapters. Chapter II generalizes
convexity, the link between geometry and topology, and deals in large part
with assumptions which enable us to get the order properties of lines.
Chapter III expands on a generalized notion of simplex and gives assump-
tions that insure simplices and flats will behave in a manner which
resembles their behavior in R™. Chapter IV investigates what happens in
an m-arrangement, the structure developed in chapter III, when the
generalized lines have no end points. Chapter V is concerned with the
effect of a parallel postulate on m-arrangements. This chapter shows that
a good deal less than Euclidean geometry is needed to force the underlying
space of a geometry to be a product space.

CHAPTER I
BASIC CONCEPTS

Definition 1: Let X be a set. An element of X is called a point. We define
G = {F‘I,F°, . ,F”} to be a geometry on X if the following axioms are
satisfied:

1) Fi C P(X), the power set of X, -1 < i < n. An element of F* is called an
i~flat, or merely just a flat.

2) F~t={¢}.
3)If f is an i-flat, -1 < i < n, then f # X.

4a) Every set of i + 1 points not all contained in some k-flat, k < i, is con-
tained in at least one i-flat, -1 < i < n.

4b) Every set of i + 1 points not all contained in some k-flat, k < i, is con-
tained in at most one i-flat, -1 < i < n.
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Combining (4a) and 4b) we have

4) Every set of i + 1 points not all contained in some k-flat, k < i, is con-
tained in a unique i-flat, -1 < i < n.

5) The intersection of any two flats is again a flat.
6) If 2 < i, then no i-flat is contained in a k-flat.

n is called the length of G, and we write I(G) =#n. i is called the
dimension of F?, as well as the dimension of any flat f in F’; we write
dimf = 7. By G* we denote {F™*,...,F" F"*Y, called the augment of G,
where F”*! = {X}. X is then considered to be an n + I-flat. G* satisfies
all the axioms for a geometry except 3); however, for simplicity, all propo-
sitions and definitions in this paper will refer to G*, unless they specifi-
cally state that they apply only to G.

Lemma: 1)-6) ave independent.

Proof: independence of 1): X =10,1}. F™' ={¢}, F° ={{o,2}, {1,3}}.
independence of 2): X =1{0,1}. F™ ={¢,{o}}, F°={{1}}.
independence of 3): G*, the augment of G, a geometry on X, if a

geometry on X exists;
independence of 4a): X ={0,1}. F~* = {¢}, F°= {{o}}.
independence of 4b): X =10,1,2}. F-' ={¢}, F°={{o},{1}, {2}, {0,1}}.
independence of 5): X =R2 F~' ={¢}, F°={{x}|x ¢ R?, F*={1]l is
a straight line in R®}. Since every triple of
non-collinear points of R? determines a unique
circle, we can set F% = {CIC is a circle in R%;
independence of 6): X =R'. F~'={¢}, F'={H C R'|I < cardH <
i+ 1}

1.0: Examples of geometries

i) Let Mr be an n-dimensional vector space over a field F. Let Fi=
{x + Hlx e M; H is an i-dimensional subspace of Mg}, 0 <is<n-1. (It is
assumed henceforth, in accordance with 2), that F™* ={¢}.) ¢={F7*,...,
F"'}lis a geometry on M, and is affine in sense of definition 6 of this
chapter.

i) x=5%. F°= {{x,yH x antipodal to y}, F* ={C|C is a great circle on $?} .
G={F", F° F'} is a semi-projective geometry (definition 7) on §*.

iii) Let X be an infinite set. Set F'={HC X|cardH =i +1},0 <i<n+1
< o,

We assume throughout that the geometries with which we deal have
finite length. Such an assumption will be necessary in later chapters,
though not always in this one.

Prop. 1.1: If fis a k=~flat, k # -1, then f # ¢.
Proof: By 6).
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Pyop. 1.2: If G ={F~',...,F"}is a geometry on X, n> -1, then G' = {F~*,
.., F*'}is also a geometry on X.

The proof is trivial.

Prop. 1.3: If f is an i-flat and f'is a j-flat, then f N f'is a k-flat with
k= min(iyj).

Proof: By 5),f N f' is a flat. We may suppose 7 < j. Suppose dim(f Nf ')
=k >i. Thenby 6),f N f'Z f, an obvious contradiction.

Definition 2: A set S ={xo,...,x.} is said to be linearly independent if
there is no i~flat(in G*) containing S with i < k.

Pyrop. 1.4: If f and f' are k-flats, and f C f', then f = f'.

Proof: If k=-1, then f=f'=¢. Assume 1.4 has been proved for
-1< i< k-1, and suppose 2 > 0. By 1.1, both f andf' are non-empty. Let
S ={xo,...,%4} be a maximal linearly independent subset of £, and let f,(S)
be the g-flat that S determines in accordance with4). Suppose ¢<%. Then
by 6), f-f4S) # ¢, hence choose y in f-f4(S). Let f(S U {y}) be a flat of
smallest dimension which contains S U {y} 1.3 implies then that
f,(5) N f(S U {y}) is a flat of dimension less than or equal to ¢ which con-
tains S, hence it must be that dim(f,(S) N f(S U W) = q, or else S would
not be linearly independent. Therefore, by the induction assumption,
£4(S) N F(SUP = 1,(9). ¥ dimf(SU {y]) = ¢, then £4(S) = £(S U {y}), also
by the induction assumption, contradicting the choice of y in f-f4(S). I
dimf(S U {y}) < g, then by 1.3, dim(f,(S) N f(S U {yP) < g, contradicting
dim(f4(S) N f(S U YD) =¢q. H dimf(S U ) >gq, then S is not a maximal
linearly independent subset of f. Therefore it must be that ¢ = k2. But if
f #f', then, since SC fC f', we have a contradiction of 4).
As an immediate consequence of the proof of 1.4 we have

Cor. 1.4.1: If S is a maximal linearly independent subset of a k-flat, then S
contains k + 1 points.

Prop.1.5: If i<k, and f is a k-flat, and f'is an i-flat, then f N f'is an
i-flat iff f' < f.

Proof: Case 1: i=k. By 14, f=f N0 f'=f'. Case 2: ¢ <k. Clearly if
f'Cf, thenf N f' =f"is ani-flat. Suppose f N f' is an i-flat. Then since
f N frCf', we have by 1.4 that f N f* =f', i.e.f'C f.

Definition 3: A set S={x0,...,xnT is a basis for a k-flat f if i) S is
linearly independent, ii) S C f, and iii) S is not contained in any flat of lower
dimension than k.

At times we shall employ the notation f4(S) to indicate the g-flat deter-
mined by the set S, i.e. f4(S) is the minimal flat which contains S. To show
f4(S) is unique we suppose that f;(S) and f}(S) are minimal flats which con-
tain S. Then g (S) N f;(S) is a flat contained both in f4(S) and inf}(S), and
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which contains S, hence f}(S) = f4(S) N f},(S) = f,(S) by the minimality of
5(S) and f4(S). The letters g and % may also be used to designate flats for
convenience of notation.

Prop. 1.6: Any k-flat f has a basis consisting of k+ 1 points.

Proof: Let Sbe a maximal linearly independent subset of f. Then by 1.4.1,
cardS =%+ 1. Clearly Sis a basis for f.

Prop. 1.T: If f is any k-flat, then every basis. of f contains exactly kb + 1
points.

Proof: Let S={x Oy oo ,¥m } be a basis for f. Since Sis linearly independ—
ent and S C f,(S), m < 2 would imply that Sis not a basis for f. ¥ m > &,
then S is not linearly independent since S f, therefore m =%.

Cor. 1.7.1: We may replace definition 3 by
Definition 3': A set S =1xo,...,%,} is a basis for a k-flat f iff i)S is
linearly independent, and ii) S C f.

Cor. 1.1.2: Every linearly independent set of k + 1 points is the basis of a
unique k-flat.

Proof: 4) and 1.7.1.

Prop. 1.8: Let S = {xo,.. .,x,,,‘} be a linearly independent subset of a k-flat
f. Then S can be extended to a basis of f.

Proof: If £ = m, then by 1.7.1, we are finished. If m >k, then S is not
linearly independent; therefore, suppose m < k. There is X, 4, in f- f(S)
with S, = {x » 4.} U S linearly independent, or else we would have f C f,(S),
a contradiction of 6). If m + I =k, we are finished; otherwise, we may con-
tinue in the obvious fashion until we arrive at S; = % m +q} U Sy-1, @ maxi-
mal linearly independent subset of f with S& S;. S; is clearly a basis for
f,and m+q = k.

Prop. 1.9: If T C f, then f,(T) C f.

Proof: T S1,(T) N f< f, but since f,(7) is the minimal flat which contains
T, and f,(T) N fis a flat by 5), it must be that f,(T) N f=1f,(T), i.e.
f,(7) C f.

Cor. 1.9.1: IfS={xo,...,%n } is a basis for f, and SC f', then f C f'.

Pyop. 1.10: Every subset of a linearly independent set is linearly inde-
pendent.

Proof: Suppose S ={xo,...,xz} is a linearly independent set; let
S' ={xo0,...,¥4f SS. Scan be assumed to be ordered so that S'" ={x,,...,
Xm }, m < ¢q, is a maximal linearly independent subset of S'; then
St S£,(S") S f,(S) by 1.9.1. Let x4,; be the firstx,;, I <j <k-q, such
that x g4, is not in f,(S'). ThenS, ={xo,...,Xm,%q+;,} gives f, 4, (S,) with
fo.(S") S f,.,(S)C f,(S). Proceeding similarly we eventually obtain
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Sy ={%o0y+e,%m Kgajrseee ,xq.,_,-r}, a linearly independent set with
S S fm+-(S;) and £4(S) 2 f4,(S;) D ... 2, (S"), but since S is a basis for
fx(S), by 1.7 it must be that m + » = k. Since » < k-g¢, it follows that m = g,
and =% -q.

Prop. 1.11: If 0< i < 1(G), and xcX, then theve is at least one i-flat con-
taining x.

Proof: {x} is a basis for some 0-flat by 4). Suppose x&f, an i-I1-flat.
Choose vy in X-f (# ¢ by 3)); then xef({y} U f). I S is a basis for f, then
S U {y} is a basis for f({y}u f), and card(S U{y}) =i + 1, hence
f{y} U f) is an i-flat.

Given a geometry G on X, the flats of G* can be partially ordered by
inclusion to give a complete, finite dimensional lattice which we denote by
|G|. We define f v g to be f(f U g), i.e. Lu.b.(fg)in |G,

Pyop. 1.12: |G| is upper semi-modular. (For the definition of upper semi-
modular, see the appendix.)

Pyroof: Suppose f, a k-flat, and f', an i-flat, { <k, f #f', cover f N f', a
q-flat. Since ¢ < ¢, if g <k-I1, then f could not cover f N f', therefore
g=Fk-1. By6), 1.4.1, and 1.5, we also have i = 2. Let {xo,...,%,_,} be 2
basis for f N f'. By 1.8 we can find x and x' such that {0y v, %4-1,x) and
{xo, ..., Xz _1,x'rare bases for f andf' respectively. Then {xo, ey XE=13X, x‘%}
is a basis for fv f', hence dim(fvf') = £+ I, hence fv f' covers both
f and f°.

Cor. 1.12.1: dim(fv g) + dim(f N g) = dimf+ dimg.

Definition 4. The following property 7) will not be needed until chapter III,
but its introduction comes naturally during a discussion of lal:

7) If dimf=k, and dimf' =i, and f N f' # ¢, then dim(fv f*) + dim(f N f*) =
k+1.

Or, equivalently,

VI f#¢, then the sublattice of |G| consisting of the intevvall f,X1is
modular.

That 7) is not an unnatural property is attested to by the fact that two
of the three examples given in 1.0 satisfy 7). Example i) satisfies 7) be-
cause the subspaces of a vector space form a modular lattice; example ii)
satisfies 7) because it is semi-projective (cf. supra). In example iii) sup-
pose that # = 6. Let S and S' be subsets of X each of which contain 6 points,
and such that S N S' contains a single point. Then dim(S v S')+
dim(S N S*) =7+ 0# 6+ 6 =dimS + dimS'. In general, example iii) does
not satisfy 7) if n < «, but if # = «, then 7) is satisfied.
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Definition 5: If f and f' ave both k-flats, then f and f' ave said to be skew
of order s, written f/sf' if 1) fOf' = ¢, and ii) fvf' is a k + s-flat.

If f=f', orif f/ f', then we say fis parallel tof', and write f||f'.

Definition 6: A geomelry G on X is called affine if given any k-flat f,
0 <k < UG), and any x in X, theve is one and only one k-flat which contains
x and is pavallel 1o f.

Pyrop. 1.13: Let G be a geometry on X such that for some integer k,
1<k < I(G), the intersection of any two distinct k-flats is always a
k-1~flat. Then 1(G) = k.

Proof: Suppose I(G) =
k + 1, and let f andf'be
distinct k-flats. Since it
is assumed that dim(fnN
fY="Fk-1, we have by
1.12 that dim(fn f') =
B+ 1. Choose xgf v f';
then (f v/ N fipn, ({x}
U f) =f. Suppose g is a
k-flat in fh,, (fx} U ).
Then g N f' C frp ({x}
U f) N f. Since f'Ef, .,
(k}u ), 1.3 together frr, XU S)
with 1.5 implies that

dim(f k1 ({x} ufn VAV IS

k- 1, but since f U f' C

fr({xf U £) 0 71, it must

be that dim(f, FupHnsm=p -1 Therefore, using 1.4, we haveg N f!'
=t fxt U )N sfr=rFns. Since g was an arbitrary % -flat contained in
fre1{x} U £), it must be that any two distinct 2-flats in f., {x} U ) inter-
sect each other in f N f'. Choose ¥ in fk+1({x} Uf)-(f'nf),andlet S =
{y,xl ,.++,Xk+1y be a basis of L7 ({x} U f). Then the distinct %.-flats con-
tained in f kH({x} U f) determined by S—{x 1} and S-{x 2} contain ¥ in their
intersection, hence yef'n f, contradicting our choice of y.

Definition T: A geometry G on X is called semi-projective if, given any two
distinct k-flats, f and f , which are contained in the same k+1-flat in(G*),
then f N f' is a k-1-flat.

Prop. 1.14: A geometry G on X is semi-projective iff [Gl is modulay.

