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STRONG REDUCIBILITY ON HYPERSIMPLE SETS1

T. G. MCLAUGHLIN

1. Introduction. In [δ], Yates noted that all those hypersimple sets
constructed by Dekker in [2] are nonhyperhy per simple sets with retraceable
complements. The main purpose of this note is to draw attention to an easy
construction, modifying very slightly the usual "cylinder" mapping, which
(in view of the second theorem of [4]) leads to a proof that there are hyper-
simple, nonhyperhypersimple sets whose complements are not regressive
in the sense of [3]. Actually, the mere existence of sets meeting this
description is very easily shown on the basis of propositions in [3], [4], and
[δ]; what we wish to emphasize is that our construction provides an effective
procedure for passing from a given hyperhypersimple set β to a hyper-
simple, nonhyperhy per simple, noncoregressive set a such that a = mβ.

For convenience, we use the following abbreviations: ΉS', for the
class of hypersimple sets; ΉHS', for the class of hyperhypersimple sets;
'R% for the class of sets with regressive complement. We denote the set of
all natural numbers by 'N\

2. Immune Cylindrification. Let τ (x,y) be the usual recursive pairing
function:

τ(x,y) = x +^{x+y)(x+y+l);

let TX{X), τ2(x) be its associated "impairing" functions.. .thus, x = τ(τ1(x)9

τ2(x)), for all x. We use the words "isolated set" as is customary: the
number set β is isolated iff β is either finite or immune.

Lemma 1. Let {co (̂w)} be a recursive sequence of r.e. sets (thus, the in-
dexing function ξ is assumed recursive). Let a be an immune set. Let

β =df τ({θ} ® a) U U T ( W ® (a - ωξ(,n-i))) Then β is immune <^±> (Ykea)

({y\k <f ωξ(y)} is isolated).

(We use ' <8>' to denote the Cartesian product operation.)
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Proof, (i) Suppose β is immune. To argue by reductio ad absurdum, as-
sume that k0 is in a and such that {y\k0 $ co^(y)} is nonisolated. Let y be an
infinite r.e. subset of {y\k0 i ω$(y)}. Then, clearly, {τ(y,k^\ y >0&y-leγ} is
an infinite r.e. subset of β: contradiction. Hence, (Yke oί)({y\k^ω^iy) } is
isolated).

(ii) Suppose that kea==>{y\k$ωξ(y)}is isolated. Byway of obtaining a
contradiction, assume that β is not immune. Since α is infinite, β is infinite;
hence, βhas an infinite r.e. subset, say, y. Consider the set r2(γ). Clearly
τ2(y) £L or, hence, since α is immune, τ2(y)9 being r.e., is finite. Let τ2(γ) =

{ko,...,kr}. Thus Ύ = }Jo

r(Ύ n τ(N ®{ki})); each set y Π τ ( N ^ f e } ) i s ,

obviously, r.e. K all y Π τ(N ® {&/}) were finite, y would be finite; hence,
there is an i0, 0 =io=r, such that y Π τ(N <8> {&*0}) is infinite. But this
clearly implies that {y\ki^ω^y)} has an infinite r.e. subset: contradiction.
It follows that β is immune. This finishes the proof of Lemma 1.

Definition A. Let α be α set of natural numbers) by the immune cylindrifi-
cation of a (denoted by 'ΙC(α)') we mean the set

τ({θ} ® α ) U U τ ( { n } . ® ( α - { 0 , . . . , n - l } ) ) .
«>o _

Lemma 2 ([5, Theorem 5]). An r.e. set β is hyperhypersimple <^>β is in-
finite and there is no recursive sequence {ω^(W)} of pairwisedisjoint r.e. sets
(finite or infinite) such that (Vn)(ω^(w) Π β Φ </>).

Lemma 3 ([#]). If a,β are simple sets, a %m β, and β is hypersimple, then
a is also hypersimple.

Theorem 1. There exists an effective operation Φ: F —> F(F the class of
all r.e. sets) such that

(ij Φ is 1-1 and distributes through U and Π
(ii) ae F = >̂ Φ(a)=m a; and

(in) Φ(HS)c HS and Φ(HHS)c HS - HHS.

Proof. Let φ be a recursive function such that

U r({k} 9 (ωn U {j\j<k}))9 if ωn*φ)

ω#(n) = I (
φ, if ω.β = φ /

Define Φby: Φ(ωn) = ωφ(n). Thus Φis an effective operation on F; and as-
sertion (i) is clear from the definition of Φ. As for (ii): It is plain that
ωn=m Φ(ωw); indeed, the reducibility in that direction is one-one. If ωn = φ,
then Φ(ωw) = φ also, whence Φ(ωn) =m ωn. So suppose ωn + φ; and let b be
some element of ω«. Then a many-one reduction ψ of Φ(ωn) to ω» is ob-
tained by setting ψ= τ2 on τ({θ} <8> N), and, on τ({n+l) <8> N}, letting

(τ2(x) if xt{τ(n+l,0),..., τ(n+l,n)},)
ψ(x) = ] [ .

