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AN AUGMENTED MODAL LOGIC

LEONARD GODDARD

The purpose of this paper is to examine the extent to which an aug-
mented modal logic may be used as the formalized meta-theory β of a
formal system £. The conditions which S must satisfy are indicated by
Roman numerals. Assumptions and theorems of β are indicated by Arabic
numerals. Comments and examples are enclosed in square brackets.

I Let £ consist of the following: (i) a set Vof symbols,v\v2,... v*,... ,
(the vocabulary of £); (ii) formation rules; (iii) axioms; (iv) transformation
rules.

II Let F be the set of formulae / \ / , . . . / ; , . . . , of £, where each/*
consists of a finite string of symbols v%.

IΠ Let the following sub-sets of F be selected as follows:

(i) A set W of wff selected recursively from F by the formation rules,
(ii) A set A (the axioms of £) selected recursively from W (commonly by

giving a finite list).
(iii) A set P of provable formulae; a set D of disprovable formulae, a set I
of irresoluble formulae; selected (but not necessarily recursively) from W
by the transformation rules. Let P contain A.

IV Let the operations required to select the various sub-sets of F be
entirely formal. [By this we mean that they depend only on the physical
characteristics—shape, position, etc.,--of the v*].

V Let the sets P, D and I satisfy the following conditions:

(i) If, for a given j,fi occurs in P, then for some definite symbol, vk say,
υkβ occurs in D; and conversely, if/7 occurs in D then vV ; occurs in P.
[Commonly υk will be the symbol '~' (interpretable as 'not') and we say
that/ 7 and υkf is each the negation of the other. We leave it open at this
stage whether P (or D) can contain both/7 and t>V;> for a given j],
(ii) If neither / ' nor vkfi occurs in P (in which case, by (i) above, neither
occurs in D) then both occurs in I.
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VI Let there be n different interpretations of S, where an interpreta-
tion is defined by a set of rules (semantic rules) which specify (i) the
ranges of such of the v* as are variables of S; (ii) the connective words and
phrases for such of the v* as are logical constants of S; (iii) designating
words and phrases for such of the v* as are constants of S. [it is understood
that the v* are classified as variables, logical constants and constants, by
the formation rules. It is further understood that two interpretations are
different if they differ in any particular at any part of the specification
(i)-(iii)].

We say that the formal system S, together with a set of rules of inter-
pretation z, is a formal language Si and is the logic of the model mi, which
model consists of the "objects" designated by the constants of Si and the
relations between these "objects". [The "objects" may be abstract: e.g.
numbers]. We say further that the n sets of rules of interpretation define a
system of formal languages, Sl9 S2,... ,Sn, with a common syntax <£.

If we wish to consider the formulae/1 , / 2 , . . ,/7, . . . , of S under inter-
pretation 1, we represent them as, f\,f\ , . . . , / / , . . . under interpretation
2, as f\, f \ , . . . , / | , . . . and so on. If we simply wish to consider them as
interpreted, and regard the choice of interpretation as arbitrary, we repre-
sent them with a letter-subscript, n,m or i. Thus fι

n,fl,... ,/'!> . . . , repre-
sent formulae of S interpreted over some arbitrarily chosen model (i.e. with
respect to some arbitrarily chosen formal language). [There may be no
difference in appearance between a given formula /'/ considered as an un-
interpreted formula of S and considered as an interpreted formula /J- of Sn.
The logical difference is that it is significant to say of / | that it is true,
false or neither true nor false but not significant to say this of />. See VII
and comments following].

VΠ Let the formulae of each formal language S{ be such that:

(i) It is significant to say of any arbitrarily chosen formula // that it is
true, false or neither true nor false.

[in permitting the significance of the description 'neither true nor false' we
have in mind the need to classify certain open interpreted formulae. Thus,
suppose that S is formalized arithmetic, then the formula 'x > 10' when in-
terpreted over the standard numerical model might be described as neither
true nor false. However, we do not wish to restrict the use of this descrip-
tion to open formulae (it may sometimes be useful to describe certain
closed formulae of a given Si as neither true nor false) nor do we wish to
claim in general that all open formulae satisfy the description (it may
sometimes be appropriate to describe open interpreted formulae such as
'2x + 2x = 4xy as true). We therefore make the weakest possible assumption
which we wish to hold for all Si and allow that more restricted conditions
may prevail in a particular <£,-; that is, for a given i, Si may contain a law of
excluded middle which applies to all closed formulae while all its open
formulae are classified as neither true nor false.