Proof: Assume G is semi-projective. Suppose f v f' covers f and f',
F#f',in|G|. An argument similar to that used in 1.12 shows that dimf=
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dims' =%, and dim(f v ') = £+ 1, hence dim(f N f') = % - 1, thus |G| is
lower semi-modular. Since |G| is upper semi-modular by 1.12, |G| is
modular. Assume G is modular, and f and f' are distinct .-flats contained
in the same £ +I-flat. Then dim(f v f') + dim(f N f'") = dimf+ dimf'=
k+1+dim(f N f') = 2k, hence dim(f N f') = k-1, and G is semi-projective.

Cor. 1.14.1: Any semi-projective geometry satisfies T) (definition 4).
Definition 8: Let Y C X, and G be a geometry on X. The geometry induced
on Y by G is defined as follows: Fy* ={¢}; for k=0, Fk ={fx(9 n vls =
Yoy .- ,yk}, SCY, and S linearly independent in X}. ' Set Gy =
F;l yeeey FQ,‘} where theve is some M+ 1-flat which contains Y, but no flat
of dimension less than M +1 which contains Y. M is said to be the dimen-
sion of Y with respect to G, written 6(Y)M.

Pyop. 1.15: If Y # ¢, then Gy is a geometry on Y.

Proof: 1)-3) are clearly satisfied. 4) follows since every set of points
linearly independent in Y is linearly independent in X. Since (f NY) N
(f* N Y)=(fNf') NY where f and f' are arbitrary flats of G, 5) holds.
By definition of Gy, every k-flat of Gy contains at least one set of 2+1
points which is linearly independent in X, hence no 2-flat could be contained
in some flat of lower dimension in Gy, thus 6) holds.

Cor. 1.15.1: If f is a k-flat, k # -1, then Gy is a geometry on f of length
k-1, moreover, by 1.9.1, f' is a flat in G}iff f'C f, and f' is a flat in G*.

Definition 9. A property *) is hereditary if, given any geometry G having
*), then, if f is any flat of G, f # ¢, G; also has *).

Prop. 1.16: Property T) is heveditary.

Proof: Assume G has 7'), and f is a non-empty flat of G. Then |G/|=
o,71S|Gl. 1 frelGyl, and f* # ¢, then [f' f] is an interval of the modular
lattice [ f',X], hence is modular.

Pyrop. 1.17: The property of being semi-projective is hereditary.

Proof: If Gis semi-projective, then by 1.14, | G| is modular, hence if fe| G|
then [¢,f] = | G/| is modular, hence by 1.14, G; is semi-modular.

Prop. 1.18: The property of being affine is heveditary.

Pyroof: Let g be some k-flat, 2 # -1, of an affine geometry G. If £=0, or
1, then Gg is trivially affine. Assume 2 > 1. If fis any k-flat of G, thenf
is a flat of Gg iff f is properly contained in g (1.15.1). Let f be an i-flatof
Gg with ¢> 1, and let ybe any point in g-f. There is a unique i-flat f' of G
which contains y and is parallel to f. f v f'is an ¢+ I-flat of G*, and, if S
is a basis of f, then S U {y} S g is a basis of f v f', hence by 1.9.1,
f vf'C g. Since f'is the only ¢-flat of G containing y and parallel to f, it
is the only ¢ -flat of G¥ containing y and parallel to f, hence G, is affine.
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CHAPTER II

BASIC PROPERTIES OF TOPOLOGICAL GEOMETRIES.
A STUDY OF I-FLATS

For the remainder of this paper X is assumed to be a topological
space.

Definition 1: A subset W of X is convex with respect to G, a geometry on X,
if the intevsection of W with any flat of G is connected. Wheve no con-
Jusion can result, convex will stand for convex with vespect to the particu-
lar geometry (or any member of a class of geometries) under
considevation.

Pyop. 2.1: A subset W of X is convex iff i) given any O-flatg, g "W is
connected, and ii) given any 1-flat f, f N W is connected.

If Wis convex, then the intersection of W with any flat is connected,
hence i) and ii) hold. Assume i) and ii) hold. By assumption then the inter-
section of W with any flat of dimension less than or equal to I is connected.
Suppose f' is a k-flat £ =2, such that WN f'=AUB ANB=¢, A and
B non-empty and relatively open in W N f'. Choose x¢A, ye B. Because of
i), {x,y} is linearly independent. Then f,(x,y) N W =[AN f,(x,9)] U
[B N t,(x,)], hence f,(x,y) N W is not connected, contradjcting ii). It must
be then that W N f' is connected, hence W is convex. '

Cor.2.1.1: IfF°= {{x}lxsX}, then a subset W of X is convex iff f N Wis
connected, wheve f is any 1-flat.

Cor. 2.1.2: If each 0-flat consists of a discvete set of points, then a subset
W of X is convex iff f "W is connected, wheve f is any 1-flat, and W
contains no move than.one point from any 0-flat.

Prop. 2.2: A subset W of a 1-flat f is convex iff i) W is connected, and ii) if
g is any 0-flat, then W N g is connected.

Pyoof: Suppose i) and ii) hold. Then by assumption, the intersection of W
with any 0-flat is connected. Let f' be any I-flat. If f'=f, then f' Nw =
W, which is connected. If f' # f, thenf' N f is either ¢, or some 0-flat,
and, in either case, f' N W is connected, hence W is convex by 2.1. I W is
convex, then by 2.1, i) and ii) hold.

Cor.2.2.1: IfF°= {{x}lxsX}, then a subset of a 1-flat is convex iff it is
connected.

Cor. 2.2.2: A subset of a 1-flat (great circle) in S® is convex iff it is con-
nected and contains no two points which are antipodal (cf. 1.0, example ii).
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Cor. 2.2.3: If each 0-flat consists of a discrete set of points, then a subset
of a 1-flat is convex iff it is connected, and contains no move than one point
Jrom any 0-flat.

Prop. 2.3: If W is a convex set in X, and if f is any 1-flat, then f N Wis
convex.

Pyoof: Let f' be any 1-flat, or O-flat of X. Then f'N (f N W)=
(fr*NnfYNw. I f'=f, then f'Nf =f. T f*# f, then f*' N f is either ¢,
or some 0-flat. In any case, by 2.1, (f' N f) N W is connected, hence by
2.1, f N W is convex.

Pyop. 2.4: If W is convex, then W is connected.
Proof: Since X is a flat of G¥, X N W =W is connected if W is convex.

Definition 2: A geometry G on a space X is said to be topological if 1) each
flat is a closed subset of X, and ii) z'f{W,\})\EA is any family of convex sub-

sets of X, then n Wy is convex.
A

Prop. 2.5 If 0 # Y S X, then if G is a topological geometry on X, and Y is
given the subspace topology, then Gy is a lopological geometry on Y.

Proof: W< Yis convex with respect to Gy iff it is convex with respect to
G, hence ii) of definition 2 is satisfied. Since every flat of Gy is the inter-
section of Y with a closed subset of X, each flat of Gy is closed in Y.

Cor. 2.5.1: The property of being topological is hereditary (cf. chapter I,
definition 9).

Prop. 2.6: A geometry G on X is topological iff i) every flat is closed,
ii) given any 0-flat g and any family {Watren of comvex subsets of X,

gn (rA]W)\) is comnected; and iii) given any 1-flat, f, G is a topological
geomelyry on f (with the subspace topology).

Pyoof: If Gis topological, then i), ii), and iii) hold by definition 2 and 2.5.
Suppose 1), ii), and iii) hold. Because of 2.1 it only remains to be shown
that, given any I-flat f and any family {WA}AEA of convex subsets of X,

fn (n W,) is connected. f N (nW,\) = n(f N wW). By 2.3, each
A A A
f N Wy is convex with respect to G, hence each f N W) is convex with

respect to Gy. By iii), therefore, n (f N W) is convex in f, hence is con-
nected by 2.4. A

Cor. 2.6.1: If each 0-flat consists of a discvete set of points, then a geom-
etry G on X is topological iff conditions i) and iii) of 2.6 apply.

Proof: ¥ each 0-flat consists of a discrete set of points, then no convex
set can contain more than a single point of any 0-flat, hence in ii) of 2.6,

g n( n Wy) could consist of at most one point.
A
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Cor. 2.6.2: IfF°={{x}|xeX}, then G is topological iff i) every flatis
closed, and ii) given any family {WA}M;A of connected subsets of any given

1-flat, then Q W is connected.
Proof: 2.6 and 2.2.1.

Pyop. 2.T: If G is a topological geometry on X such that each O-flat con-
sists of a discrete set of points, and if f is any 1-flat of G*, and if W is any
convex set which is contained in f, then any minimal disconnecting subset
of W consists of exactly one point.

Proof: Suppose M is a minimal disconnecting subset of W, Since W is
connected, card M> 1. Suppose cardM =2; choose xeM. Setting T=M -
{x}, we have W-T is a connected subset of f. Since W contains no more
than one point from any O-flat, W-T also has this property, hence W-T is
convex by 2.2.3. Similarly, W-{x} is convex, but (W-T) N (W-{x}) = W-M
is not connected, hence is not convex, contradicting definition 2, ii).

Cor.2.1.1: The usual geometry on RP(2), the veal projective plane, is not
topological.

Proof: Since F°= {{x}' xeRP(2)}, and each line is connected, by 2.2.1, each
line is convex, hence it would have to be that a minimal disconnecting sub-
set of any given line consists of only one point, but this is clearly not true.

We remark, however, that the great circle geometry on $? is topologi-
cal. We thus see that even though a geometry G on X may be topological,
the ‘‘identification’®> geometry on the identification space obtained by
identifying all points in the same 0-flat need not be topological.

We assume for the remainder of this chapter:

Al: F°= {{x}lxsX}

Cf. 2.1.1, 2.2.1, and 2.6.2.

A2: G(any geometry under consideration) is topological.

Definition 3: Let SC X. Set A(S)={W CX i) W is convex, and ii) W 2 S}.
The convex hull of S, written C(S), is defined by C(S) =WQ(SV)V. If x and vy ave

distinct points of X, then C({x,y}) is denoted by xy,and is called the segment
joining x and y.

Prop. 2.8: The following statements ave equivalent:
a) every 1-flat in G* is connected,;
b) every flat of G* is convex;,
c) A(S) # ¢ for any SC X.

Proof: a) implies b): Let f be an arbitrary I-flat of G*, and suppose f' is
any flat of G*. Then dim(f N f') <1 by 1.3, hence f N f'is connected. By
2.1.1 we have, therefore, that f' is convex. b) implies c¢): Since X is a flat
of G*, X is convex, hence XeA(S) for any SE X. c) implies a): Setting
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S = X, since A(X) # ¢, X is convex, hence every I-flat must be connected
by 2.1.1.
To A1 and A2 we add

A3: Every I-flat in G* is connected.

If X# ¢ is T,, then X admits at least one topological geometry with
F°s= {{x}|x8X}, namely the trivial geometry where any k-flat is merely a
subset of X which contains % + I distinct points. The only sets convex with
respect to this trivial geometry are ¢ and the one point subsets of X. No
general condition has yet been found for deciding whether an arbitrary (T,
and connected) space admits a topological geometry which satisfies A3 and
Al1. The following properties of C( ) are trivial and are presented without
proof.

Prop. 2.9: a) S S C(S).
b) If S C T, then C(S) C C(T).

c) C(zLeJI S;) 2 ;l::J' C(S;).

d) If S is convex, then C(S) = S.

e) C(c(S)) =cC(S).

f) If W is convex, and S S W, then C(S) C W.

Prop. 2.10: A subset W of X is convex iff {x,y} S W, x #y, implies Xy S W.

Proof: f W is convex and {x,y} €W, then by 2.9f), Xy S W. Suppose
{x,y} €W implies ¥y CW. Let f be any I-flat. If card(f N W) = 0, or I,
thenf N Wis connected. Suppose card(f N W) = 2. Choose any two distinct
points x and y from f N W, Since f is convex, by 2.9f) Xy C f. ¥y S W by
assumption, hencexy C f N W. We have then by 2.4 that x and y are both in
the same component of f N W, hence, since x and y were arbitrary points of
f NW, f 0N Wis connected. W is therefore convex by 2.1.1.
The following corollaries are now clear:

Cor. 2.10.1: A subset W of R™ is convex with respect to the usual
Euclidean geometry of R™ iff it is convex in the usual sense.

Cor. 2.10.2: The usual Euclidean geometry on R™ is topological.
Prop. 2.11: If f is a flat in G, then f is nowhere dense in X.

Proof: Since f is closed we must show that f does not contain any non-
empty open set. Suppose US f, U# ¢, and U is open in X. Choose xeU,
and yeX-f. U N 1,(x,y) is an open neighborhood of x in f,(x,y). Since f,(x,y)
is connected, Fr(U N fy(x,y)) in f,(x,y) is non-empty. Since f is closed,
ClUC f. If zeFr(U N f,(x,y)) in f,(x,y), then z&f,(x,y), and ze C1U C £, but
{x,z} is a basis for f,(x,y), hence by 1.9.1 f,(x,y) C f. Since y was an
arbitrary point of X we have that every point of X must be in f, i.e. f =X, a
contradiction of 3), definition 1, chapter I.

Cor.2.11.1: If S ={xo,...,x4} is linearly independent, and k < I(G), then
C(S) is nowhere dense in X.
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Pyroof: C(S) S fr(S) by 2.9f) and 2.8. By 2.11, f(S) is nowhere dense in X.
Since f;(S) is closed, C1C(S) S fi(S), hence C(S) is nowhere dense in X.

Corv.2.11.2: If i<k, and f is an i-flat contained in a k-flat f', then f is
nowhere dense in f'.

Proof: 1.15.1, and 2.5.1 and 2.8, i.e. A1-A3 are hereditary properties.

Prop. 2.12: Suppose f < f' where f and f' ave flats in G*. If f disconnects
f', then f is a closed, minimal disconnecting subset of f'.

Proof: Set T =(f'-f)U {x}, where x is any point in f. Let w,zeT, w # z,
Then since any I-flat not contained in f intersects f in at most one point,
wx U ¥z lies entirely in T and is connected. Since w and z were arbitrary
points in T, T must be connected, which shows f is a minimal disconnecting
subset of f'. f is also closed in f' since both f and f' are closed.

Since any subset of a I-flat is convex iff it is connected (2.2.1), topo-
logically a I-flat is a connected I} space in which the intersection of any
family of connected subsets is again connected. If x and y are distinct
points of a I-flat f, then xy is the intersection of all connected subsets of f
which contain both x and y, thus we see

Prop. 2.13: xy is the unique subsel of f which is irveducibly connected
about x and y.

We set Int%y = Xy - {x,y}.
Prop. 2.14: If zeIntxy, then a) Xy =%z U 2y, and b) Xz N zy = {z}.

