ON PREDICATE LETTER FORMULAS WHICH HAVE NO SUBSTITUTION INSTANCES PROVABLE IN A FIRST ORDER LANGUAGE.

KENNETH WESTON

We shall investigate the following question in this discussion. Does there exist an algorithm A which operates on a recursively enumerable formal system S couched in the first order predicate calculus P (say the formulas of S are constructed from logical symbols of P with predicate and individual symbols from given finite or infinite lists) such that if S is simple consistent, then $A(S)$ is a satisfiable predicate letter formula which has no substitution instance provable in S? A partial solution is given in the theorem below. The notation used is from [1].

Theorem 1 (Kleene): For every recursively enumerable and simple consistent formal system S , couched in the first order predicat calculus, there is a satisfiable formula F of P where F has no substitution instance provable in S and F can be effectively found, given S .

The following proof is due to S. C. Kleene in [2]. We shall repeat the argument here, since [2] is not readily available.

Because S is recursively enumerable, we can enumerate recursively all the provable formulas of S. From each provable formula of S we can recover the finitely many formulas of P of which it is a substitution instance. Thus we can recursively enumerate the formulas of P which have substitution instances provable in S. Suppose the formulas of P in this enumeration are: $F_{0}, F_{1}, F_{2}, \ldots$ Then

1) F_{i} is satisfiable ($i=0,1,2, \ldots$),
for if F_{i} were not satisfiable, then $\neg F_{i}$ would be valid and hence provable in P by Godels completeness theorem. So if $F_{i}{ }^{*}$ is any one of the substitution instances of F_{i}, which is provable in S, we would have $\neg \mathrm{F}_{\mathrm{i}}{ }^{*}$ also provable and thus S is not simple consistent.

Consider the predicate $\mathrm{T}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{y})$ in [1, p.281] and the formulas K_{x} in [1, p. 434, Remark 2] for $R(x, y) \equiv T_{1}(x, x, y)$.
2) $(\mathrm{y}) \overline{\mathrm{T}}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{y}) \equiv(\overline{\mathrm{Ey}}) \mathrm{T}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{y}) \equiv\left[\mathrm{K}_{\mathrm{x}}\right.$ is unprovable in P$]$

$$
\equiv\left[\mathrm{K}_{\mathrm{x}} \text { is not valid }\right] \equiv\left[7 \mathrm{~K}_{\mathrm{x}} \text { is satisfiable }\right]
$$

We can now go through the enumeration: $F_{0}, F_{1}, F_{2}, \ldots$ and examine each F_{i} to tell whether it is $\neg \mathrm{K}_{\mathrm{x}}$ for some x . (This can effectively be done since the number of symbols in $\neg \mathrm{K}_{\mathrm{x}}$ is larger than x .) Therefore we get a recursively enumerable class of numbers $x,(\hat{x}(E y) R(x, y)$ with $R(x, y)$ a recursive predicate), consisting of those x 's for which $\neg K_{x}$ is in the enumeration: $F_{0}, F_{1}, F_{2}, \ldots$. We have shown that $R(x, y)$ can be effectively found given S. For each such $\mathrm{x}, \neg \mathrm{K}_{\mathrm{x}}$ is satisfiable by 1) and hence by 2) $(y) \bar{T}_{1}(x, x, y)$. Thus
3) (Ey) $R(x, y) \rightarrow(y) \bar{T}_{1}(x, x, y)$.

By [1, Thm. IV, p. 281] there is a number f (which can be effectively found from R using the method in the proof of Thm IV) such that
4) $(E y) R(x, y) \equiv(E x) T_{1}(f, x, y)$.

Hence
5) $\quad(\overline{\mathrm{Ey}}) \mathrm{R}(\mathrm{f}, \mathrm{y}) \equiv(\overline{\mathrm{Ey}}) \mathrm{T}_{1}(\mathrm{f}, \mathrm{f}, \mathrm{y}) \equiv(\mathrm{y}) \bar{T}_{1}(\mathrm{f}, \mathrm{f}, \mathrm{y})$.

Suppose (Ey)R(f,y). Then by 3), (y) $\bar{T}_{1}(f, f, y)$ and hence by 4$),(\overline{E y}) R(f, y)$, contradicting the assumption. Thus
6) $(\overline{\mathrm{Ey}}) \mathrm{R}(\mathrm{f}, \mathrm{y})$,
and hence by 5)
7) $(y) \bar{T}_{1}(f, f, y)$.