The use of the description 'neither true nor false' is however limited in
its application in that it is only significant of interpreted formulae. This is
taken to be a consequence of the conditions I-IV. For since the formulae fi
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of S are strings of uninterpreted symbols, it will not be significant to de-
scribe them as true or as false. This being so, it will not be significant to
describe them as neither true nor false. If 'not true and not false' were a
significant description, so too would each of the descriptions 'not true' and
'not false' be significant and so, therefore, would 'true' and 'false' each be
significant ].

(ii) The formulae of P go over into true statements and the formulae of D
into false statements.

[This is the assumption that S is plausible. The phrases 'true statement'
are here used in a wide sense and in some cases would be more naturally
expressed as 'valid formula' and 'invalid formula'. For example, if S is
the sentential calculus, then that interpretation of it under which every
theorem designates the universal class is not an interpretation which yields
statements in the ordinary sense. We could in this instance turn each
theorem into a statement by writing it as 'X = V where 'X' is an abbrevia-
tion of the original theorem and ' / ' designates the universal class, but such
manipulation may not always be possible. In view of ΓV the membership of
P, D and I is not affected by specifying an interpretation. Hence, though it
is significant to say of a given interpreted formula fί that it is provable
(since the classification effected by the transformation rules remains under
the interpretation) the information content of ζf1

n is provable' does not differ
from that of '/ ' is provable'. Similarly with the descriptions 'disprovable'
and 'irresoluble' ].

We propose now to develop | H a s a formal language. That is, ί̂l is itself
an interpretation of a formal system and is the logic of the modal defined in
I-VΊL Hence, some of the following conditions are both formal and inter-
pretive. [E.g. (1) specifies part of the vocabulary of a formal system but
also, since it specifies values for certain variables, it is a rule of interpre-
tation] . We leave it open whether there are alternative interpretations of
of the formal system of which β is an interpretation.

(1) Let a,b,c,... be formulae-variables whose values are the / 7 of g.
[All letters of the alphabet may be used excluding m to z. If more are re-
quired primes may be added].

(2) Let / al9bl9cl9.. Λ be formulae-variables with con- f[ ( sΛ
) a2 >b2 >

C2 > v stant subscripts whose values f{ of M 2 1
/ \ \ are the \ ) '. \

(3) Let (am ,bm ,cm , . . Λ be formulae-variables with variable sub-
)an ,bn ,cn , . . . I scripts whose values are the interpreted
)av , bv,cv , . . ,\ Z 1 , / 2 , . . / ; , . . , of an arbitrarily chosen for-

mal language. The values of the subscript
variables are the natural numerals.

[if more subscript variables are required they may be chosen from such of
the letters m to z which are not specified for other uses in the conditions
which follow ]
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(4) Let P and T be undefined constant operators interpreted respectively
as 'it is provable that' and 'it is true that'.

(5) Let the following be wff:

[Though a full vocabulary has not been specified it is taken for granted that
all symbols which are either used or mentioned in the following rules are
symbols of the vocabulary]

5.1 (a) Formulae-variables, (b) formulae-variables with constant sub-
scripts, (c) formulae-variables with variable subscripts.

.2 Such formulae as can be formed from the formulae-variables, together
with the logical constants of the sentential calculus, by applying the forma-
tion rules of the sentential calculus as if the formulae-variables were sen-
tential variables, (e.g. a&b, a —» ~6),

.3 Formulae formed as in 5.2 by using formulae-variables with (constant
subscripts, provided that any formula so formed bears the same subscript
throughout, (e.g. a1&b1, but not, aι&b2)

A Formulae formed as in 5.3 by using formulae-variables with variable
subscripts, (i.g. an &bn but not, an&bm )

[if a formula is formed as in 5.3 or 5.4, then enclosed in brackets and the
subscript deleted at each of its occurrences and written after the closing
bracket, we shall regard the result as an alternative way of writing the
original formula, (e.g. an &bn is not different from (<z& b)n]

.5 Formulae which consist of P followed by a wff defined in 5.1 to 5.4.