Proof: a) By 2.9f), X2 Uzy S xy. X%z U Zy is a connected (hence convex)
subset of f,(x,y) which contains both x and y, hence again by 2.9f), xy C xz
U zy, b) follows directly from Wilder [9], chapter 1, 10.15.

Prop. 2.15: If C is any connected subset of xy which contains eitheyr x or y,
then xy-C is connected.

Proof: Cf. Wilder [9], chapter 1, 11.2.
Cor. 2.15.1: x and y ave the only non-cut points of xy.

Pyoof: Since Xy is irreducibly connected about x and y, if zeIntxy, then
%y-{z} is disconnected, hence z is a cut point of ¥y. Since {x} and {y} are
connected subsets of Xy which contain x and y respectively, xy-{x} and
xy-{y} are connected by 2.15, hence both x and y are non-cut points of 7.

Pyop. 2.16: z is a cut point of a 1-flat f iff zeIntxy for some pair of distinct
points x and y of f.

Proof: Assume z is a cut point of f. Then f-{z} =A U B, A,B non-empty,
and relatively open in f with A N B = ¢. Choose x&A, yeB, K z£xy, then
xy =(xy N A) U (xy N B), hence xy would not be connected, a contradiction
to 2.13. Suppose z is not a cut point of f. Then f-{z} is convex since itis
connected, hence if ¥ and ¥ are distinct points of f—{z}, then ¥y € f-{z} by
2.91).
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Cor. 2.16.1: If zelntxy, then z is a cut point of both xy(2.15.1) and f,(x,y)
(2.16).

Cor. 2.16.2: The set of cut points of any 1-flat is non -empty.

Proof: Let f be a I-flat; then card f=2. Choose x,yef, x #y. Xy is con-
nected and T, hence card(Intxy) = R,, but every point of Intxy is a cut point
of f by 2.16.

Definition 4: A space X with topological geometry G is said to be locally
convex if every point of X has an open neighborhood basis consisting of sets
convex with respect to G.

2.2.1 shows
Pyrop. 2.17: A 1-flat is locally convex iff it is locally connected.
Prop. 2.18: A locally convex space is locally connected.
Proof: 2.4.

Prop. 2.19: If Y is a convex subset of a locally convex space X, then Y with
the subspace topology is locally convex with vespect to Gy.

The proof is clear.

Definition 5: Let Y S X, a locally convex space. Then x and y ave said to
be polygonally connected in Y if theve ave points xXo =X,%y,...,% =y, with
n<e, such that %%, UX %z U... UX,_,%, S Y. Y is said to be poly-
gonally connected if every two points of Y are polygonally connected in Y.

Prop. 2.20: If Y is polygonally connected, then Y is connected.

Proof: if x,y€Y, since any set of the form xox; UX % U ... UXp-14, 1S
connected, x and y belong to the same component of Y. Since x and y were
arbitrary, Y is connected.

Perhaps the most important property of locally convex spaces is given
by

Prop. 2.21: If U is an open, connected subset of X, a locally convex space,
then U is polygonally conneciled.

Pyoof: Let xeU. Let A ={yeU|x is polygonally connected to y in U}, and
B = U-A. A is open since if ye A, then some convex neighborhood V of y is
contained in U I we V, then wy S V by 2.10, therefore weA, hence V < A,
By a similar argument B is open. Since U= A U B, and A N B = ¢, either A
or B must be empty, but xe A, thus B = ¢.

To A1-A3 we add assumptions

A4: X is locally convex.

A5: If x,y, and z ave distinct points of some 1-flat, then Xy U VZ = Xy, Yz,
and/ov %z.

RP(2) is an example of a space with geometry which satisfies A1, A3,
and A4, but not A2(2.7.1). The great circle geometry on $? satisfies A2,
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A3, and A4, but neither A1, nor A5. If R? with its usual geometry is given
the discrete topology, we have an example of a space with geometry which
satisfies A1, A2, and A4, but neither A3, nor A5; on the other hand, if R® is
given the indiscrete, or trivial topology, then we fall short of satisfying
A1-A5 only in that each flat is not closed, and A5 does not hold. It should
be noted that each of these examples also satisfy property 7) (chapter 1,
definition4). A1, A2, and A3 are necessary prerequisites for A5 for if any
one of these is not satisfied, then the existence of Xy for any given points x
is uncertain.

The following examples, all subspaces of R?, with geometry
G ={F~',F°, F°={{x}|xe X}, illustrate both the independence of A4 and A5,
and what ‘‘pathological’’ condition each assumption is intended to eliminate.
Each example satisfies property 7) and A1-A3. Example 1 satisfies neither
A4, nor A5; example 2 satisfies A4, but not A5; and example 3 satisfies A5,
but not A4.

-1
Ex. 1. X, ={(x,y)|y=0, ory=_°

x, for n a natural number }.

Ex. 20 X, ={(x,y)|y =0, orx =0}.
Clearly 292z U 2,2, # ZoZ3 ,
Z3Z1, Or ZoZ ;.

Ex. 3: X3 = {(x,y)l(x;y) = (0!0)’ or

1
y = sin;, x > 0f. X, canbe

totally ordered by <, where
(o,90) 3 (wy,p1) iff x0<xy,
but the order topology is not
induced topology on Xj, for
if it were, then the map
p:X,— {(x,y)l y=0,x >0} =
Rt defined by p((x,y)) = x X,
would be 1-1, onto, and or-
der-preserving between two y
spaces with the order topol-

ogy, hence p would be a
homeomorphism, but Rt is
locally connected, and X; is

not at (0,0). Nevertheless, (0,0)
with this ordering, z, < z,
implies Zoz, =12eX ;| 2o <

z2 <2z,

A=l -==-X

We now proceed to show that assuming A1-AS5, we can order any 1-flat
f in such a way that the order topology is the subspace topology of f.

Pyrop. 2.22: If y is any cut point of a 1-flat f, then theve are A and B,
closed, connected subsets of f such that A N B ={y}, and A U B = .
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Proof: Set T=f-{y}. Fix xoe¢T. T is open in f. Set A' = {xeT|x is
polygonally connected fo x, in T}, and B' = T - A, A' is connected by 2.20.
Suppose weA', and U is an open, convex neighborhood of w in f which
excludes y. Then if zeU, wz S U, hence U< A', which proves that A' is
open. Suppose weB', and U is an open, convex neighborhood of w in f which
excludes y. Suppose we can find ze U N A'; then since wz © U, weA" also,
contradicting we B'. Thus A' and B' are both open subsets of f, hence are
both open subsets of T, hence are both open and closed in 7. Both A' and
B' are non-empty, or else T =A', and T would be connected. Since A' is
closed in T, A' = T N F, where F is some closed subset of f. I y¢F, then
A' = F, hence A' is open and closed in f and f could not be connected, hence
yeF, hence A'U {y}=F=ClA'. Similarly B'U {y} = C1B'. SetA =
A' U {y} and B=B'U {y}. Since A' is connected, A = Cl1A' is connected.
The proof of 2.22 is completed by the following proposition.

Prop. 2.23: The set B' described in 2.22 is also connected.

Pyoof: If B' is connected, then it is a convex, open subset of a a locally
convex space (namely, of f), hence by 2.21,
B' is polygonally connected. Therefore if
B! is not connected, we can choose w, ze B'
such that yewz N xow N X,.2. By 2.14 we
have

WE =XoW U XoZ, x8w N %oz = o } if x0€WZ;

XoW = WZ U %ok, WE N %oZ = {2} if zeXow;

XoZ =WZ U Xot, WZ N Ko = W} if weXsz.
It follows at once that x,gwz, wgx,z, and
2¢%ow. Consider Xow U Xoz. By A5 Xow U Xz = XoW, XoZ, OF Wz. If xow,
then zexow; if X4z, then wex,z; and if wz, then x,ewz, a contradiction in
any case, hence B' must be connected.

Prop. 2.24: Any 1-flat contains at most two non-cut points.

Proof: Suppose x,,%,,xs€f, a I-flat, are all distinct non-cut points of f.
By 2.16 then x; ¢ Intx;xz, i,j,k = 1,2,3, i # j,j# R, i # k. But x;x, UX,%; =
X1X3, X3 X3, Or X1X3, and, in any case, we obtain contradiction.

Prop. 2.25: If x,y¢f, a 1-flat, x # y, then Intxy is open in f.

Proof: Let zeIntxy. Then zeU, a convex open subset of X which excludes
x and y. Set V=UNf. Suppose there is weV - Intxy. If xw U wy = xy,
then wexy, contrary to assumption, hence by A5, either xy C wy, or
xy € wx. In either case, we know that Zw U Wy = zw, wy, or zZy. If zw, then
yeV, contrary to assumption. If Zy, then we 2y, and since ¥y = ¥z U 2, we
would have wexy. It must be then that zw U wy = wy. We also know that
xzZ U zw = zZw, xz, orxw. X zw, then xeV; if xz, then wexy, thus it must
be also that ¥z U zw = xw. We have shown therefore that zexw N wy.
Suppose that xy S wy. Then xewy, and Wy =wx UXYy and WX N Xy =
{x}(2.14) but zexy N xw , hence z =x, a contradiction. If we assume in-
stead that ¥y C wx, then y&wx, hence ¥y U 3% =wx, and ¥y N 3@ = {y}, but
zexy N wy, hence we again have a contradiction. It must be therefore
that V C Intxy, hence Intxy is open in f.
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Definition 6: We now define a total ordering on a I-flat f as follows: Let
Yo be a cut point of f. We see from 2.22 and 2.23 that f - {ot=A4r v B,
A' N B' = ¢, and A' and B are both connected, hence convex by 2.2.1. We
vecall that A = A' U {ye}, and B= B' U{y,}. Define > by

1) xe A" implies x> y for any yeB.

2) x,9eA', x # v implies x> y iff XVo 2 Y¥o. We note that xy, U yy, =

xy cannot occur since A' is convex, giving xy C A' (2.9f)).

3) xeB' implies yo> x.

4) x,yeB', x #y implies x >y iff Xy, S VY.

We note without proof (since these facts are never needed anywhere in
this paper) that 1) the order given by > is independent of the choice of the
cut point y,, and 2) if A' and B' were interchanged (i.e. if A' were called B',
and B' were called A'), we would obtain an ordering > such that x > y iff
y > x. Definex <y ify.>x,andy =2xify >x, or y=x.

Pyop. 2.26: The ovdering of f givern by > is a total ovdering.

Proof: i) x #y impliesx >y, or y > x. The only cases of any consequence
occur when {x,y} € A', or {x,9} € B'. In either case, ¥y, U¥yo= XY, OF
Yyo. By 2.14 Xy,=9y, iff x =y. ii)x > 9,y >z impliesx >z. If x4,
y,2& B, or x,yeA, zeB, the result is trivial. Otherwise the resultfollows
from the transitivity of set inclusion.

Prop. 2.2T: Ifx <y, thenxy ={zlx <z < y}.

Proof: a) ¥y C{zlx <z <y}: Suppose wexy.

Case 1: {rx,y} S A. Thenxy, C yy,, therefore y,x% UXy =73y, and yox N Xy
={x}. Then xy,U xw =3yow, since xy,Uxw =xw would give y,eA’, and
X¥Yo UXw =Xy, would imply that xy, N %y # {x}. Since this gives %3, C yow,
x < w; similarly yow € 9,9, hence w < y.

Case 2: {r,y} C B. Entirely similar to case 1.

Case 3: xeB, yeA. If weB, then w < y, but if w <x, then xy,is properly
contained in wy,, thus wgxy,, hence w could not be in xy. If weA, then
w =x, but w >y would imply that wy, Dyy,, whence wgyy,, and wgxy,.
Therefore again we have x < w < 3.

b) {zlx <z< y} S xy: Suppose x <w <y. By A5 xw U wy = xw,
wy, or xy. If xw, then yexw , hence by a), x < y<w; if wy, then xewy,
hence also by a), w < x <y; in either case we have a contradiction of 2.26.
It follows then that xw U wy =xy, hence wexy.

a) and b) together imply 2.27.

Cor 2.21.1: If x< y, then {z|x < 2 < y} is open in f.
Proof: By 2.25.
Cor. 2.21.2: The sets {z|x < 2} and {z| x> z} are open in f.

Proof: We prove {z|x < z}is open in f; the proof for {zlx > z}is analogous.
Let ze{zlx <z}. If there is wef, w >z, then z e Intxw C {z| x < z} by 2.27.
If there is no w > z, let Ube any convex, open neighborhood of z which ex-
cludes x. Then U N {yly Sx} =¢,forify <x,andyeU N f thenyz S U N f
by 2.10, which would imply that xeU N f.
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Cor. 2.21.3: The ovder topology of f is equivalent to the subspace topology
and is Tz .

Let U be an open, convex neighborhood of x in f. I there are u,veU
such that u <x < v, then xeIntuv & U. If x < w, or x = w, for all weU, then
x is contained in an open set which is contained in U of the form described
in 2.27.2. Since Intid = {w|u < w< v}(2.27), we have shown that every
open, convex neighborhood of x in the subspace topology contains an open
neighborhood of x in the order topology. On the other hand, sets of the
form given in 2.27.1 and 2.27.2 form a basis for the order topology, and
these are open in the subspace topology of f,hence the order and subspace
topologies of f are equivalent. The order topology is always T;.

Pyop. 2.28: A 1-flat ovdered as described in definition 6 satisfies the
Dedekind cut axiom.

Proof: Suppose C and D are two non-empty subsets of f such thati) C U D
= f, and ii) xeC, yeD implies y <x. Suppose neither C has a smallest
element, nor D a largest. Then C is the union of open sets of the form
{zlz > x}, and D is the union of open sets of the form {z |z < x}, hence C and
D are non-empty, disjoint, open subsets of f whose union is f, thus f is not
connected, a contradiction of A3.

Prop. 2.29: xy is compact.

Proof: Let{U,} be a collection of open sets (of X) covering Xxy. We con-
struct a Dedekind cut of f,(x,y) (ordered by >) as follows: zeC if 1) z <x
(we assume x <), or if 2) x< z <y, and a finite number of the U, cover
xz. Set D= f (x,y)-C. ¥ ¥y S C, we are done; otherwise C and D give a
cut. Therefore by 2.28 there is w, largest in C, or smallest in D. Since
woe xy- P}, wo&Uq,, give one of the U,. By 2.27.3 and the local convexity
of f,(x,y) (2.19), there is uv & Uy, with x <u <w, < v. Regardless of
whether w, is in C or in D, ueC, therefore a finite number of the U, cover
xu, thus veC, but v > w,, a contradiction.