(b otherwise )

To prove (iii), we first note that if ωn is simple, then Φ(ωn) is also simple;

this follows from Lemma 1, since Φ(ωn) = IC(ω«) and the array co^(o) =
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{θ},..., ωξ(n+D= {θ, l , . . . ,n+1},. . . satisfies the hypothesis of Lemma 1.
Hence, by Lemma 3, if ωn is hypersimple then also Φ(ωw) is hyper simple;
and, finally, by Lemma 2, if ωn is hyper hypersimple then Φ(ωn) is not
hyperhypersimple (for note that τ({n} <8> N) Π Φ(ωw) Φ 0 holds for each??).
The proof of Theorem 1 is complete.

Throughout the remainder of the paper, 'Φ9 denotes the effective oper-
ation so denoted in the proof of Theorem 1.

Lemma 4 (1, Corollary 4.l]). Suppose ωe e HHS and ω/ e HS Π R. Then ωe

and ω fare many-one incomparable.

From Theorem 1 and Lemma 4 we at once conclude the following re-
sult:

Theorem 2. Φ(HHS) Π (HS Π R) = φ.

3. Point-Decomposable Sets. In this section, we introduce one more-
or-less-natural generalization of the notion of regressive set; and we pre-
sent a theorem showing that Lemma 4 fails by a wide margin with respect
to this particular generalized regression concept.

Definition B. An infinite set a of natural numbers is point-decomposable iff
there is a recursive sequence {ω (̂w) } of pairwise-disjoint r.e. sets such that
(i) a c (J ωξ(n) , and (ii) (Vw)(| ωm Π a\ = 1).

n

Remark. Suppose that we modify the definition of regressive set given in
[3] by allowing a binary r.e. relation in place of a partial recursive func-
tion, thus:

A set a of natural numbers shall be said to be generalized regressive
<F^>^ a is finite or else a is infinite and there exist a nonrepetitive listing
ao,al9... of the membership of a and a binary r.e. relation R such that
(ao,aύ eR and {Vn){{an+U an) e R) and, finally, (Vk > 0)((E C is any Λ-chain
from ak to a^ then C has length &).

It is a straightforward matter to verify that the infinite generalized re-
gressive sets coincide with the point-decomposable sets.

We shall denote by ΦD' the class of sets of natural numbers having
point-decomposable complements.

The next two lemmas are quite straightforward, and the reader should
experience little difficulty in proving them for himself. The first is a very
slight generalization of [7, Note Ii], while the second is really nothing more
than a special case of [5, Theorem 5].

Lemma 5. Let β be a maximal set, and suppose α=OT β. Then a nonrecur-
sive =̂ > a =m β.

Lemma 6. Let φ be the recursive function defined in the proof of Theorem
1, so that ωφ(n) = Φ(ωw) for all n. There exists a recursive function ψ(x,y)
such that (i) ωnnoncofinite =^>(Vy)(ωψ(n,y) is a finite subset of τ({y} <g> N)
such that \ωψ(n.y) Π ωφ(n)\= 1), while {ii) ωncofinite =^>ωψ(n,y)= τ({y} <8> N)
for all but finitely many y and, for the remaining finitely many y, ωψ{n,y) is
a finite subset of τ{{y\ <s> N) such that |ω^(W,y) Π αV(W)| = I.
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Theorem 3. There exists a recursive function ζ, taking indices of sets in
HS to indices of sets in HS Π PD, such that if ωn is maximal then

Proof. We know from Theorem 1 that a=.m Φ(α), for all α, and from

Lemma 3 that Φ(α) is in HS if ere HS. Letting ψ(x,y) be a function as de-

scribed in Lemma 6, we can effectively find, given an index e of α, a one-

one recursive function/which generates Φ(α) U (J αty(e,«). Clearly, / " ^ ( α ) )
n

is one-one reducible to Φ(α) (and hence f~\Φ{ά)) =m a), and is a member of
PD provided Φ(α) is infinite. By Lemma Zj'^Φia)) is in HS if a e HS. K a
is maximal, then, by Lemma 5,/"1(Φ(θ')) =mΦ{a)=m a implies f~1{Φ(a)) =m a.
Therefore, letting ζ be a recursive function such that

^ζ(n) =/ w " 1 (Φ(ω w ))

(with fn determined effectively from n, as above, for each n)9 we have the
theorem.2

4. Two Theorems Concerning the Operator Φ. In this section of the
note we exhibit a couple of results concerning properties preserved under
application of Φ.3 The second of the two theorems is due, both in statement
and in proof, to K. I. Appel.

Theorem 4. Φ(HS Π PD) c HS Π PD.