Thus by 6), $\neg \mathrm{K}_{\mathrm{f}}$ is not in the enumeration: $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \ldots$ (i.e. no substitution instance of $\neg \mathrm{K}_{\mathrm{f}}$ is provable in S). But by 7) with 2), $\neg \mathrm{K}_{\mathrm{f}}$ is satisfiable. Thus $\neg \mathrm{K}_{\mathrm{f}}$ is an F for the theorem. (i.e. there is an algorithm A such that if S is simple consistant then $A(S)$ is $\neg K_{f}$ and $\neg K_{f}$ is an F for the theorem).

Now notice how $A(S)$ acts if S is not simple consistent. First of all, the set $\widehat{x}(E y) R(x, y)$ consists of all of the integers. Hence if f is a number such that (Ey) $R(x, y) \equiv(E y) T_{1}(f, x, y)$ we have (Ey) $T_{1}(f, f, y)$, since $f \varepsilon \widehat{x}(E y) R(x, y)$. But his means by 2),
[K_{f} is provable in P$] \rightarrow \mathrm{K}_{\mathrm{f}}$ is valid $\rightarrow \neg \mathrm{K}_{f}=\mathrm{A}(\mathrm{S})$ is not satisfiable.
Consequently if S is not simple consistent then $A(S)$ is not satisfiable. The following theorem is a generalization of this.

Theorem 2. There is no algorithm $\mathrm{A}(\mathrm{S})$ which operates on recursively enumerable formal systems S couched in P , such that $\mathrm{A}(\mathrm{S})$ always produces satisfiable predicate letter formulas and if S is simple consistent then $\mathrm{A}(\mathrm{S})$ has no substitution instance provable in S .

To prove the theorem we construct a sequence of formal systems: $S_{1}, S_{2}, S_{3}, \ldots$, each of which has the properties described in the theorem, but the existence of any algorithm defined on this system having the properties described in the theorem leads necessary to a contradiction.

If Q is a formal system, it is convenient to abbreviate the statements;
F is a formula of Q and F is a provable formula of $Q, F \in Q$ and $\mathcal{L}^{Q} F$ respectively. Should g be a formal object of P, let [g] designate its Gödel number.

Suppose that R represents Robinson's number theoretic formal system in [1, Lemma 18b, 49]. By [1, Thm. 43(b)] there is a number theoretic system R^{\prime} couched in the same symbols as R except the function symbols for addition, multiplication and the successor function are replaced by predicate symbols (say the successor function is replaced by ' (,), and we can find a correspondence θ between R and R^{\prime} such that;
(i) $\mathrm{F} \varepsilon \mathrm{R} \rightarrow \mathrm{F}^{\theta} \quad \varepsilon \mathrm{R}^{\prime}$
(ii) $F(x) \varepsilon R$, where x occurs free \rightarrow for all integers n we can find variables x_{1}, \ldots, x_{n} such that $(F(n))^{\theta}$ is $\exists x_{1} \exists x_{2} \ldots$ $\exists \mathrm{x}_{n}\left({ }^{\prime}\left(0, \mathrm{x}_{1}\right) \&{ }^{\prime}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right) \& \ldots \&^{\prime}\left(\mathrm{x}_{n_{-1},}, \mathrm{x}_{n}\right) \& \mathrm{~F}^{\theta}\left(\mathrm{x}_{n}\right)\right)$ where n is the corresponding numeral for n
(iii) $\left.\left.\right|^{\boldsymbol{R}} F \equiv\right|^{\mathbb{R}^{\prime}} \mathrm{F}^{\theta}$

For $i=0,1,2, \ldots$ we define a recursively enumerable formal system S_{i} by adding the following formalism to R^{\prime}.
(a) Individual symbols (numerals): 0, $0^{\prime}, 0^{\prime \prime}, \ldots$
(b) Predicate symboi: G().
(c) Formation rule: If t is a term then $G(t)$ is a formula
(d) Axioms:

Suppose that $F\left(x_{1}, \ldots, x_{n}\right) \varepsilon P$ contains only the variables x_{1}, \ldots, x_{n} free. If $f=\left[\mathrm{F}\left(\mathrm{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)\right]$, let $\mathrm{F}_{\mathrm{f}}\left(\left[\mathrm{X}_{1}\right], \ldots,\left[\mathrm{X}_{\mathrm{n}}\right]\right)$ designate the formula which results from $F\left(x_{1}, \ldots, x_{n}\right)$ by replacing every occurrence of x_{i} with $\left[\mathrm{x}_{\mathrm{i}}\right](\mathrm{i}=1, \ldots, \mathrm{n})$. Then for each such f we have the axioms:

$$
\mathrm{I}(f): \mathrm{G}(\mathrm{f}) \backsim \mathrm{F}_{f}\left(\left[\mathrm{x}_{1}\right], \ldots,\left[\mathrm{x}_{\mathrm{n}}\right]\right)
$$

where f is the numeral corresponding to f. (Notice, since it can be effectively decided whether an integer f is the Gödel number of a formula of P , axioms $\mathrm{I}(f)$ can be recursively enumerated.)

Consider now the enumeration predicate ($E y$) $T_{2}\left(z, x_{1}, x_{2}, y\right)$ in [1, p. 281]. From [1, ex. 2, p. 305] we can find a formula $T\left(z, x_{1}, x_{2}\right) \varepsilon R$ such that for all natural numbers n, m, p where n, m, p are the corresponding numerals respectively, we have
8) $(E y) T_{2}(n, m, p, y) \equiv \vdash^{\mathrm{R}} T(\mathrm{n}, \mathrm{m}, \mathrm{p}) \equiv \underline{\mathrm{R}}^{\mathrm{R}^{\prime}}$

$$
\begin{aligned}
& \exists x_{1} \ldots \exists x_{n} \exists y_{1} \ldots \not y_{m} \exists \mathrm{z}_{1} \ldots \\
& \exists \mathrm{z}_{\mathrm{p}}\left({ }^{(}\left(0, \mathrm{x}_{1}\right) \& \ldots \&^{\prime}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\right. \\
& \&^{\prime}\left(0, \mathrm{y}_{1}\right) \& \ldots \&^{\prime}\left(\mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{m}}\right) \\
& \&^{\prime}\left(0, \mathrm{z}_{1}\right) \& \ldots \&^{\prime}\left(\mathrm{z}_{\mathrm{p}-1}, \mathrm{z}_{\mathrm{p}}\right) \& \\
& \left.\mathrm{~T}^{\theta}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}, \mathrm{z}_{\mathrm{p}}\right)\right)
\end{aligned}
$$

for variables: $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{p}$ having no occurrence in $T^{\theta}\left(z, x_{1}, x_{2}\right)$.

Suppose that the variables: x, y_{1}, \ldots, y_{n} have no occurrence in $\mathrm{T}^{\theta}\left(\mathrm{z}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)$. Then for $\mathrm{n}=1,2,3, \ldots$ we have,
$\mathrm{H}_{1}(n): \exists \mathrm{y}_{1} \ldots \exists \mathrm{y}_{\mathrm{n}}\left({ }^{\prime}\left(0, \mathrm{y}_{1}\right) \& \ldots \mathcal{C}^{\prime}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}\right) \& \mathrm{~T}^{\theta}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)\right) \sim \mathrm{T}^{\theta}\left(\mathrm{n}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)$
$\mathrm{II}_{2}(n): \exists \mathrm{y}_{1} \ldots \exists \mathrm{y}_{\mathrm{n}}\left({ }^{\prime}\left(0, \mathrm{y}_{1}\right) \& \ldots \&^{\prime}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}\right) \& \mathrm{~T}^{\theta}\left(\mathrm{z}, \mathrm{y}_{\mathrm{n}}, \mathrm{x}_{2}\right)\right) \backsim \mathrm{T}^{\theta}\left(\mathrm{z}, \mathrm{n}, \mathrm{x}_{2}\right)$
$\mathrm{II}_{3}(n): \exists \mathrm{y}_{1} \ldots \exists \mathrm{y}_{\mathrm{n}}\left({ }^{(0,}\left(\mathrm{y}_{1}\right) \& \ldots \&^{\prime}\left(\mathrm{y}_{\mathrm{n}_{-1},}, \mathrm{y}_{\mathrm{n}}\right) \& \mathrm{~T}^{\theta}\left(\mathrm{z}, \mathrm{x}_{1}, \mathrm{y}_{\mathrm{n}}\right)\right) \backsim \mathrm{T}^{\theta}\left(\mathrm{z}, \mathrm{x}_{1}, \mathrm{n}\right)$
(n is the numeral corresponding to n),
$\mathrm{III}_{i} \quad \forall \mathrm{x}\left(\mathrm{T}^{\theta}(\mathrm{i}, \mathrm{i}, \mathrm{x}) \supset \mathrm{G}(\mathrm{x})\right)$
(i is the numeral corresponding to i).
Thus for all natural numbers n, m, p where n, m, p are the corresponding numerals respectively, we have by $\mathrm{II}_{1}(n), \mathrm{II}_{2}(m), \mathrm{II}_{3}(p)$ and 8$)$