Prop. 2.30: If X is metrizable, then Xy is homeomorphic to [0,1).
Proof: Cf. Hocking and Young [5], theorem 2-27.

Cor. 2.30.1: If X is metrizable, then X is arc-connected.

Prop. 2.31: Any segment xy is locally periphically countably compact.

Proof: A basis for the open sets of xy consists of sets of the form
fwlw >z}, {wlw <z}, or fwlu <w < v} (2.27.3). In any case, the frontiers
in xy of these sets consist of at most two points.

Cor. 2.31.1: If xy is separable, then Xy is homeomovphic to lo,1].
Proof: Cf. Wilder [9], 11.14, chapter I.

Cor. 2.31.2: If X is second countable, then X is avc-connected, and every
segment in X is homeomorphic to [0,1].
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Proof: I x,yeX, x # v, thenxy is second countable, hence separable. Xy is
therefore homeomorphic to [0,7] by 2.31.1, hence ¥y is an arc connecting
x and y.
Definition T: Let S = {x oo ,xgs. Then C(S)is called a k-simplex iff S is
linearly independent. Suppose C(S) is a k-simplex. C({xo,e.,%iy. . %2}),
denoted also by F'C(S), is called the i face of C(S); X; indicates x; has
been deleted. F'C(S) is a k-I1-simplex.
k
We define d C(S) =‘U FiC(S), and IntC(S) = C(S) - dC(S), called the in-

j=o0
terior of C(S). Set ExtC(S) =[X - C(S))N f,(); ExtC(S) is called the exter-
ior of C(S). This chapter was primarily concerned with the properties of
1-flats. We now begin a discussion of the structure of X as a whole.

CHAPTER III

m-ARRANGEMENTS

Definition 1: A {topological space with geometry G of length m-1=0 is
called an m-arvangement if the following conditions are satisfied:

3.1: F = {{x}|xsX}

3.2: G is topological.

3.3: Any I-flat of G* is connected.

3.4: X is locally convex (with vespect to G).

3.5: Ifx,y, and z are distinct points of a 1-flat,then xy U xy = xy,¥Z, or Xz.

Since 3.1- 3.5 are nothing but A1-A5 of chapter II, the results and
definitions there are applicable in this chapter.

3.6: If S=4x, RN , X 1is linear-
ly independent, and k =1, then

—_ Xo X
cs)= U == 7 ° p

x€F0¢(s)

3.7: If C(S)is a k-simplex and

f is any 1-flat in £,(S) such that =

f N IntFC(S) consists of a single

point for some i, then f N IntC(S)

=¢. X2 X2
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3.8: If C(S) is a k-simplex, thendC(S) 2 FrC(S) in fr(S) (in G*), i.e. the
topological boundary in a flat f of G* of C(S), where S is a basis of f, is
contained in the ‘‘geometric boundary’ of C(S).

3.9: If fand f* are flats of G* such that f N f' #¢, then dimf + dimf* =
dim(f v f')+ (fNf'). This is property 7) (definition 4, chapter I).

In general the independence of these postulates has not been estab-
lished; however, we may make the following observations:

(i) Any topological space with geometry of length 0 which satisfies
3.1-3.4, also satisfies 3.6-3.9. The examples cited in chapter II to
illustrate the independence of 3.4(A4) and 3.5(A5) also satisfy 3.6-3.9,
hence 3.4 and 3.5 are definitely independent.

(ii) Let X = R® with the usual Euclidean geometry G = {F~%, ..., F?}.
Set G' = {F"Y,F° F'}. Then X with geometry G' satisfies all the axioms for
a 2-arrangement except 3.8 and 3.7. This example offers a clue to the role
played by 3.8 and 3.7 in the sequel, namely of links between the length of G
and the ‘‘dimension’’ of X.

(iii) Let Y be the cube in R® with vertices (i,j,k), i,j,k =0, or 1. Let

X =7 -[(0,0,1)0,1,1) U (1,0,1)(1,1,1)] u{(o,z, (1,2,1)} Then X with the

0,1,1) (1,1,1) subspace topology and
(0,5,12/, ~ =| geometry induced by the
g usual Euclidean geome-

try on R® satisfies 3.1-
3.8, but not 3.9; in par-
ticular, dimf,({ (0, 0, 0),

,1,0) (071;0), , é, 1)}) + dimf,

(0,0,1) == ol “0d.

0,1,0)

1 1 1
({(‘2-’0:1)’(5:1:1): (0; _2—71)})
=4=3+ 0= dimX + dim

[£{0,0,0),0,1,0), 0, 5, NN £2{(3,0,1), (5, 1,2, 0, 5, 1)}

Unless specifically stating otherwise, all remarks, propositions, and
definitions of this chapter refer to an m-arrangement, m > 1.

Prop. 3.10: If f is a k-flat, k # -1, then f with geometry G; and the sub-
space topology is a k-arrangement.

Proof: 3.1, 3.6, 3.7, and 3.8 are trivially verified. 3.2 follows from 2.5;
3.3 from 2.8 and 2.11; 3.4 from 2.19; 3.5 from 2.10; and 3.9 from 1.16.

(0,0,0) (z,0,0)

Prop. 3.11: If U is a non-empty, open, convex subset of X, then U with
geometry Gy and the subspace topology is an m-arvangement.

Proof: Suppose f is a k-flat for which fNU # ¢. By 1.9 f;(f NU)S f, hence
by 6), definition 1, chapter I, i <k. But f NUC f;(f NU), and since f U is
somewhere dense in f, f;(f NU) is somewhere dense in f. By 2.11.2 this
is impossible unless i >k, hence ¢ = k. Therefore by 1.4, f;,(f NU)=f. It
follows at once that f NU contains a basis for f. We have therefore shown
that 6(U) =m - 1 (definition 8, chapter I), and that 3.9 holds since dim(f NU)
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that 6(U)=m - 1 (definition 8, chapter I), and that 3.9 holds since dim (f NU)
in Gy = dimf in G iff U #¢. 3.2 holds by 2.5; 3.3 by 2.3 and 2.4; 3.4 by
2.19; and 3.5, 3.6, and 3.7 by the convexity of U. If A C U, then FrA in
U=A-(° in U), but since U is open, A% in U= A% thus FrA4 in U =FrA,
hence 3.8 also holds.

Prop. 3.12: If C(S)is a k-simplex, k=1, then IntC(S) # ¢.

Proof: 3.12 is clearly true if 2= 1; assume 3.12 holds for 2 -1 > 1.
Suppose S = {xo, e ,xk} is linearly independent. By the induction assump-
tion we can select weIntF°C(S). If fi(xo,w) NF°C(S) #{u}, then F°C(S) would
contain a basis for fi(xe,w), hence by 1.9.1 we would have f;(xo,w) C
fr-1(S{w}), and therefore SC fr-.(S{w}), contradicting the linear inde-
pendence of S. Therefore f,(x,w)NIntF°C(S) ={w}, and by 3.7 filxew) N
IntC(S) # ¢, hence IntC(S)#¢.

Prop. 3.13: Any k-simplex C(S) is closed.

Proof: FrC(S)in fx(S) S dC(S) S C(S) by 3.8, hence C(S)is closed in fr(S),a
closed set, therefore C(S) is closed in X.

Prop. 3.14: If C(S) is any k-simplex, then dC(S) is closed.

Proof: FrC(S) in 4(S) € dC(S), therefore Fr(dC(S)) in f;(S) € dC(S), hence
dC(S) is closed in f;(S), hence in X.

Prop. 3.15: If C(S) is an m-simplex, i.e. S is a maximal linearly inde-
pendent subset of X, and if FyC(S) # ¢, then FrC(S) disconnects X.

Proof: From Fr(X-C(S)) = FrC(S) # ¢, we have at once that A = (X-C(S)) U
FrC(S) is closed and X-C(S) # 9. AUC(S)= X and ANC(S) = FrC(S). Since
AZ C(S), we have by lemma 1 of the appendix that FrC(S) disconnects X.

Cor. 3.15.1: If C(S) is a k-simplex contained in a k-flat f, k =1, and
FrC(S)in f # ¢, then FrC(S) disconnects f.

Proof: 3.10.
Prop. 3.16: If C(S) is an m-simplex, then Int C(S) is open in X.

Proof: IntC(S) = C(S) - dC(S) = (C(S)° U FrC(S)) - dC(S) = C(S)° - dC(S).
Since dC(S) is closed by 3.14, C(S)° - dC(S) is open.

Cor.3.16.1: If C(S)is a k-simplex, then IntC(S) is open in f1(S).
Proof: 3.10.

Prop. 3.1T: If C(S) is an m-simplex and ExtC(S)# ¢, then AC(S) dis-
connects X.

Proof: ExtC(S)= X - C(S)is open, hence X - dC(S) = ExtC(S) U IntC(S), the
union of two disjoint, non-empty, open subsets of X.

Prop. 3.18: Suppose S = {xp,%1,%,t and C(S) is a 2-simplex. Suppose
y1eInt¥%X,. Then %, v, disconnects C(S) into two convex components, one
containing x,, and the other containing x,.
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Since C(S) < f;(S) by 3.10 we may
regard X = f,(S). Set A = C({xe, y1,%50)
and B = C({xo, y1,%1}); then %gy; C C(S),
% . S ANB. Suppose there is
we(A N B) - X,¥;. Then there must be
2:€Y%1, and z,e%,y; such thatwexy,z; N
%2z (3.6), thus filxew) = fi(xe,21)=
f1l0e22) = f1(21,22) = fi(¥1,x,) which im-
plies that S is not linearly independent.
We have therefore that A N B =Xy, ,
and since A and B are closed, lemma 1
of the appendix implies that ¥,y; dis-
connects A U B, It is an immediate

consequence of 2.14 and 3.6, however, that AU B = C(S), hence Xoy; dis-
connects C(S).

Let w and z be arbitrary, but
distinct points of 4 - ¥,y1. By 3.6
there are 2324 S;Tyl-{yl}, with
WEXZs and ZEXZq4.

Case 1: 23 = 24. By 2.15 %025 - {¥o}
is connected, hence it is convex by
2.2.1. Since {w,z} S %oz; - {xo}, by
2.9f) Wz C X023 - {%o}. But X2z N
%o¥1 = {%o}, hence WZ C A - Xg¥;.

Case 2: z3# 24, i.e. {Xo23,24} is

linearly independent. Set E = C({X0,23,%2}), F = C{%,23,24}), and G =
C({xo,z4,y1}). Then by an argument similar to that used earlier in this
proof, A= EUFUG, and FNG =%,24. By 2.9f) wZC F. Since 23 #24
WZ NXoZa =1z}, hence Wz NG = {z}, but z¢%,y;, hence Wz C A - X,9;. We
have therefore shown that A - ¥,y is convex (2.10), hence connected (2.4);
similarly B - X,7; is convex and connected, and 3.18 follows at once.

Prop. 3.19: Let C(S) be a k-simplex with S= {x, . . . %1}, and let FiC(S)
and FIC(S) be distinct faces of C(S). Set Sij =S -{x;,x;}. Then F'C(S)N
FIC(S) = C(Ssj).

Proof: 3.19 is true for k£ = 1. Suppose it has been proved for k-1=21. Set

A = F'C(S)NFIC(S), where C(S) is a k-simplex. Certainly C(Sii)< A.

Suppose weA - C(S;;). C(Sij)=F'(F/C(S)), and applying 3.6 to F'C(S) we

can find 2&£C(Si,;j)such that wex;z. It follows therefore that f1w,z) = f1(x;,2).

Since {w,z} S FiC(S), x;ef1-1(F'C(S)), contradicting the linear independence

of S.

We note in passing that if S = {xo, .. ,xk} is linearly independent and

k

we define 3C(S)= 2 (-1)’F'C(S) as in simplicial homology theory, then
i=0

3.19 enables us to say that 99 = 0, This leads to the conjecture that a
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meaningful homology can be defined on X using convex hulls, a subject still
to be investigated.

Cor. 3.19.1: No point of a k-simplex C(S)is contained in move than k faces
of C(S).

Proof: 3.19.1 is true for 2 = 1; assume it has been proved for 2 - 1 =1,
k k
Suppose we [} F'C(S). dFiC(S) = U C(Sij) but by 3.19 C(S;;)=FC(S) N
i=0 j=0
. i¢j .
F’C(S), hence weC(S;,;) for all j#i, hence wis in all faces of F*C(S) contra-
dicting the induction assumption.

Prop. 3.20: If S={xo, ...,xs} is linearly independent, then IntC(S) is
convex.

Proof: We first prove 3.20 for k= 1. If w,zelntxox;, we can assume
w< 2z, and x, < x; (cf. definition 6, chapter II). Then x, < w <z <x,but
wz = {ylw <y <z} by 2.27, hence wz C Int¥,x;, therefore IntX, x; is convex
by 2.10.

Assume 3.20 is true for k- 121,
but is not true for k2. Then there are
z,weIntC(S) such that zwNdC(S) # ¢, %,
hence we can choose a point ¥y in this
intersection. By 3.19.1 we may as-
sume y¢F°C(S) (by renumbering the
x;’s, if necessary), hence by 3.6 we %1
have ¥,,y,eF°C(S) with zeX,y;, and
wWeXeYs. Since z,wentC(S), ¥1,v.¢
Int F°C(S) by a simple argument using I
1.9.1, hence by the induction assump-
tion 319 (or just {yi} if ¥1=9:) C ) Va e
IntF°C(S). Since z,weC({xo, V1, ¥2}), ¥

is also in C({xo,y1,¥2}), therefore we can find v €9y, such that y&Xyys, but
since yedC(S)-F°C(S), y; must be in dF°C(S) contradicting the induction
assumption.

Cor. 3.20.1: A segment wz C C(S), a k-simplex, but which is not contained
wholly in dC(S), can touch a face of C(S) only at w or at z.

Proof: Suppose yeIntwzNdC(S), but wz ¢ dC(S). If both w and z are in
IntC(S), then 3.20 is contradicted; therefore suppose wedC(S). By 2.16.2
cardwy > 8y, but the number of distinct faces of C(S) is only % + I, hence
if wy € dC(S), then at least two distinct points of wy would have to be in the
same face of C(S), hence by 1.9.1 and 2.9f) we would have that wz € dC(S), a
contradiction. Therefore we can find w,eIntwy-dC(S), and, similarly,
wyeIntyz -dC(S). Then yeIntww, C IntC(S), contradicting y£dC(S).
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Cor. 3.20.2: If C(S) is a k-simplex, k= 2, then no 1-flat can intersect
three distinct faces of C(S) in an interior point, i.e. in IntF*C(S).