(e.g. Pa, P(a&b), Pan)

[A wff which consists of P followed by a wff of 5.3 or 5.4 does not differ in
meaning from that wff which is identical in form except that it contains no
subscripts, (e.g. Pan does not differ from Pa). See comments following
VΠ(i)J

.6 Formulae which consist of T followed by a wff defined in 5.1(b), 5.1(c),
5.3 and 5.4. (e.g. Tal9 T(a&b)n, but notT(a&b)).

[See VΊI(i) and comments following]. We shall call formulae formed as in
5.5 and 5.6, qualified formulae; those defined in 5.1 to 5.4, unqualified. With
regard to the interpretation of formulae formed as in 5.6, we shall some-
times read ζTav\ where a is an appropriate wff and v a subscript, as 'it is
true that a with respect to (or in) a formal language £v' and sometimes as
'it is true that a over the modal iΛ We regard these two interpretations as
differing only stylistically.

.7 Such formulae as can be formed by treating both qualified formulae and
unqualified formulae as if they were wff of the sentential calculus and apply-
ing the formation rules of that calculus, provided that the resultant formula
contains no part which is excluded by the provisos of 5.3 and 5.4.

[Thus: Tan and bn are wff. Hence, by 5.7, so is Tan&bn. But if we now
form a sentential combination of this with the wff cm say Tan & bn & cm , we
obtain an expression which is not a wff since the part bn & cm is excluded by
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the proviso on 5.4. We are nevertheless not precluded by 5.7 from forming
formulae which contain more than one subscript. Thus, e.g. Tan —> am is a
wff formed from Tan and am , and the excluding condition on 5.7 does not
apply to this since it refers only to combinations of unqualified formulae
which contain more than one subscript. In general, the formulae excluded
by 5.7 are such as are formed from several wff but which, when formed,
may be written in the form: qualified wff + unqualified wff ('+' indicates
some logical constant), where the unqualified part contravenes one of the
provisos in 5.3 and 5.4]

.8 Formulae which are formed from qualified formulae by quantifying
some or all of the formulae-variables. (Λ.g. (α)Pα, (Ea)Tan)

.9 Formulae which are formed from the formulae of 5.7 by quantifying
some or all of the formulae-variables in the qualified parts of such formu-
lae, (e.g. (a)Pa -+ b)

.10 Formulae which are formed by quantifying any wff containing subscript
variables with respect to some or all of those variables, (e.g. (n)Tan,
{n){a)Tan,{Em){n){Tan -> am ))

[it follows from 5.5 to 5.10 that quantifiers never occur in a wff on the
right-hand side of an operator, and that unqualified formulae, or the un-
qualified parts of formulae, are not quantified with respect to the formulae-
variables in them. In general, formulae such as, aι&,a2, an&bm , P{a)a and
(«)(£)(<?& δ), are excluded from the set of wff because they present difficul-
ties in interpretation. Thus, if we substitute values for the variable in
axlka2 we obtain, say, // &/| and thereby express the fact that if/7 is inter-
preted in two different ways and the two statements so obtained are then
conjoined, the result is a significant statement. Since, however, it is not a
statement either of Si or S2, or indeed of any other formal language in the
system Si ,S2,. °. Sj, it is difficult to know what kind of statement it is]

(6) Let the following interpretations be put on the following formulae
(a stands for any appropriate wff, v for any subscript):

~Pa\ it is not provable that α.
P~ a; it is disprovable that α. [Hence, if a takes p as a value, ~ a

takes υkfi as a value]
~P~a; it is not disprovable that a.
~Tav\ it is not true that a. wrt<£v.
T~ av\ it is false that OL W r t £v.

~T~av\ it is not false that αwrt<£v.