Proof. Suppose ωe e PD; let {ω (̂w)} witness the fact. Since ωe is r.e., we
may suppose that ( J ω^n) = N; hence, there is a recursive function π such
that, for every number k, π(k) = the uniquely determined number ξ(m) such
that k e ω^m) . We begin by defining a certain recursive sequence of pair-
wise-disjoint r.e. sets, as follows:

ω£(o) = τ{{θ} ® ωξ(0));

(τ({l} ® ωξ(0)), if HO) **(0)Λ

( τ ( { i } <g> W | ( 1 ) ) , otherwise )

a>ξ{2) = τ({θ} ® ω ξ ( 1 ) ) ;

ί τ ( { i } <» ω ί ( 1 ) ) , if ϊ ( 0 ) * π { 0 ) & ξ ( i ) + 7 7 ( 0 ) , I

ωf (s) = ] [
(τ({^} ® ω^(2))? otherwise )

2. It follows, of course, from the foregoing argument that any element of HS is
comparable with an element of HS Π PD.

3. A third property of Φ, which we will not bother to prove here, is this: If β is a
simple set, thenΦ(β) is a simple set, many-one equivalent to β, whose nonhyperhyper-
simplicity is witnessed by a recursive sequence {ωξ(w)} such that for every positive
integer k there are infinitely many n for which ω^{n) is a ^-element subset of Φ(/3).
Whether such a sequence must exist relative to β itself, if β is not in HHS, is some-
thing we do not at present know, although it is easy to establish the affirmative
answer for the case in which only k = 1 is considered.
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τ({2} 8> ωξ(0)), if 1(0) Φir(0) & ξ ( 0 ) Φ τ r ( i ) ,

τ( {^} ® ω ί ( ι ) ) , zjf(ξ(0) = π(0) vξ(O)
ω ? ( 4 ) = = τ r ( i ) ) & ξ ( i ) Φ τ τ ( t f ) & ξ ( i )

+ 77(1) '

τ({<2} (8> ω$(2)), otherwise y

and so on.
In general, a set τ({n} <g> ω^{m) ) fails to be listed as α>£(&) for some k if and
only if some of the numbers less than n belong to ω$(OT), say, r 0 , . . . ,r, we
say in such a case that τ({n} <g> co§(OT) ) is placed on the waiting list. The
criterion for removing a set τ({n} <8> cô (OT)) from the waiting list is that all
of r 0 , . . . , r* are eventually listed in ωe (which we enumerate bit by bit as
we go along). We can form a recursive sequence consisting of the terms of
{ωξ{k)} together with all sets τ({n} <g> ω^m)) which are placed on the waiting
list but eventually are removed from it; it is easy to see that such a se-
quence witnesses the point-decomposability of Φ(ωe), which completes the
proof of Theorem 4.

Theorem 5 (Appel). If a is regressive, so is IC(a).

Proof. Let g be a partial recursive function which regresses a in the sense
of [3]. Define a second partial recursive function p, as follows:

τ{x-l,y), if x φ 0;

Λ M γ u _ τ(g(y),g(y))> if x = 0, g is defined
pWχ>y)) ~ on y, andg(y) + y;

τ(0,y), if x = 0 and g(y) =y

(p(τ(x,y) is undefined in all remaining cases.) Then it is not difficult to
see that p regresses lC(a) relative to the listing τ(0,a 0 ), . . . ,τ(ao,ao),
r (0,a x),..., r (a^aO,.. . , where a o ,a!,a 2 , . . . is the listing of a relative to
which a is regressed by g. This completes the proof of Theorem 5.

Corollary. Φ(HS Π R) c HS Π R.

5. Concluding Remarks. Let 'R9 denote the class of infinite regressive
sets, ΦD' the class of point-decomposable sets, ζD' the class of decompos-
able sets (i.e., sets a such that, for some i and j , we have ωr Π ω; = φ,
oίQωi U ω; , andα Π ωz , a Π α?y are both infinite), ΊRS' the class of sets α
such that a has a subset /3 e R, 'SV the class of ("sequentially vulnerable")
sets a such that there is a recursive sequence {ω (̂w)}of pairwise-disjoint
r.e. sets satisfying ωξ(n) Π α Φ φ for alln, and, finally, 'CD' the class of SV
sets α for which the sequence {ωξ(n)} can be taken to be a canonical array
(i.e., the ω^w) are finite and the cardinality of <*)$&) is a recursive function
of n). We exhibit below a complete chart of the relations between these
classes (where no arrow or negated arrow appears, one follows, from those
which do appear).
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I y

αeCD=Φ>αe |RS<=^>ai € SV4=φα e D

^ ^ ^ = - U ^ 2 α € PD
^ t f € R

Most of these implications and non-implications are very easily deducible
from results in [l] and [δ]; in particular, Yates proved the result
a e |RSφ=^Qί e SV explicitly in [δ]. The fact that a e SV =φφ <* € D will be
proved, in a stronger form, in another paper. The fact that aeCD=φφa e PD
merely requires a little juggling with non-SV sets and number pairs
(2k,2k+l).

We remark, finally, that (at least) two further questions interest us in
connection with sections 3 and 4:

(a) What is the extent, within the class of simple sets, of the class of
sets belonging to PD? (We do not even know if there are any simple sets
not in HHS which do not belong to this class, but conjecture strongly that
there are.)

(b) Is the hypothesis of r.e. complement realty necessary in Theorem
4? (Presumably, it is.)

Since the completion of this paper, P. R. Young has obtained the fol-
lowing result in connection with question (a): there exists an element of
HS-HHS whose complement is not point-decomposable.
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