Proof: 1f 3.20.2 is false, let x,y,z be distinct points of the intersection of f
with the interiors of three distinct faces of C(S). Either yexz, or zeXy, or
x€Yz; in any case 3.20.1 is contradicted.

Cor. 3.20.3: If C(S) is a 2-simplex, and f is a k-flat, and C(S) &f, then f
cannot contain intevior points from all thvee faces of C(S).

Proof: By 1.3 dim (fNfy(S))< 1. If C(S)Zf, but f contains interior points
from all three faces of C(S),then fNf,(S)is a I-flat which contains interior
points from all three faces of C(S), contradicting 3.20.2.

Prop. 3.21: Suppose S = {xp,x1,%} is linearly independent. Suppose f is a
1-flat, fNxo%; # ¢, and fNIntC(S) # ¢. Then f intevsects at least one other
Sface of C(S); moreover, if xqef, then f N Int¥,%; # ¢.

Proof: Case 1: fNXe%; = {%o}. Select
wef NIntC(S). Then weX,y for some

yexix; (3.6), hence f=fi(w,y) = filoo, w) X
implies fN¥X:1% = {y}. Since weIntC(S),
yelntx; X,

Case 2: fN%o%; = {2}, zeIntXex;. Select
wef NIntC(S). By 3.18 zx; separates C(S)
into convex components C({xo,xz,z}) - X2
and C(x,xe2}) - ¥12. Since zw - {2z} is
connected (2.15), either zw S C({xy,x5,2}) or
zw S C(xypx0,2}). If 2w S C({ryx2,2)), then

also by Case 1, f Nixox; #¢. I zw Xz
C({%1, %o, 2}), then also by case 1, f Nxpx; f
=¢- xO

Case 3: fNXe%z ={%y . As in case 1.

Cor. 3.21.1: If C(S) is any 2-simplex, and

S is any k-flat, k=1, such that f NAC(S) # ¢,

and f NIntC(S) # ¢, then f intersects at f
least two distinct faces of C(S).

Proof: If C(S)<f, then 3.21.1 is trivially %1
true. If C(S)Z f, then fNfy(S) is a 1-flat, X2
hence 3.21.1 follows at once from 3.21.
P Prop. 3.22: If S = {xo,%1,%.} is linearly
independent, and if f is a 1-flat of f»(S)
C(S) such that f NIntC(S) # ¢, then f inter-
z sects at least two distinct faces of
C(S), and at least one of these faces in
an intevior point.
X
° Proof: Choose Y&f NIntC(S). Then
yelntx¥, 2 for some zelntxyx,. Set

, A = C({z,%0,%2}) and B = C({z,x1,%5}).
2
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Since C(S) = A UB (3.18 proof), and f< f,(A) = 1,(B) = f5(S), we have by 3.7
that f NIntA # ¢ and f NIntB # ¢. Therefore by 3.21 f intersects another
face of both A and B. If both intersections occur in the same face x;x;,
then x;x;C f which implies that y&dC(S), a contradiction. If at least one of
these intersections does not occur in the interior of some face, then clearly
both intersections must occur in the same face, i.e. at x; and x;, hence in
%: xj, which was just shown to be impossible.

Since 3.12 could have been proved using 3.6, 3.22 was the first
proposition in this chapter which really required the use of 3.7. The
following corollary is the first time that 3.9 will have been used in this
chapter.

Cor. 3.22.1: If C(S) is a 2-simplex, and f is an m~-1-flat such that C(S)¢ f,
but f NIntC(S) # ¢, then f intersects at least two distinct faces of C(S).

Proof: By 3.9f Nf,y(S) is a I-flat in f,(S). The result now follows from 3.22.

Prop. 3.23: If S={xo,x1,%x2} is linearly independent, and f is an m-1 -flat
such that %ox%1¢ f, but f NIntxox, # ¢, then f intersects at least two distinct
faces of C(S).

Proof: By 3.9 fNf,(S) is a I-flat in f,(S) which intersects Xo¥; in a single
point. 3.23 then follows from 3.21.

Prop. 3.24: If C(S) is a k-simplex, and f is a 1-flat in f1(S) such that
F NIntC(S) # ¢, then f NAC(S) contains at least two distinct points.

Proof: 3.24 is true for k=1, and is also true for 2 = 2 by 3.22. Assume
3.24 is true for £ - 1= 2. Suppose S = {xo, .. ,xk} is linearly independent,
k=3, and f is a 1-flat such that fNIntC(S)# ¢. Since f < f(S) we have that
f NIntC(S) is open in f by 3.16.1. If f NIntC(S) consisted of only a single
point x, then {x} would be both open and closed in f, hencef would not be
connected. We therefore can find u,v distinet points in f NIntC(S), and
21,25 eInt F°C(S) with ueXo2; and vex,2, (3.6).

Case 1: z, =z,. Then f=f,(u,v) = fi(xe2,), hence x, and z, are two distinct
points of f NdC(S).

Case 2: 2z, # 2z,. Then f,(21,2;) NdF°C(S) contains two distinct points w, and
w, by the induction assumption. Then XgZz; U ¥oZ; € C({frewy,w,}), hence
f ﬂdC({xo,wl,wz}) contains at least two distinct points, but dC({xo,w,,wz})g
dc(s).

Cor. 3.24.1: f, the 1-flat described in 3.24, intersects AC(S) in exactly two
distinct points from distinct faces of C(S).

Proof: If f contains two distinct points, i.e. a basis, from any one face of
C(S), then fNC(S) S dC(S), which gives fNIntC(S)=¢, a contradiction.
Suppose x,y,z are distinct points of f NdC(S). We may suppose that inthe
ordering of f, ¥ <y<2z, hence yeInt¥z by 2.27. Then xzZ NdC(S) ={x,z}, a
contradiction of 3.20.1.

Prop. 3.25: If f is an m-I1-flat which disconnects X, then f disconnects X
into two convex, open components.
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Proof: 1If f disconnects X,then we can
find x,yeX-f such that IntxyNf#¢.
Set A ={weX-flwxNf =¢}, and B =
{ueX-f luy N f = ¢}. Choose any zeX-f.
It {x,y,2} is linearly independent, then
by 3.23 either fNIntzx # ¢, or
fNIntzy # ¢. By 3.20.3 both these
intersections cannot be non-empty at
the same time, hence either zeA, or
zeB. If {x,9,2}CS f', a 1-flat, and
fNxz and fNyzare both non-empty,
then using 3.5 we would have f'C f, a

contradiction. Therefore again, either z&A, or zeB, hence X - f = AUB,
Suppose wi,w,eA. If {x,wl,wz} is linearly independent, then since f inter-
sects neither Xwi, nor Xw; by 3.24 fNW;w; =¢. If {x,w,w,}C f', a 1-flat,
then since by 3.5, XW,U Xw, = Wiw,, XW1, or XW, it is clear that fNww, # ¢
would imply that eitherfNXxw; # ¢, or fNXw, # ¢, a contradiction in either
case. Therefore, A and B are connected (2.4). If ANB # ¢, then
AUB = X-f is also connected contrary to assumption. Therefore A and B
are disjoint. If for every convex, open neighborhood U of a point weA,
there is ze UNB, then since zw S U by 2.10, there must also be vef NU,
This implies that weClf =f, a contradiction to wegA. Therefore US A4,
hence A is open; similarly, B is open.

Cor. 3.25.1: If f is an m-1-flat which disconnects an open, convex subset
U, then f separates U into two convex, open components.

Proof: 3.11; then set X = Uin 3.25.

Prop. 3.26: If U is a convex, open subset of X, then a given m-1-flat f dis-
connects U iff theve are points x and vy in U such that f disconnects xy.

Proof: If f disconnects U, then there must be points ¥ and » in U as
described. Suppose there are points x,yeU such that f disconnects Xy,
Using 1.3 and 2.15.1 we have that f NXy consists of a single point in IntXy,
Set A = fweU-flywNf=¢tand B = fweU-f|xwNf = ¢}. Arguments similar
to those used in 3.25 show AUB = U-f, and 4 and B are open, convex sub-
sets of U. Suppose weANB, If {x,y,W} is linearly independent, then since
fNxw# ¢, either fNXW# ¢, or fNYW# ¢, a contradiction. Suppose {x,y,w} S
f', a 1I-flat. By 3.5 XyU YW = Xy, YW, or YW but X and X% are impossible
since these segments would then contain ¥y, hence a point of f. If
¥y UYW = ¥y, then weIntXy, hence by 2.14, Xy = X0 UYyw and X Nyw = {w},
hence again either fnwx £ ¢, or fNyw # ¢, another contradiction. There-
fore AN B = ¢, hence U-f is disconnected.

Cor. 3.26.1: An m-1-flat disconnects X iff it disconnects some segment
%y S X. Moveover, if f disconnects %y, then x and y ave in different
components of X-f.

Proof: 3.26 with U =X; xc¢A and yeB,
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Cor. 3.26.2: If fis a k-1-flat contained in k-flat f', k = 1, then f disconnects
f' iff f disconnects some segment xy in f'. If f disconnects xy < f', then x
and y arve in diffevent components of f'-f.

Proof: 3.10 and 3.26.1.

Prop. 3.27: Suppose 1(G) =1, Then if xw and zy are any two segments in
X, then xw and zy ave homeomorphic.

Proof: Case 1: x=2, w#y, and{x,w,y} linearly independent. Choose
welntwy; then ¥u CC({x,w,y}). For
each sexu, f,(w,s)Nxy consists of a
single point by 3.21; denote this point
by u(s) to obtain pxu —xy. u isl-1
since if p(si)= p(sz), then wp(s;)=
wi(s;) therefore wu(s;) Nxu ={s,} =

y  wp(sz) Nxu={s:}. p is onto: Choose
veXy., Then woNxu # ¢ if v#£x since

x xu disconnects C({x,y,w}) in a manner

u(s) which puts w and v in different com-

w

ponents (3.18 proof). If v = x, then vexu. ¥u and Xy can both be totally
ordered so as to have the order topology (cf. 2.26 and 2.27.3) and, without
loss of generality, we may assume ¥ <# (in X%) and ¥ <y (in ¥y). Suppose

u is not order-preserving. Then we

can find s, €Xu with $;<S. such £

that u(sz) < p(si). It is impossible

that p(x) = x, for then w would have

to be in X%, hence we may assume

at least one of the p(s;), say p(s.), is

in Intxy. Then wu(s,) disconnects u

C({w,x,y}) into two convex com-

ponents (3.18), C. containing x, and

Cy containing # and y. CxNXy=

frexylo< p(s,)} by 2.14 and 2.27,

therefore p(s;) ZCx. But Cx Nxu = ‘ y
{sexuls< s}, hence s,eCx, there-

fore wpu(s:)NIntwu(s,)#¢ since wu(s:) must disconnect wu(sz). wu(s;) and
wu(s;) therefore contain two points in common, hence fi(w,s;)=fi@w,s,), and
it is impossible that fi(w,s,) intersect ¥z in more than one point, hence
$1 = 83, a contradiction, Since u:xu —Xxy is 1-1, onto, and order-preserving
it is a homeomorphism. A similar argument shows X% is homeomorphic to
xw, hence ¥w is homeomorphic to %y.

Case 2: x,w,z,y are all contained in the same I-flat f. Choose usX-f.
Then x¥w is homeomorphic to ¥u andzy is homeomorphic to zu, both by
case 1. Either xu = zu, or at least xu is homeomorphic to zu by case 1,
hence xw is homeomorphic to zy.
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Case 3: x,y,2,w are all distinct, but are not all contained in the same
I1-flat. By case 1 Xw is homeomorphic to wy which is homeomorphic to zy,
hence xw is homeomorphic to zy.

Note that all I-flats of X are not necessarily homeomorphic to each
other, e.g. let X = {(x,y)eR?|¥® + y* <1}U{(x,y)eR®|x> 0, x* + y* = 1}, and
give ¥ the induced geometry and topology from RZ Then some I-flats of X
have two non-cut points, some one, and others none at all.

CHAPTER 1V

OPEN m-ARRANGEMENTS

4.0: In this chapter and the next we shall deal with m -arrangements which
have special properties. Using the theory developed in chapter II (cf. 2.26,
etc.), we shall consider that all I-flats have been totally ordered by > so as
to have the order topology.

Suppose y;f — f' is an order-reversing map from a I-flat f into another
I-flat f'. If we define a new order O on f' by x(Q y iff y > x for all
x,y€f', then f' with the order (O still satisfies 2.26 and the subsequent
propositions of chapter II; y then becomes order-preserving. We see then
that in dealing with a map from one I-flat into another which is either
order-preserving or order-reserving, we lose no generality in assuming
the map is order-preserving.

Definition 1: An open m-arvangement is an m-avvangement in which every
point is a cut point of every 1-flat (in G*) which contains it,

Unless specifically stating otherwise, the propositions of this chapter
will refer to a space X with geometry G such that X and G form an open
m-arrangement. Since a O -arrangement consists of a space which contains
only one point and the geometry G = {F~'}, we shall also assume that m > 1.

Prop.4.1: If f is a k-flat of G, k # -1, then f with geometry G; and the
subspace topology is an open k-arrangement.

Proof: Since g is a 1-flat of G} iff g is a 1-flat of G, the proposition follows
at once from 3.10.

Prop. 4.2: If X is the space of an open Il-arvangement, then 8 =
{Intxylx,yeX, x # y} is a basis for the topology of X.

Proof: Since X has the order topology, and Intxy = {fzlx< z <y} if x<y
(2.27), any open set of X is the union of elements of & and sets of the form
{zlz> x},or{zlz< x}. Let wefzlz> x}. Since w disconnects X, weIntuv for
some u#,veX, and we may assume v >w, i.e. u <w <v. Then x<w< v,
hence welnt¥o S {zlz> x}. Similarly, if wefz |z < x}, then there is v&X such
that welntxo < {z lz <x}. We therefore have that each set of the form
{zlz <x} or {2lz > x}is the union of elements of &, hence & is a basis for
the topology of X.
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Prop. 4.3: If U is a non-empty, open, convex subset of X, then U with
geometry Gy and the subspace topology is an open m-avvangement.

Proof: By 3.11 U and Gy form an m-arrangement. Let g be a 1-flat of
Gf; then g = UNf where f is a I -flat in G* Let weg. Since g is an open
neighborhood of w in f, by 4.2 we can find u,veg such that weIntuv C T.
Then w disconnects g by 2.16.