(7) Let the following be defined operators:

We say that a formula is,

7.1 false wrtSv if it satisfies Fav, defined by T~av\
.2 trivial wrt Sv if it satisfies Triv av, defined by ~Tav8ι ~Fav\
.3 trivial if it satisfies Triv a, defined by (v)Triv av\
.4 satisfiahle if it satisfies Sa, defined by (Ev)Tav;
.5 necessary if it satisfies Na, defined by (v)Tav\
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.6 impossible if it satisfies N~a, defined by (v)Fav\

.7 possible if it satisfies Ma, defined by ~N~a\

.8 contingent if it satisfies Ca, defined by ~JVα& ~ΛΓ~α;

[A contingent formula is such that its truth-value status is dependent on
(contingent on) the choice of a model]

.9 synthetic wrtSv if it satisfies Synav, defined by Ca & (Tavv Fav);

.10 synthetic if it satisfies Syna, defined by (v)Synav;

[A synthetic formula is such that its truth-value status is contingent on the
choice of a model but is truth-valued (non-trivial) over every model]

.11 irresoluble if it satisfies la; defined by ~Pa & ~ P ~ α ;

.12 weak irresoluble if it satisfies Weak la, defined by la &(SavS~a);

[Weak irresoluble formulae are irresoluble, and true over some model or
false over some model]

.13 strong irresoluble if it satisfies Strong la, defined by la&(NavN ~a);

[Strong irresoluble formulae are irresoluble, and true over every model or
false over every model]

We say that the formal system S is,

.14 incomplete if (Ea)la

.15 deductively incomplete in the weak sense if (Ea)Weakla

.16 deductively incomplete in the strong sense if (Ea)Strongla

[A further kind of incompleteness will be defined later. This is closely con-
nected with the existence of irresoluble formulae which are also trivial.]

(8) Let the following be axioms of β:
8.1 Pa-*Tan Provable formulae are true over an arbitrarily chosen model.

See VII(ii).
.2 Ύan-^an True formulae of an arbitrarily chosen formal language may

be asserted with respect to that language .
.3 P{ahb) *>PahPb
.4 7\a&b)n<r+ Tan&Tbn

(9) Let β contain a set of axiom schemes and rules for the sentential
calculus and the predicate calculus of first order.

[The purpose of this assumption is to provide for the manipulation of the
formulae of β in accordance with the sentential and predicate laws and
rules. Thus, we may wish to pass from 8.1 and 8.2 to Pa~^an, which is a
move made in accordance with a rule derived from the sentential theorem-
scheme (A->B & B-+C)—>(A-*C). Occasionally, however, we may wish to
assert as a theorem of β a special case of a sentential or predicate
theorem scheme. Thus, we may wish to assert Pa&Pb-*Pa (a special case
of A&B-+A) or (a)Pa~*Pb (a special case of (η)Φη-*Φω) or (n)Tan->Tam

(again a special case of (η)Φη—>Φω). When one or more steps in a proof
depend upon a rule of the sentential or predicate calculus, the details will
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not be given but the move will be indicated by the phrase 'by SC (by the
sent, calc.) or by 'by P C (by the pred. calc). When a special case of an SC
or PC theorem is required it will be indicated by 'a case of SC or 'a case
of P C .

It should be noted that in allowing sentential combinations of unqualified
formulae as wff (e.g. a & b) and in allowing that certain of these are
theorems of β (e.g. a8ιb-*a), we are thereby presupposing that<£ contains
symbols which can be interpreted as the logical constants of the sentential
calculus, and hence that S contains the sentential calculus. For since the
formulae-variables of β take the / ; of S as values, the theorem, a&b->a9

say, of β expresses the fact that a similar sentential relation holds between
the formulae of S. That is, formulae of the form fvPpvψ, where υP and vι

are definite symbols of £, are acceptable formulae of £. If the formulae of
β were restricted to qualified formulae and sentential combinations of
these, we should not be committed to this presupposition since the sentential
connectives would then only be used in β to combine statements about the
formulae of S, rather than the formulae of S themselves.

In allowing that certain of the theorems of β are special cases of the
theorems of the predicate calculus we are not thereby presupposing that S
contains the predicate calculus since the quantifiers are only used within β
to make statements about the formulae or models of <£. On the other hand,
there is nothing in the conditions laid down for S which precludes its con-
taining the predicate calculus. That is, the formulae-variables of β may
take quantified formulae of S as values. However, since we do not permit
the explicit use of quantifiers on the RHS of an operator, no cognisance is
taken of the special characteristics of such of the/7 as are quantified. The
theorems of β, that is, though they remain valid over quantified / ; , are
valid for reasons which are independent of the quantification. (We cannot,
for example, express the fact that S contains a rule of inference which per-
mits the universal quantification of theorems which contain free variables:
i.e. Pa(x)—>P(x)a(x)). If we wish to specify that S contains the predicate
calculus, β may be extended to express this. Such extension is indicated
later.]