$$
\begin{equation*}
(E Y) T_{2}(n, m, p, y) \equiv \stackrel{s}{i}^{-} \mathrm{T}^{\theta}(\mathrm{n}, \mathrm{~m}, \mathrm{p}) \tag{9}
\end{equation*}
$$

We shall now return to the proof of Theorem 2.
Suppose their exists an algorithm A as described in the theorem. Then the correspondence between S_{i} and F_{i}, where $A\left(S_{i}\right)=F_{i}$, determines a general recursive function $f(i)=\left[\mathrm{F}_{i}\right]$. Let g be the Gödel number of $f(i)$. In order to show that S_{g} is simple consistent, it is necessary to prove the following lemma.

Lemma 1. Suppose $\mathrm{F} \in \mathrm{P}$ where F contains free only the variables: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ and contains the predicate symbols $\mathrm{A}_{1}\left(\ell_{1}\right), \ldots, \mathrm{A}_{\mathbf{k}}\left(\ell_{\mathbf{k}}\right) .\left(\mathrm{A}_{\mathrm{i}}\left(\ell_{\mathbf{i}}\right)\right.$ is a predicate symbol where the number of attached variables is equal to the natural number $\left.\ell_{\mathrm{i}} \geqslant 0, \mathrm{i}=1, \ldots, \mathrm{k}.\right)$ Then if F is satisfiable we can find number theoretic predicates: $A_{1}\left(\ell_{1}\right), \ldots, A_{\mathbf{k}}\left(\ell_{\mathbf{k}}\right)$, for arbitrary natural numbers; y_{1}, \ldots, y_{n} such that: $y_{1}, \ldots, y_{\mathrm{n}}, A_{1}\left(\ell_{1}\right), \ldots, A_{\mathbf{k}}\left(\ell_{\mathbf{k}}\right)$ satisfy F.

We may regard F as a logical functional $F\left(x_{1}, \ldots, x_{n}, A_{1}\left(\ell_{1}\right), \ldots, A_{\mathbf{k}}\left(\ell_{\mathbf{k}}\right)\right)$ defined by the truth tables for: $\supset, \&, \mathrm{~V}, \mathcal{7}, \exists$ and \forall with $\{t, f\}$ constituting the range, where x_{1}, \ldots, x_{n} vary over the natural numbers and $A_{1}\left(\ell_{1}\right), \ldots, A_{k}\left(\ell_{k}\right)$ vary over number theoretic predicates. Thus since F is satisfiable we have

$$
F\left(z_{1}, \ldots, z_{\mathrm{n}}, A_{1}\left(\ell_{1}\right), \ldots, A_{\mathrm{k}}\left(\ell_{\mathrm{k}}\right)\right)=\mathrm{t}
$$

for some natural numbers: $z_{1}, \ldots, z_{\mathrm{n}}$ and number theoretic predicates: $A_{1}\left(\ell_{1}\right), \ldots, A_{\mathbf{k}}\left(\ell_{\mathbf{k}}\right)$ whose domains are the natural numbers. Of course we make no restriction that $z_{i} \neq z_{j}, \quad \mathrm{i} \neq \mathrm{j}$. Now define the following function

$$
h_{i}(x)=\left\{\begin{array}{l}
z_{i} \text { of } x=y_{i} \\
y_{i} \text { if } x=z_{i} \\
x \text { otherwise }
\end{array}\right.
$$