Cor. 4.3.1: If U is a non-empty, convex subset of some k-flat f, and U is
open in f, then U with geometry Gy and the subspace topology is an open
k-arvangement.

Proof: 3.12, 3.16.1, and 4.3.1.

Prop. 4.4: A necessary and sufficient condition that some m-1-flat dis-
connect an open set US X is that f NU # ¢.

Proof: The condition is clearly necessary. Suppose fNU # ¢, and choose
yef NU. By 2.11 f is nowhere dense in U, hence U~-f# ¢. Choose weU-f.
Then f,(y,w)N f={y}. Since f,(y,w) NUis an open neighborhood of ¥ in
fi(y,w), by 4.2 we can find u,vef,(y,w) N U such that yeIntzo € U. Therefore
f disconnects uv (2.13), consequently f disconnects X into two convex, open
components A and B such that ueA and veB (if m > 1,by 3.26.1; if m = 1,
by 2.22 proof and 2.23). Therefore (U-f) NA# ¢, and (U-f)NB# ¢, but
since f is closed, U-f is open, hence (U-f) NA and (U-f)NB are disjoint,
open subsets of U-f whose union is U-f, hence U-fis disconnected.

Cor. 4.4.1. Every m-1-flat disconnects X.

Cor. 4.4.2: If k=1, and f is a k-1-flat contained in a k-flat f*, then f dis-
connects f'.

Cor.4.4.3: If f is a k-flat, then no flat of dimension less than k-1 can
disconnect f.

Proof: If f' is any ¢-flat in f, ¢ <k-1, then f' is properly contained ing
where g is some k-I-flat in f. By 4.4.2 and 2.12 g is a minimal discon-
necting subset of f, hence f-f'is connected.

Together 4.42 and 4.43 give

Cor. 4.4.4: A non-empty flat f disconnects a flat f' iff i) fCf', and
ii) dimf = dimf' - 1.

Prop. 4.5: If a space X with geometry G is an m-arvangement, then a point
%o 1S a cut point of eveyry 1-flat which contains it iff x,eIntC(S) where C(S)
is some m~-simplex.

Proof: Suppose x, is a cut point of every I1-flat which contains it. Let
S' ={%¢,91, . - . ,¥m } be any maximal linearly independent set which con-
tains x,. 4.5 is true for m =1 by 2.16, hence we may assume m = 2.
Choose weIntF°C(S') (#¢ by 3.12). Then by hypothesis x, is a cut point of
fi(xo,w), hence there is ue f,(xo,w) such that x,cIntwu. It follows at once by
3.20.1 that xo eIntC{u,y,...,¥,}). Suppose x,eIntC(S) where C(S) is
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some m-simplex. Let f be any I-flat which contains x,. By 4.3.2, %,
disconnects f N IntC(S), a I-flat in Ginec(s), hence by 2.16 there are
u,0eIntC(S)N f with xoeIntw. Then, again by 2.16 x, disconnects f.

Cor.4.5.1: If a space X with geomelry G is an open m-avvangement, then
for any xeX and for any k, 1<k <m, theve is a k-simplex C(S) such that
xeIntC(S).

Proof: 4.1 and 4.5 together with 1.11.

Prop. 4.6: Set £ ={ntC(S)|IC(S) is an m-simplex in X}. Then £ is the basis
for a topology on X which is equivalent to the oviginal topology on X.

Proof: If C(S)and C(T) are arbitrary m-simplices, then IntC(S) and IntC(T')
are convex, open subsets of X (3.16 and 3.20), hence IntC(S) N IntC(T) is
convex and open. Any x&X is in the interior of some m-simplex by 4.5.1.
To complete the proof of 4.6 (including that & is a basis for a topology on
X), it merely remains to be shown that if Uis an open, convex neighborhood
of an arbitrary point x, then there is some m-simplex C(S)E U such that
xeIntC(S). This, however, follows at once from 4.3, 4.5.1, and the trivial
fact that an m -simplex in U is also an m -simplex in X.

Following E. Kamke [6], by a border element of a totally ordered set,
we shall mean a first, or last element. A totally ordered set is called
unbordered if it is non-empty and has no border elements. An ordered set
is said to be dense if given any s,,5;€S, s; <S, then there is s;&S such that
§1 <83 <83

Prop. 4.T: If X is the space of anopen 1-avvangement, then, if Y is dense
in X, then Y is unbovdered and dense.

Proof: Y is dense: Since X # ¢, Y# ¢. Choose y.,,£Y, y:< ¥, (cf. 4.0),
By 2.25 X -Inty;y, is closed in X. If there were no yze¥ NInty;y;, then
ClYCX-Inty;y,# X, and Y would not be dense in X, hence we can find
ys£Y N Inty,y,. I yselnty;y,and y, <y, then by 2.27, y, <y5 <ya.

Y is unbordered:: Suppose there is y,eY such that y, <y for all yeY.
Since y, is a cut point of X, by 2.16 y, eIntwz, w < y, < z for suitable w,zeX.
Then Int7y, NY # ¢, contradicting ¥ dense in X, Similarly, there can be no
Y0€Y such that y >y, for all ye¥.

Cor.4.7.1: If X is the space of an open 1-arvangement, and Y is a counit-
able dense subset of X, then Y is of the same ovder type as the rational
numbers.

Proof: By 4.7, Y is dense and unbordered, but all unbordered, dense,
countable sets are of the same order type (cf. Kamke [7], p. 71).

Prop. 4.8: If X is the space of an open 1-avrangement, and X is second
countable, then X is homeomorphic to R, the real line.

Proof: Since X is second countable, X contains a countable,dense subset
Y. By 4.7.1, Y is of the same order type as the rationals QS R. Let
w:Y —Q be a 1-1, onto, order-preserving map. Define that p(y;)= i, for
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all i€Z, the integers. ¥;_1y; is also second countable, hence by 2.31.1

yi_19: is homeomorphic to [i-1,i] = {reR li-1<7v< i} by an order-preserving

map v; (not necessarily an extension of ply;—;v;) with v;(y;_,)=4-1and

v;(y;)=4. Since y;—1¥; N Fz-1Yk can consist of at most eithery,.,, ory;,

ifk =1, we can define V.’U Yi-19: —Rby v(x) =v;(x) for x€y,-1y;. Since
ieZ

v is 1-1, onto, and order-preserving, it is a homeomorphism; we must now

show that U y;-19; = X. Choose weX. Then welntuv for suitable u,veX by

2.16. Therefore since Y is dense in X, there are a,euw NY and a,ewvNY

such that we Inta.a,. Since Y U Yi;_1Y;, it follows thatwea,a,< U Vic1Vie
icZ ieZ

Cor. 4.8.1: If X is the space of a 1-arvangement (not necessavily open),

and if X is second countable, then X is homeomorphic to (0,1), [0,1), or

[0,1], depending on whether X has no, one, or two non-cut points respec-

tively.

Proof: Case 1: X has no non-cut points. By 4.8, X is homeomorphic to R,
hence to (0,1).

Case 2: X has one non-cut point x, Then clearly ¥, must be a border
element 'of X. Assume X, is a first element. Then by case 1, X—{xo} is
homeomorphic to (0,1)by an order-preserving map v. Define v':X —[0,1)
by v'(xo) = 0, and v'(x) = v(x) for ¥ # %,. Then v' is clearly a homeo-
morphism onto. If x, is a last element, then we can similarly show that X is
homeomorphic to (0,1], hence to [0,1].

Case 3: X has two non-cut points X, and x,. Then by 2.27, X = X%,
hence by 2.31.1, X is homeomorphic to [0,1].

Definition 2. Let X with geometry G form an wm-avvangement. Set
MXx)={c©S)|c(S) is an m-simplex in X}. Define Inth_t(J) IntC(S), and
M(X

BdX = X-IntX. We shall call IntX, the intevior of X, and BAdX, the bovder
of X.

Because of 4.5 we have equivalently IntX= {xeXlx is a cut point of
every 1-flat which contains it}.

Prop. 4.9: tX is open, and non-empty.

Proof: IntX is the union of non-empty,
open sets (3.16 and 3.12). Sinceby 1.6 X
has at least one basis of m+1 points, M(X),
hence IntX, is non-empty.

Prop. 4.10: IntX is convex.

Proof: Let x and y be arbitrary points in
Int X. Suppose weInt¥v. Then by 2.16, w
is a cut point of f,(x,y). Let f be any other
1-flat which contains w. Choose z&f-{w}.
Then since x and 3y are cut points of




88 MICHAEL C. GEMIGNANI

f,(2,%) and f,(2,y) respectively, by 2.16 we can find ue fy(z,y) and vefy(z,x)
such that xeInt?Z and yelntzo. Then %y C C({z,u,0}), hence f Nuw# ¢ by
3.21. But if peww N f, and welntC({z,%,0}) by 3.20.1, then we also have by
3.20.1 that weIntpzC< f, hence by 2.16 w is a cut point of f. Sincef was an
arbitrary I-flat which contained w, w is a cut point of any I-flat which
contains it, hence welntX,

Cor.4.10.1: Let X be a space with geometry G such that X and G form an
m-avvangement. Then IntX with geometry Ginx and the subspace topology
is an open m-arvangemnent.,

Proof: IntX is open and convex by 4.9 and 4.10, hence by 3.11, IntX with
geometry Gp,x iS an m-arrangement, Since every point of IntX is in the
interior of some m-simplex, by 4.5 x&IntX is a cut point of every I-flat in
Ginex Which contains it, hence the arrangement is open.

Prop, 4.11: BdX is closed and nowhere dense.

Proof: Since BdX =X-IntX, BdX is closed. Suppose some non-empty,
open set U S Bd X, Choose xeU, and let Vbe an open, convex neighborhood
of x with V& U. Then by 3.11, y contains a basis S of X, and by 2.9f),
C(S) € V. But since IntC(S) € IntX we have the contradiction that
UNIntX # ¢.

Prop. 4.12: Let X with geometry G form an m-arvangement. Then an
m-~1~flat f in G disconnects X iff f N IntX # ¢.

Proof: Suppose f NIntX # ¢. Then fNIntX is an m-I-flat in Giyx (3.11),
hence f NIntX disconnects IntX by 4.10.1 and 4.4.1. By 3.26.1, therefore, f
disconnects a segment in IntX C X, hence by 3.26.1 f disconnects X. Suppose
f disconnects X. Then by 3.25 f disconnects X into two convex, open
components A and B. Since A is open, by 3.11 it contains a basis
S' ={%¢, .. .,%n t of X. Since B is open and f,-1(S-{x,}) is nowhere dense
in X (2.11), we can find yoeB-f,_,(S{%o}). Then S= {yoxy, ... ,%n }is
linearly independent. By 2.9f) F°C(S)C A, but since ygB, f must disconnect
any segment of the form jgw, where weF°C(S). But then f N IntC(S)# ¢
(choose weInt F°C(S) and apply 3.20.1), hence f N IntX # ¢.

Cor. 4.12.1: Any k-flat f, k =1, contains at least one k-1-flat which dis-
connects it.

Proof: By 3.10 and 4.9, Intf # ¢. Choose x¢eIntf, and let f' be any k-1-flat
which contains x; f' exists by 1.11. Then f* disconnects f by 4.12.

Cor. 4.12.2: If a space X and geometry G form an m-arvrangement, then no
flat of dimension less than m-1 disconnects X.

Proof: Let f be an i-flat in X, { <m-1, and let S= {x,, . . . ,x;} be a basis
for f, Since f is nowhere dense in X by 2.11, and IntX is non-empty and
open by 4.9, IntX-f# ¢. Choose x;,, eIntX-f, and extend SU {x,-ﬂ} to a
basis T ={xo, . . . ,%i, %41 . . . y% p_1} Of sSOme m~I-flat f,_,(T). Then by
4.12 and 2.12, f,-,(T) is a minimal disconnecting subset of X. By 1.9.1,
FSfn-i(T), and since ¢ <m-1, f,-.(T)-f# ¢, hence X-f is connected.
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In this chapter we have concentrated on results useful in chapter v,
even though there are many interesting propositions and conjectures
pertaining to open m-arrangements and IntX and BdX which might have
been mentioned herein. The author hopes to discuss these topics more at
length in a future paper.

CHAPTER V

AFFINE m-ARRANGEMENTS

Definition 1: An affine m-arrangement is an m-arvangement which is open
if m=1, or in which the geometry is affine if m £ 1 (ct. definition 6
chapter I).

Unless specifically stating otherwise, all propositions in this chapter
will refer to a space X and geometry G such that X and G form an affine
m-arrangement. In order to avoid trivial cases, we again assume m>1,
The remarks of 4.0 apply also in this chapter.

Prop. 5.1 Suppose f is an m-1-flat and h is a 1-flat such that hNf consists
of a single point. Then if h' is a 1-flat parallel to h, then h'N f consists of
a single point.

Proof: If h=h', we are done. If  # k', then by 3.9, (2 v ')Nf is a I-flat.
Since G is affine, (kv £')Nf intersects both %z and %', but is equal to
neither, hence 2'Nf=1'N[(z v A')Nf] consists of exactly one point,

Cor.5.1.1: Suppose f is an m-1-flat and h is a 1-flat such that h0f = {xo}.
Suppose f' is any m-1-flat pavallel to f. Then f'N h consists of exactly one
point.

Proof: Should 2N f' consists of more than one point, then by 1.9.1, 2S f' an
impossibility regardless of whether f' = f, or f'Nf # ¢, hence 2N f' consists

of at most one point. Select yegf'. If n .
not, let 4' be the unique I-flat which / L
contains ¥ and is parallel to 4, By

5.1, 2'Nf consists of exactly one / /
point. Since if f = f', the proposi-
tion is trivial, assume fNjft £ ¢.
Then since A'C f', R'Nf' consists
of y alone, but then f' "% consists
of exactly one point by 5.1.

Prop. 5.2: Any affine m-arrange- / /
ment is open, ;

~
-
..
-
~

Proof: 5.2 is true for m =1 by

definition, Suppose 5.2 has been proved for m-1> 1, and let X and G form
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an affine m-arrangement, m > 2, If 5.2 is false, we can find some I-flat f
and x&f such that x, is not a cut point of f. It is clear from 2.16 that

%o must be a border point of f.
Select y,eIntX-f(#¢ by 2.11 and 4.9).
By 3), definition 1, chapter I, we may
select %3 ..., %m-1 such that
{xo, V15V2 o o o s y,,,(-l} =S is linearly
independent, and y;ef;,(f U fi1
({xoayl, oo ’yi-l}))’ 2<i<m-1. Then
fm-18)NFf = {xo. By 4.12, f,_.(S)
disconnects X into two components A
and B (3.25). Since f-fn,-1(S) = f- {xo}

is connected, it must be either in A or in B; we may assume it is in 4,
Choose zeB and let g be the unique m -I-flat which contains z and is
parallel to f,_.:i(S). Since g-f,_-.(S)=g is connected, g B. Then by
5.1.1, f Ng# ¢, hence fN B # ¢, a contradiction.