(10) Let the following be transformation rules of β (in addition to
those of (9)).

10.1 If a wff not containing subscripts is substituted for a formula-variable
throughout a theorem, including those occurrences of formula-variables of
the same shape but which bear subscripts, the result is a theorem provided
it is a wff.

["Higher-order" modal expressions such as NNay PSa, are not wff. Hence,
the result of substituting say Na for a throughout 8.1, say, would not be a
theorem since it would not be a wff ]

.2 If a subscript variable is replaced by another, or by an arbitrarily
chosen numeral, throughout a theorem, the result is a theorem.

.3 If a is a theorem containing no operators, no quantifiers and no sub-
scripts, then Pa and Na are likewise theorems. If av is a theorem con-
taining no operators and no quantifiers then Tav is a theorem.
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.4 If a <-> β is a theorem which contains no operators, no quantifiers and
no subscript variables, then Pa^Pβ and Na^Nβ are likewise theorems.
If av <-> βv is a theorem which contains no operators and no quantifiers then
Tav <-> 7βv is a theorem.

[It should be noted that though the rules of (9) are rules of β, their use is
sometimes restricted by the special characteristics of β. Thus, a theorem
of β which contains free formulae-variables may be universally quantified
wrt those variables to yield a further theorem provided that the result is a
wff; that is, provided that the original theorem was a quantified
formula (5.8)]

(11) Following are some theorems of β.

11.1 Pa-*Na (By PC universally quantify consequent of 8.1 wrt n. Result
by 7.5)

.2 Na-*Tan (A case of PC is (m)Tam ->Tan (cf. comments following (9)).
Result by 7.5)

.3 Tan->Sa (A case of PC is Tan-*(Em)Tam[. Result by 7.4)

.4 Na-^Sa (By SC from 11.2 and 11.4)

.5 Na->an (By SC from 11.2 and 8.2)

.6 N(a&b) <r>Na&Nb (By PC universally quantify 8.4 wrt n, distribute
quantifier through ' ^> ' and then '& ' . Result
by 7.5)

[In view of 11.5, 11.6, 10.3 and 10.4 (insofar as these refer to N) and the
provision for SC in (9), it follows that von Wright's system M is a sub-logic
of β (in the sense that the axioms and rules of M are among the theorems
and rules of β) with the variation that all unqualified formulae bear a sub-
script. See pp 84-85 of [l]. We shall call this sub-logic the system Mn.
Theorems of β which are theorems of Mn will be taken for granted with-
out proof

.7 Pa-*an (By SC from 8.1 and 8.2)

[In view of 11.7, 8.3, 10.3 and 10.4 (insofar as these refer to P) and the
provision for SC in (9), it follows that a system structurally isomorphic to
Mn is a sub-logic of β. This system will be called Pn (it is in fact an al-
ternative interpretation of the formal system of which Mn is an interpreta-
tion). Theorems of Pn may be obtained by writing P for N throughout a Mn

theorem. Proofs of such theorems will not be given. In view of 8.2, 8.4,
10.3 and 10.4 (insofar as these refer to T) and the provision for SC in (9), it
follows that a system structurally isomorphic to Mn, with the variation that
all formulae-variables bear subscripts, is a sub-logic of β. This system
will be called Tn. Theorems of Tn may be obtained by writing T for N
throughout a Mn theorem and by adding the same subscript to each formula-
variable in the theorem.]

.8(1) Fan-*~Tan ) (Each obtained from the Mn theorem N~a~*~Na.
(2) P~a-*~Pa ) Result of (1) by 7.1)

.9 ~(En)(Ea)(Fan hTan ) (By SC, ~(Fαn & Tan) from 11.8(1). By PC uni-
versally quantify wrt a and n . Result by PC)

[This is the law of non-contradiction for each formal language Sn ]
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.10 ~(Ea)(P~a&Pa) (Proof similar to 11.9)

[This expresses the fact that S is simply consistent. It can be proved di-
rectly from the axiom 8.1 and the theorem 11.8(1), thus indicating that the
simple consistency follows from the assumption of plausibility. Alterna-
tively, S is proved to be simply consistent because we presuppose in 8.1
and 11.3 (which together by SC give Pa^>{En)Tan) the existence of at least
one model of S.]