Let $A_{i}^{*}\left(\ell_{i}\right)(i=1, \ldots, \mathrm{k})$ be the predicate which results from $A_{i}\left(\ell_{i}\right)$ by replacing every occurrence of the variables corresponding to: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{k}}$ with: $h_{\mathrm{i}}\left(x_{1}\right), \ldots, h_{\mathrm{k}}\left(x_{\mathrm{k}}\right) \quad$ Therefore

$$
\mathrm{F}\left(y_{1}, \ldots, y_{\mathrm{n}}, A_{1}^{*}\left(\ell_{1}\right), \ldots, A_{\mathbf{k}}^{*}\left(\ell_{\mathbf{k}}\right)\right)=F\left(z_{1}, \ldots, z_{\mathrm{n}}, A_{1}\left(\ell_{1}\right), \ldots, A_{\mathbf{k}}\left(\ell_{\mathbf{k}}\right)\right)=\mathrm{t}
$$

and the lemma is proved.
We can show that S_{g} is simple consistent by finding a model for it. This we do now.

First observe that for any assignment of number theoretic predicates to the predicate symbols of P the axioms $\mathrm{I}(f)$, under the intuative inter-
pretation of the logical symbols, allow to define a number theoretic predicate $G(x)$. If we assign only predicates whose domains consist of all the natural numbers to the predicate symbols of P we observe that the domain of $G(x)$ are all Gödel numbers of formulas of P. Also under the intuative interpretation of the successor and enumeration predicate we obviously have a model for axioms: $\mathrm{II}_{1}(n), \mathrm{II}_{2}(n), \mathrm{II}_{3}(n)(n=1,2,3, \ldots$). Suppose $F\left(x_{1}, \ldots, x_{n}, A_{1}, \ldots, A_{k}\right) \in P$ where: A_{1}, \ldots, A_{k} are all the predicate symbols and only the variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ occur free. Suppose also that $\left[F\left(x_{1}, \ldots, x_{n}, A_{1}, \ldots, A_{\dot{k}}\right)\right]=f(g)$. Since by assumption $F\left(x_{1}, \ldots, x_{n}\right.$, $\left.\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{k}}\right)$ is satisfiable there are number theoretic predicates: $A_{1}, \ldots, A_{\mathrm{k}}$, by Lemma 1 , such that $\mathrm{F}\left(\left[\mathrm{x}_{1}\right], \ldots,\left[\mathrm{x}_{\mathrm{n}}\right], A_{1}, \ldots, A_{\mathrm{k}}\right)=\mathrm{t}$. Now assign any number theoretic predicates to the predicate symbols of P except to the predicate symbols: $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathbf{k}}$ assign: $A_{1}, \ldots, A_{\mathbf{k}}$. We shall interpret $\mathrm{T}^{\theta}\left(\mathrm{z}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)$ of course as the predicate $(E Y) T_{2}\left(z, x_{1}, x_{2}, y\right)$. Since g is the Gödel number of the function $f(i)$ we have
$(x)\left((E Y) T_{2}(g, g, f(g), y) \& x \neq f(g) \rightarrow(E Y) T_{2}(g, g, x, y)\right)$
But under the assignment to the predicate symbols of P we have that $G(f(g))$ is true. Thus
$(x)\left((E Y) T_{2}(g, g, x, y) \rightarrow G(x)\right)$
and axiom III_{g} is satisfied.
Thus by 9) and modus ponens on axiom III_{g}^{-}we have,

$$
\mathrm{s}_{\mathrm{g}} \quad \mathrm{G}(\mathrm{f}(\mathrm{~g}))
$$

and by $\mathrm{I}(f(g))$,

$$
\stackrel{\mathbf{S}_{g}}{F_{f(g)}}\left(\left[\mathrm{x}_{1}\right], \ldots,\left[\mathrm{x}_{\mathrm{n}}\right]\right) .
$$

where $\mathrm{f}(\mathrm{g})$ is the numeral for $f(g)$. But $\mathrm{F}_{f(g)}\left(\left[\mathrm{x}_{1}\right], \ldots,\left[\mathrm{x}_{\mathrm{n}}\right]\right)$ is a substitution instance of $F\left(x_{1}, \ldots, x_{n}\right)$ and we have a contradiction.

REFERENCES

[1] S. C. Kleene, Introduction to Metamathematics, D. Van Nostrand, Co., 1952.
[2] S. C. Kleene, Memorandum on non-satisfiable Formula, June 1955.