Prop. 5.3: If k is any k-flat of G, k # -1, then f with geometry Gy and the
subspace topology is an affine k-avrangement.

Proof: If k=1, 5.3 follows from 5.2 and 4.1. For % # 1, then 5.3 follows
from 1.18 and 3.10.

Prop. 5.4: Suppose f is a k-flat contained in a k + 1-flat f' and h is a 1-flat
in f' which intersects f in exactly one point. Then if h' is a 1-flat in f'
which is parallel to h, then f N h' consists of exactly one point.

Proof: 5.3 and 5.1.

Prop. 5.5: Suppose m > 2, yef, a 1-flat, and {y}=ANB, AUB=Ffas in
2.22. Then A and B are homeomovphic.
Proof: Let f' be any I-flat which f'
contains y, but is distinct from f.

Then fnf' ={y}. vy isa cut point of Sk, %)
f' by 5.2, and therefore determines
sets C and D such that C N D = {y},
and CU D = f' as in 2.22. Choose  j,(x)
x1€A, and x,eC. We first define
p:A — C as follows: Set p(y) =19, and
pe1) = xo. For any xeA - {y,x:},
consider #;(x), the unique I-flat

which contains ¥ and is parallel to fi(xex:). By 5.4, since f', hi(x), and
filxe,x1) are all in the same 2-flat, Ai(x)N f' consists of a single point;
define this point to be p(x). If xeIntyx;, then p(x)eC by 3.7 and 3.21.
Suppose xeA-3x,. Then by 3.26.2, fi(ve,%,) disconnects fa({v,%¢%1}) such
that x and y are in different components., Since Zi(x) N fi(xe,x1)=¢, a
simple argument reveals that %;(x) N f'S C-73x,. Therefore u:A —C. p is
1-1: Suppose x # x', x,x'€A, but p(x) = u(x¥'). Then A;(r)and %.(x') are both
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parallel to fi(xe,x;) and both contain u(x), a contradiction since G is affine.
p is onto: Suppose weC. Let ki(w) be the unique I-flat which contains w
and is parallel to fi(Xe,%1). Then by 5.4, Z:(w) N f consists of a single point
%. Then hi(x) = hi(w), hence pu(¥) = w. p is therefore 1-1 and onto.

p is order-preserving (cf. 4.0): Suppose x¥< %', x,x'€A. We suppose

y <w for all w in either A or C.
If x =y, then since p is 1-1,
ux') £, hence {y,%,u(x)} is linearly
independent. Suppose y < p{x') <p(x).
Then by 2.27, u(x')eIntyp(x), hence
by 3.7 and 3.21, either Zz,(x') Nyx#¢,
or (") Nxp)£¢. If the latter is
true, then Z:(x) and %,(x') are both
1) parallel to f;(xq,%;) and have a point

h,(xt) in common, contradicting G affine.

Since x'gyx, if hi(x') Nyx # ¢, then ky(x')=f, hence k,(x') could not be
parallel to f,(xo,w). Therefore p is order-preserving.

Since p is 1-1, onto, and preserves order, p is a homeomorphism
between A and C. An entirely similar argument shows that B and C are
homeomorphic, hence A and B are homeomorphic.

Prop, 5.6: Any two 1-flats ave homeomorphic.

Proof: Let f and f' be arbitrary
1-flats. If f=f', 5.6 is trivially
true. Assume f # f', hence m = 2,
Case 1: f N f* consists of a single
point y. Choose x,&f-{y}and x,

-{y}. We define pf —f' as
follows: Set plxo)=x; and pu(y)=y.
For x&f -{xev}, let hi(x) Dbe the
unique I-flat which contains ¥ and 4
is parallel to fi(xex:1). f, f', and f

f, (o, %1)

hi(x) are all contained in the 2-flat fz({y,xo,xl}), therefore hi(x)N f' consists
of a single point by 5.4. Let this point be pu(x). By arguments similar to
those used in 5.5, p is 1-1, and onto. We may assume y< x;, and y <x,.
Then the methods of 5.5 show that p is also order-preserving, hence is a
homeomorphism.

Case 2: fNf'=¢. Choose wef and zegf'. Then f and f' are both homeo-
morphic to f;(w,z), hence to each other.

5.7: We now coordinatize X. Fix x,eX. Let S= {xo,yl, .o ,y,,,} be a
maximal linearly independent set which contains x,. The gi(xq v;),
t=1,...,m, are m distinct I-flats, no 2+1 of which are contained in the
same k-flat. Set S;=S- {y;}, 1 <i<m. We define the i® coordinate of a
point xeX, I< ¢ < m, as follows: Let ff,, 1(x) be the unique m - 1-flat which
contams x and is parallel to f,,_ 1(S ). Since 9;(xo, ¥:) L fm-1(S:), g1lro, ¥:)N
fn-1(S;) = {xo}, hence by 5.1.1, fi_;(x) N g;(x0,y;) consists of a single point
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X;. Assign x; as the it coordinate of ¥. The I-flats gi1(¥o,¥;) are called
the coordinate axes, the xo is called the origin. Each point in X is thus
assigned an ordered set of m coordinates. The notation of this section (5.7)
will be retained for the rest of this chapter.

k
Prop. 5.8: dim (n_ ff,,_l(x)) = dim (n f,._105:)) = m - k; moveover,
i=1 i=1

k

k
£ @l ﬂ f1r-1(S0).

i=1
k-1
Proof: dimf, _,(S;) = m - 1. Suppose we have shown that dim(n f,-1(S:))
=1
m-k+1, k=121, SCSfp-1(St) v (ﬂ f.,-1(S:)), hence dim (f,, _,(Se)v
3 i=1 k
(n f,, ..(S:))) = m. Applying 3.9, we have dim n f,_.(Si)=m-F.
i=1 i=1
Denote by gf(x) the unique I-flat which contains x and is parallel to
91(xe i), 1< i< m. We first show that gi(x)S £, _,(x) for j #1i.
Case 1: xef, _.(S;). By 1.9.1, 9.(x0, ¥;) S f,,-1(Sj) if j # 4, hence a basis for
gl(x) v 9:(¥e, ¥;) is contained in f, _:(S;), hence giw) Cgl(x) v g:1(xg ;) €
_1(87), ifj #£4. ;
Case 2: X¢f,-,(Sj). Then dim (gi(x)v 9:(¥e, y:)) = 2, hence by 3.9, dim
((gl(x) v gl(xo; i )) ﬂfm 1(x)) 1. If] 7£ Z, and ((gl(x) v gl(xo: yt)) ﬂfm 1(x)) n
gl(xO’ yz) 7é ¢, then fm l(x) n Ql(xo;y;)# ¢, hence since 91(x0, y;)c fm l(Sl)for
i £, Fho106) NEns(S)) # 6. But frm—1(0)l | £,,-1(S;), hence 1, _1(6) =t -1(S)),
wh1ch 1mp11es xef,-1(Sj), a contradiction. This gives (giee) v 9:1(%0,9:)) N
75 -1(x) and gi) both containing x and parallel to gi(xo, y;), hence gi(x) =
((g1lr) v 910, ¥:)) N fm -1(x), hence gl(x)cfm -1(x) for i # .7
For each 1 <i < m, choose y;egi(x) - {x}. I &' = {x, %1, ...,y } is not
k
linearly independent, then U glx)c fi _1(x) for some i. But fn-1(S:)
i=
intersects g;(xq,y;) in a single point, hence by 5.1, f,_;(S:)also intersects
gikx) is a single point, but this is impossible if gi(c)S f% _,(x), which is
parallel to fs-1(S:). Therefore S' is linearly independent. Setting
Si = S - {y}}, we see that S' is a basis for f,~1(x). An argument similar to
k.
that used to show dim n fn-1(S;)=m-E also shows that dim n fm-1lx) =

i=1 i=1
m-Fk,
k=1 k=1
Fm-16) ] £,,-1(5:). Assume n Froe) n f..-1(Sg). Suppose % is the
g=1 q=1
k
unique m-k-flat which contains x and is parallel to n fm-1(Sg).
k 7=1
case 1: h= () fn-1(Sq). Then x& ﬂ f-1(Sq), hence fm-1() = f-1(S,),
q=1 k q=1

1< g<k, hence i = n f,,,-l(x)-
q=1
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k k
Case 2: h#n fm-1(0S¢). Then dim (kv n f,,-1(Sg)) = m-k+1, hence by
q=1 q=1
k .
3.9, dim (f,, @) N v [) f2-1(Sq)) =m-F. Since frn-1@)|]f,_1(S:),
g=1
' k k
1<i<m, we have fm-18) N(v n fn-10g)) || [} fn-1(S¢), and hence
q=1 q=1

h =ff,,_1(x) NnNkv n 1, -1(S¢)). Therefore th,‘fi_l(x), 1sqg<k, hence by
g=1

k
1.4, h= ) fh-i&)

q=1

Cor.5.8.1: [} fu-rl) ={a}, and [} f-1(8:) ={xo}.

Proof: Both these intersections are O-flats which contain ¥ and x,
respectively.
While proving 5.8, we also proved

Cor.5.8.2: gilx)Cfl_ ), j# .

Prop.5.9: If x has i™ coordinate x;, then f%,_,(x) = fwex| the i® coordinate
of wis x,-}.

Proof: Set T ={weX|the i™ coordinate of w is x;}. Clearly fi_ 1) ST by
the manner in which %; was defined. Suppose weT. Since x; sf,,,_.l(w) N
f,,,_l(x) and f,,,_l(w) and f% _.1(x) are both parallel to f,_1(Si), fhH-1(x) =
fh-1@), hence wef,, ().

Cor. 5.9.1: Two distinct points cannot have the same coordinates.

Proof: By 5.9, all points which have the same coordinates as x are in
m

N fi,) ={x}(5.8.1).

i=1

Cor. 5.9.2: gl(x), the umque 1-flat which contains x and is parallel to
gl(xo,y,) consists of fweX |i® coordinates of w is the j® coordinate of x,

i# j}.

m
Proof: By 5.8.2, gi(x)Sf, _.(x), i # j, hence g1(¢) = [ fn-1(r). 5.9.2 then
=1
i
follows at once from 5.9.
Cor. 5.9.3: Given {x., . ..,%n} with x;£9:(x,,y;), 1<% <m, there is some
point x whose coordinates ave %1, . . . ,Xn .

Proof: x, has first coordinate %;. Suppose we have found 2z having
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coordinates Xis. .. sXg-1, Wky . . . ;Wp. If wp =2xr, we are done, If not,
we have g]f(z), the unique I-flat which contains z and is parallel g;(xo, V).
By 5.1, gf(z) ﬂf—f,}_l(xk) consists of a single point. By 5.9 and 2.9.2, the
point has the first 2 coordinates of x.

5.10: (xy, ...,%n) shall denote the point having coordinates X1, . . . , X .

mA
Define y:X— X O1(xg, ¥:) by v(x)= (%1, .. .,%m ) where %3, . ..,Xn are
i=1
the coordinates of x. By 5.9.1 and 5.9.3, y is 1-1 and onto. We now
show that ¥y is a homeomorphism.

Definition 2: Let a=(@y ... 8n) and b= (by, ...,bn) be points of X
such that a; < b;, 1<i< m. Define I(a,b)={xeXlx= Xy, ...,%m )
a;i <% <bi if a; #bi; % = a; if a; = b;};

or equivalently by 2.27,

I(a,b) ={xeXl|x = (61, . . ., %m ), x;eInta;b; if a; # bi; %; = a; if a; = bi }.

I(a,b) is said to be k-degenerate if a; = b; for 2 coordinates of @ and b.
Suppose I(a,b) is k-degenerate, but non-degenerate in the j‘h coordinate,
i.e. @ # bj. We form a j-cross section of I(a,b), denoted by K;I(a,b), as
follows: Choose c;eInta;d;. Then K;I(a,d) = I(a',b'), where a' = (ay,...,a-1,
CiyGit1, -+« ,am) and b' = (by, ... ,0j_y,Cj, bjty, ... ,0n). K;jI(a,b) is
k+1-degenerate. K;I(a,b) is not unique, but depends on the choice of c;.
I(a,b) is called a k-degenerate open box.

5.11: Let I(a,b) and K;I(a,b) (with c; fixed) be as given in definition 2. Then
La,b) = 6 = (21, v« ,2ju1,Wj 241y « o 0 32m JEXIRY, o v v, 2ja1yCly v v o yZm)
eKjl(a,b), aj< wj <bj}. Let x= (21, ... ,2j=1,Cj,  « - ,Zm )€K;L(a,b). If we
hold the z; fixed and allow the ;% coordinate to vary over all points in
Inta;b;, by 5.9.2 we obtain a subset Tx of g!(x), the unique I-flat which

contains x and is parallel to g1(%o,9;). It is clear that i)I(a,b) = U Ty,

xeK;l(a, b)
and ii) Tx N Txr = ¢, if ¥ # x'. We now show that Tx = Int(zy, . . . ¥2j-1,
AjyZj+1y o 00 3Zm )1y o ooy Zjo1,0i,2j41y .« . ,Zm ). This follows at once
from

Prop. 5.12: Let w,v,z be distinct
) points of g.(x), and let w;, vj,
7_,@) and zj be their respective j®

coordinates, Then vewz iff
mei@) v EWiZ;.

Proof: Suppose velntwz, but
v;gw;z;. By 3.26.1, fh-1v) dis-
connects X such that w and x are
in different components of
(@) X-fh-1(v). Since w,v, and z are
' m-1 distinct, we have ff_,w) N
g1, ¥5) g{(x) fh-1w)=¢ andfh_1(z)Nf 7 -10v) =
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9. Since WwC fh-1w) and ZZC fh-1(e) (2.9f) and @z N fh_100) = 9, it
follows that wjw U w;z; U 2;2) N f1,-1(v) = ¢, but then w;w U w;z U z;z) -
fI_i) is connected, thus w and z are in the same component of X-f},_,(v).
a contradiction. If v;eIntw;z;, an entirely similar argument yields vewz.