.11 P{a-^b)&Pa-^Pb (A Pn theorem)

[This expresses the fact that detachment is a rule of inference of £, and is
a further indication that the sentential calculus is contained in £. (See com-
ments following (9))]

.12 P(a-^b)->(Pa-*Pb) (By SC from 11.11)

[The converse fails to hold. Thus, let She the sentential calculus and let/1

be p and f be p &~p . Then Pf->Pf2 holds (since p &~/> could be obtained
from p by substitution if p were a theorem) but (fι~*f2) fails to hold (since
p-*p & ~p is not a theorem).

.13 Pa&(Pa-^Pb)->P(a->b) (A Pn theorem)

[Thus the converse of 11.12 holds under the condition that Pa. Loosely
read, 11.13 is: if/7 is provable, and a proof of/7 implies a proof of fk, then
fj->fk i S provable. Hence we can always establish in S a theorem of the
form / 7 —*fk whenever fk can be obtained from/7 by some rule (e.g.,sub-
stitution) provided / 7 is a theorem. In view of this we may write
Pab(Pa^Pb) as a\-b, andP(β->&) as \-(a-*b). 11.13 is then: if a\-b then
\-(a—>b), a deduction theorem for S. In view of 11.12, Pa-^Pb by itself can-
not be written as a \-b\ instead, it gives rise to counterfactuals of the sort:
if/7 were provable,/** would be. There is a similar difference between
P(a <-> b) and Pa <* Pb. If the first holds of two formulae of S, they are
deductively equivalent but not necessarily equivalent.]

.14 {Pa-*Pb)8zP~ b ->~Pa (A Pn theorem)

[lf/; were provable then fk would be, b\itfk is disprovable, hence/7 is im-
provable. We do not by such an argument establish that/7 is disprovable.
For that we require the hypothesis P(a~>b) in place of Pa-*Pb (see 11.15)]

.15 P(a-*b)&P~b-+P~a (A Pn theorem)

[The modus tollens type of argument. For a discussion of the differences
between 11.14 and 11.15 when applied to the predicate calculus see [2]]

.16 TanvFan v Trίvan (A Tn theorem is TanvT~anv{~Tan &~T~αw). Re-
sult by 7.1 and 7.2)

[The law of excluded fourth (see VΠ(i)). We avoid being committed to the
law of excluded middle by not accepting as an axiom the converse of 8.2]
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The theorems 11.5 to 11.16 each contain only one of the operators P, N
and T, and are essentially alternative interpretations of the von Wright sys-
tem M. Certain others are of interest. In particular, Tn theorems such as
Tan &Tbn -~>T{avb)n can be interpreted as rules for the construction of
truth-tables for the sentential formulae of S. Hence the techniques of the
decision procedure for such formulae are expressible within β.

We now consider theorems which relate two or more of the operators
P, N and T. These are not alternative versions of the system M theorems.

.17 Ca-*Ia (By SC from 11.1 we have ~Na~>~Pa; also, by substituting
~a for a in this we have ~N~a ~^~P~a. Result by SC, 7.8
and7oll)

[Formulae of S which are such that, when interpreted, their truth-value
status is contingent on the choice of a model, are irresoluble]

.18 Trivet -* Ca (Proof similar to above using 11.2 in place of 11.1)

.19 Trivan->Ia (By SC from 11.18 and 11.17)

[An interpreted formula of S which is trivial over an arbitrarily chosen
model is irresoluble]

.20 {En)Trivan-*Ia (By PC from 11.19)

[A particularization of 11.19. A formula which is trivial over a specific
model (rather than an arbitrarily chosen one) is irresoluble]

.21 Sa-*Ma (By PC universally quantify 11.8(1) wrt n and use PC to ob-
tain {En)Fan->{En)~Tan; i.e., by PC and 7.1, {En)T~an -•
~{n)Tan. By 7.4 and 7.5 this isS ~a~>~Na. Result by
subst. ~a for a in this and using 7.7)

.22 Sa&S~a — Ca (In the proof of 11.21 we have, S~a~> ~Na. Subst. ~a
for a in this to obtain Sa -*~i\Γ~αβ Result by SCand
7.8)

.23 Sa&S~a-*Ia (By SC from 11.17 and 11.22)

[This is, using 7.4, (En)Tan& (Pn)Fan ->Ia, which expresses the fact that if
a formula/7 of S is interpreted in two different ways (over two models) and
is true under one interpretation, false under the other (in view of 11.9 the
models must be different) then we may conclude that it is irresoluble. In
general, the theorems 11.17, 11.19, 11.20 and 11.22 validate special cases
of the general technique of demonstrating ir re solubility by exhibiting a
model or models of S. (See e.g. [3])]

We now introduce an extra condition on<£ in order to consider a differ-
ent technique for demonstrating ir re solubility:

VIII Let S contain such formal apparatus as is required for construc-
ting formulae which, under a given interpretation of £, may be considered as
referring to some syntactical properties of themselves when uninterpreted.
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(12) Let a be any wff of β which does not contain operators, quantifiers
or subscripts. Let Φ be any operator and v any subscript. Let Ά' be a
constant relation-term to be interpreted as 'asserts that*. Let '—' be a
constant such that if a takes / 7 as a value then a takes the name of/7 as a
value. [We assume that the formation rules are extended to permit the con-
struction of such formulae as are required in this section and which involve
the new constants ]

12.1 Let the following be an axiom scheme of β:

avAΦa -* {av <-> φa)

[This expresses the fact that an interpreted formula which makes some
statement about its own formal (syntactical) properties is truly-functionally
equivalent to the statement it makes. It is an extension of the fact that any
statement is truth-functionally equivalent to itself]

Following are some theorems which depend on 12.1

.2 (anA~Pa)->ίa (A Pn theorem is, (an •«•* ~pa)-*~Pa&~P~a. A
special case of 12.1 is, (ύnA~Pa)->(an <-> ~Pά). Re-
sult by SC and 7.11)

[Thus if an interpreted formula / 7 of Sn asserts that / 7 is improvable in g,
then P is irresoluble wrt<£. The Gδdel condition, that this theorem only
holds on the hypothesis that S is consistent, is embraced by the fact that
according to 11.10 S is consistent]

β3 (anAP~a)->Ia (A Pn theorem is {an<r*P~a)^>~Pa&, ~P~α. Remain-
der of proof similar to 12.2)

[if an interpreted fΊ

n of Sn asserts that/ 7 is disprovable in £, then/7is
irresoluble in £. The ir re solubility of other variants of the Gδdel formula
can be demonstrated in a similar way]

We now consider the truth-value status of formulae which satisfy 12.2
and 12.3.

.4 (άnA~Pa)-> ~ Fan (A case of SC is, ((Pa-*an ) & (an -* ~Fan))->
((an*r+~Pa) -*~Fan). By SC we have an ->~Fan

from 8.2 using 7.1. Now detach antecedent using
this and 11.7. Result by SC on consequent and a
special case of 12.1)

[Hence, a formula/^ which asserts the unprovability of/7 is not false wrt
Sn. It may therefore be either true or trivial. To establish that it is not
trivial, some supplementary argument is required (e.g. that/ 7 is closed
and that Sn contains a restricted law of excluded middle which applies to all
closed formulae (cf. comments following VΠ(i)). This is made explicit
in 12.5]

.5 (anA~Pa) &(TanvFan))-*Tan (A special case of an SC theorem is,
12.4 -* 12.5. Result by detaching 12.4)

[if f~ asserts the unprovability of/7 and is truth -valued wrt Sn, then it is
true wrtSn.]
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.6 (άnAP~a)-> ~Tan (Proof similar to 12.4)

[If / 7 asserts the disprovability of / 7 then it is not true vjvt£n. As above,
that/^ is false rather than trivial depends on a supplementary argument. ]

We now modify 12.1 slightly and write the same subscript on each oc-
currence of a. This enables us to consider the liar sentence.