Prop. 5.13: Any open box I(a,b) is convex, and if I(a,b) is O-degenevate,
then I(a,b) is also open.

Proof: Suppose weg:(xe y:). Then f,-1(w)disconnects X into open, convex
subsets A(w) and B(w) (5.2, 4.4.1, and 3.25). By 2.22 (proof) and 2.23, w
disconnects g;(xo v;) into connected sets @ and B. We may assume
aCSAw), B c B(w). We may also suppose without loss of generality that for
some upe o, uy> w. If there were uea such that u< w, then welntugu, but
since by 2.2.1, a is convex, uu C a by 2.9f), hence welntugu. Then
@ = {ueg (6o, v:)lu> w}; and, similarly, B={veg.(ro,»:)lv <w}. Suppose
%= (1 ...,%n)EAW). Since G is affine and f-1(¢;) = f m-1(x), fm_1) N
fh-1w) = ¢. Therefore if veff,-1lx), then ¥ Cfyn-10¢)-fn-1w), hence
veAw). Therefore frn-1(x)SAw), hence ¥;€a, hence x;>w. Suppose
%= @y ...,¥n)eX and %; >w. Then again fn-1(¢) = f n-1(x;)S Aw) since
wea S Aw), hence x&AW). We have thus shown that A@)={x = (¥, ... ,Xm )
eXlx; > w}. Similarly, we may show that Bw) ={x = (x1,... ,%n )eX|x; < w}.

Since a@; < bj, 1<jsm, I(ab) = n [A(@;) NB®:)] N n fm-1az).

a;=b; ap=by °

This is convex since each set of intersection is convex, and is open if
aj #bj for 1< j<m.

Prop. 5.14: Set £ = {I(a,b)|(a,b) is 0-degenevate}. Then B is the basis for
a topology on X.

Proof: Elementary considerations show that the intersection of the
interiors of two segments contained in the same I1-flat is either ¢, or the
interior of a segment, Using this fact that the definition of I(e,b), it is
clear that the intersection of any two 0O-degenerate open boxes is either

empty, or a O-degenerate open box. Suppose ¥ = (¥1, . .. ,%¥n )eX. By 5.2,
x; disconnects g1(%o,¥;), 1<%i<m, hence by 2.16, x;é&Inta;b; for some
a;,bi€91(x0, vi), @:<b;, 1<i<m. Then xel(a,b) where a= (@, ...,an)

and b = (bl, PR ,bm,,)-

Prop. 5.15: Let x= (%1, ... ,%,)eX, and let U be any open, convex neigh-
borhood of x. Then there is a 0O-degenerate open box I(a,b) such that
xel(a,b) S U.

Proof: 5.15 is true for m =1 by 5.2 and 4.2. Assume 5.15 is true for
m=-1<1, fr,ouk) NU is a convex, open neighborhood of ¥ in f,l,,_l(x);
therefore, by 5.3 and the induction assumption, there is an open box
(@' 0")Sfmaalt) NU, a' = 61,85y . o o y8m ), b = (X1,bs, . . . ,bn ) such that
xel(a',b'), and I(a',b') is degenerate only in the first coordinate by 5.9.

Let {a}}, {61}, AeA be nets of points of g;(x,,y,)such i) the ordering
(O of A is total; ii) a} < x; <b} for all xgA, hence by 2.27, x,elnta} b1, for
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all A; iii) a} =%, b) - x5 and iv) MO x, implies alt b} is properly
contained in @2 b22. We may use 5.5 to verify that such a net exists. For
each xeA set a*= (@d,as . ..,an) and b* = (03,05 .. .,bn ). Then for
each MeA we have the 0-degenerate open box I(a,b™); moreover, I(a',b') is
a 1-cross section of I(@*,b*) for each ). For each z =(¥1,2, . . .,2n)
el(a',b') and each AtcA, set T:(\) = Int(@,22 « « « 5 2m ) (02,225 - . . 12Zm ).

Then I(a)‘,b)‘) = U T,(\) by 5.11 and 5.12. Because of iv) and 5.12, we
zel(a', b")

also have x1® A\: implying that T.(A) is properly contained in 7 (\z). It
follows at once that if T,() S U then 7\@ o implies T:(\)CSU. If
I(a*,b*) S U for all A, then for each aeA, we can find uyel(@h,b?) - U. By
the remarks at the end of the preceding paragraph, it follows that for some
z2'= (xpx3 . . .,25) el(@',b'), for each AeA, u), may be selected from
T, (\). Assume this has been done.

Let V be any open neighborhood of z,. Let gi(z')be the unique I-flat
which contains z' and is parallel to gi(xe,y:). Then T.:(\) Cgi(z') for all
AeA (cf.5.11). VN gi(z")is an open neighborhood of z' in gi(z') hence by
4.2 and 5.9.2, there are u=(Cy, 22 . . ,Zm 1), V= (A1, 22y . . ,2, )EG1(2")
such that Int@w 2 V. By iii), there are a*',b*' such that Inta*'d*' D Intc,d,.
Therefore by 5.12, T,+(A') S Intuv, hence u)reV. No u) is in U, but at least
a subnet of {u)‘})\e A converges to z2'eU, hencez'e X-U, a contradiction since
U is open. We have therefore shown that st(a",b)‘)E U for some AeA.

Cor.5.15.1: The topology for which 8 of 5.14 is a basis is equivalent to the
original topology on X,

Cor.5.15.2: y:X— )( 91(%0, v;) (cf. 5.10) is a homeomorphism.
i=1
Proof: vy is 1-1, onto, and takes a basis for X into a basis for X g1(x0,9i).

i=1

Cor.5.15.3: X is homeomorphic to T™ where T is any topological space
homeomoyphic to some 1-flat in X.

m
Proof: By 5.6, all I-flats in X are homeomorphic to I', hence X 9;(x0,y;)
i=1
is homeomorphic to I'”, hence by 5.15.2, X is homemorphic to T'” ,

Cor.5.15.4: If T is as in 5.15.3 and f is any k-flat of X, then f is homeo-
morphic to T*, where we set T™ =¢ and T°={x}.

Proof: 5.3 and 5.15.3 together with g is a I-flat of G; iff gC f and gisa
1-flat of G.

Cor.5.15.5: If some 1-flat is homeomorphic to R, the real line, then X is
homeomorphic to R™ and any k-flat is homeomorphic to R,

Proof: 5.15.3 and 5.15.4.
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Cor. 5.15.6: If X is second countable, then X is homeomovphic to R” .

Proof: If fis a 1-flat of X, then f is second countable as a subspace. By
5.2 and 4.8, then f is homeomorphic to R. 5.15.6 then follows from 5.15.5.

Cor. 5.15.7: R™ is the only second countable topological space which
admits a geometry G such that the space and G form an affine m-arvange-
ment.

Proof: R” with the usual Euclidean geometry forms an affine m-arrange-
ment, and R™ is second countable. This together with 5.15.6 gives 5.15.7.

APPENDIX

This appendix contains material of the following types: 1) the notation
used in this paper for elementary topological concepts when no universally
accepted notation exists; 2) any lemmas needed in this paper for which no
references can be cited; 3) some concepts and terminology used in this
paper which may not be familiar to the reader because of their limited use
elsewhere. The appendix consists of two sections: A. Topological; and
B. Lattice Theoretic.

A. Topological. ¢ shall always denote the e{npty set, Let X be a
topological space. Suppose A C X, The interior of A, i.e. the union of all
open sets contained in A, is denoted by A°, The closure of A, i.e. the
intersection of all closed subsets of X which contain A, is denoted by Cl1A4.
The frontier of A, i.e. ClA-A® is denoted by FrA. AC X is said to be
countably compact if every infinite subset of A has a limit point in A, Xis
called locally peripherally countably compact if given any x&X and any
neighborhood U of x, then there exists a neighborhood V of ¥ such that
UCSVand FrV is a closed, countably compact subset of X,

Suppose X is connected. Then a subset A of X is said to disconnect
X if X-A is not connected. A point x&X is a cut point of X if {x} disconnects
X; otherwise, x is called a non-cut point. A< X is a minimal disconnecting
subset of X if A disconnects X, but no proper subset of A disconnects X, If
AC X such that no proper connected subset of X contains A, then X is said
to be irreducibly connected to A,

The following lemma is necessary for certain propositions in this
paper. We assume that X is a connected topological space.

Lemma 1: Suppose A and B are subsets of X such that i) A is not a subset
of B, nor B of A; ii) A and B are both closed; and iii) X = A UB. Then
AN B = Cdisconnects X.

Proof: A-C = X-B is open, as is B-C. Because of i), A-C and B-C are
non-empty, but (A-C) N (B-C)=4¢.

B. Lattice Theoretic. Let § be a set with partial ordering <, i.e.
i) < is reflexive; ii) < is antisymmetric; and iii)<is transitive. CS S is
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called a chain if for every pair a,b of elements of C, either a <b, or b sa.
If s,teS, and s<t, then the interval [s,] is defined as {xeSls<x <t} If
[s,t] =4{x,t}, then we say that ¢ covers s.

If AC S, then beS is called an upper bound (u.b.) of A if a <b for all
a in A, b is a least upper bound (l.u.b.) of A if b is an upper bound of 4,
and if b' is any other upper bound of A, then b < b'. Correspondingly, we
may define what is meant by a lower bound and greatest lower bound (g.l.b.)
for A. S (with partial ordering <) is called a lattice of every two element
subset of S has a lLub. and a g.l.b. For each pair s,teS, define
svt=1lub, {s,t} and sa t=g.lb. {s,t}. We assume henceforth that S is a
lattice, If AC S, then A is a sublattice of S if A is closed under the opera-
tions v and A as defined in S, S is said to be complete if given any subset B
of S, then l.u.b. B and g.l.b. B exist.

Suppose S is complete, and set 0= g.l.b. S. For each seS, set
K{s}={c cSIC is a chain of distinct elements of S with C = {a, =0,
ay, ...,0a, =S} n< w, @ < a;+,}. For any CeK(s), set d(C) =n. Define
d(s) = Lu.b. d(C). Sis said to be finite dimensional if d(s)<« for all s&S.

K(s)

S is called upper semi-modular if s and { covering sA ¢ impliessv ¢
covers s and ¢ for all s,2 in S. S is called lower semi-modular if s v ¢
covering s and ¢ implies s and £ cover s a ¢ for all s,t in S. S is said to be
modular if s,teS and s<¢ implies sv (Ax)=¢ a(svx)forally inS. S
is modular iff it is upper and lower semi-modular., If S is finite dimen-
sional and modular, then for any s,teS, d(s)+d{)=d(sv t)+d(s at) I
S is finite dimensional and upper semi-modular, then d(s) + d(¢)= d(s v ) +
d(s at).

For a more complete discussion of lattices and the proofs of proposi-
tions stated here, the reader is referred to Garrett Birkhoof, Laitice
Theory, American Mathematical Society (Colloquium Publications, Vol. 25),
New York, 1948.

EPILOGUE

Given below are selected topics for possible future research in the
theory developed in this paper.

1. Independence of the axioms 3.1-3.9 (cf. chapter III, definition 1).

2. Necessary and sufficient conditions for a given space X to admit a
geometry G such that X and G form an m-arrangement,

3. A characterization of §” in terms of the usual Riemannian geometry.

4, Homology and homotopy theory for m -arrangements (cf. remark
following 3.19).

5. Let y:X — Y be 1-1 and onto. Then if G is a geometry on X, then
defining f' to be a k-flat in Y iff f' = y(f) where f is a k2 -flat in X, we obtain
a geometry, denoted by y(G), on Y. Two geometries G and G' on X are said
to be homeomorphically equivalent if there is a homeomorphism y of X
such that G' = ¥(G). Are all affine geometries on R™ which satisfy 3.1-3.9
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homeomorphically equivalent? The entire question of homeomorphically
equivalent geometries seems to provide a rich and very difficult area for
future study.

6. What axioms in additions to 3.1-3.9 would allow us to characterize
Euclidean geometry on R™ ?

7. It is known (though not proved in this paper) that every second countable
space which can serve as the space of an open m-arrangement is an m-
manifold Is it true that any second countable space which can serve as the
space for a closed m-arrangement, i.e. an m-arrangement in which every
1-flat has two non-cut points, is an m-manifold with boundary? Is every
space of a closed m-arrangement compact? Is BdX for the space of a
closed m-arrangement compact, and also connected if m = 2?

8. A semi-projective geometry of length n on a set X is defined to be
projective if F° = {{x}lxeX}and spherical if each 0-flat consists precisely of
two points. A discussion of projective, spherical, affine, and semi-
projective geometries and their relations to one another can either follow
classical lines, or branch into subjects hitherto unexplored, such as finite
spherical geometries. We note here the following known propositions:

a) If G is semi-projective, the Gy _ / is affine whevre f is any n-flat.

b) If G is affine and satisfies 3.1 and 3.9, then all 1-flats of G have the
same cavdinality and X can be coovdinatized as in 5.7. In particular, if
each 1-flat contains q points, then card X = q”. \

9. In definition 1, chapter III, replace 3.1 and 3.5 by
3.1': Each 0-flat consists of a finite set of n points.

3.5': If S={x,y,2} is such that Sis contained in some 1-flat but no pair of
distinct points of S is in the same 0-flat, then xy Uyz = Xy, ¥z and/or XZ.

and add
*. Every linearly independent set has a convex hull.

The structure thus determined has yet to be investigated; in particular, the
following conjecture is believed to be true: For xeX, let M(x) be any
maximal convex set which contains x. Then there are x,, ... ,x,€X and

M(xy), . .., M(x,) such that X =|J M(x;) and M(x;)N M(x;) = ¢ for i #j.
i=1

10. Assume that X has geometry G such that X and G form an m-arrange-
ment. Define D(X)SX* by De(X)={(xy, ..., xe)eX* s, ..., %1} is
linearly dependent in X}. Let {f,},en be a net of flats of G Define
limf, = {xlx is a limit point for some {x,},cn, %, &f }, limf, = {x|there is
. ens Xvefy, %, —x}. We say that f, —f if imf, = limf, = f. If w=
(wy, . .. ,w)eX*, let w* denote the set i, ..., w} SX. Aset QC X is
said to have a k-I-tangent % at yeQ if for each net {w,}< D,{x} such that
wy = (Y, ...,y)in X*, f,(w¥) — h. Using these concepts, we may be able
to develop a geometric theory of differential calculus.
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Note: Problems 3 and 7 have been solved. The author has made his findings
the subject of future papers.
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