.7 (anA~Tan)—>Trίvan (Proof similar to 12.2 using the corresponding
Tn theorem)

[If fί asserts that fl is not true wrt £n, then it is neither true nor false
wrt £„. Hence, if it can be shown that/ 7 in fact satisfies such conditions as
are imposed on a restricted law of excluded middle (e.g. that it is closed)
then we conclude that £n is inconsistent; or, equivalently, that since £ is
consistent (11.10), it has no predicate which can be consistently interpreted
as 'true'.]

We now consider the various kinds of incompleteness that £ may have.
Suppose that f1 is an unprovable formula of £ which is necessary then,

since it has the modal status of a theorem, it could be taken as an additional
axiom without affecting the number of models of £. That it is not provable,
therefore, is a defect of the system and for this reason we say that £ is de-
ductively incomplete in the strong sense (7.16). Suppose, now, that f1 is
true over some models but not all (satisfiable but not necessary). In this
case f could be taken as an additional axiom but the new system £r so
formed would only have some models in common with those of £, viz those
over which / 7 is true. Such an extension of £ would be undesirable if the
preferred or standard model were excluded (assuming that there is one)
since/7, not being true over this model, is not wanted as a theorem. Hence,
if £ is deductively incomplete in the weak sense (7.15) it may nevertheless
be desirably incomplete and f1 desirably unprovable. In this case we say
that / 7 is refutable wrt the preferred model, and we represent this concept
within β by using the operator Rp, [ Since refutability wrt the preferred
model is closely connected with the purposes for which the system £ is
wanted, Rp may be interpreted as: it is pragmatically refutable that]. In
general we may say that a formal system £r, which is formed from £ by the
addition to / 7 to the axiom set, interlocks with £ if it has one or more
models in common with<S; and f is undesirably unprovable wrt<£ if the two
systems interlock over all the models of £ or over the standard model,
otherwise / 7 is desirably unprovable. The question now arises whether any
formal techniques within £ are relevant to the determination of refutable
formulae. First, suppose that £ becomes inconsistent when f1 is taken as an
additional axiom. Since each of the original theorems of £ is true over
every model, and since all interpreted forms of the new system £f formed
by the addition of f are inconsistent (i.e. £' has no models), f must be in-
compatible with the criteria of truth for each £n. That i s , / ; , when inter-
preted, is not true over any model of £. Hence it is not true over the pre-
ferred model. Such a formula we say is formally refutable. We represent
this concept within β by using the operator Rf and we affirm Rfa-> ~ Tan.
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This enables us to conclude ifyα-* Rpa. [For example, let £ be the senten-
tial calculus and le t/ ; be p. Then/7 is formally refutable, hence prag-
matically refutable]. Formal refutability is not of course an exhaustive
analysis of pragmatic refutability since an unprovable formula may not be
wanted as a theorem even though it can be consistently taken as an addition-
al axiom. This will be so if it is not true over the preferred model but is
true over some other model. [For example, let £ be the predicate calculus
of first order and let /7 be (Ex)fχ-*(x)fx. Then /7 is pragmatically refutable
but not formally refutable. ]

Let it now be supposed, however, that at least one formula fJ of £ has
been classified as refutable (either by demonstrating that it is formally ref-
utable or by showing that it fails to satisfy the criterion of truth for formu-
lae interpreted over the preferred model) and let it further be supposed that
if fk were a theorem, / 7 would be; that is,/7 follows by rule from fk. Then
fk is refutable. For if it were a theorem, or if it were taken as an addition-
al axiom, / 7 would be demonstrable and £ would therefore no longer be in-
terpretable over the preferred model. Hence we may affirm that £ contains
the rule of refutation which is expressed in β by (Pa^Pb) & Rpb—*Rpa. By
applying this rule to the known refutable formulae of £, the refutability of
other formulae is thus demonstrable. [For example, let £ be the predicate
calculus of first order, let / 7 be (Ex)fχ-+(x)fx and let /* be (x)fx. Then
since we know that, f or £, P(fk~*fh, we have by 11,12, Pfk-*Pf\ and since
we also have Rpf\ we conclude Rpf

k. ]
We shall say that<£ is & fully-exploited formal system if it has an axio-

matic theory of refutation as well as an axiomatic theory of affirmation. By
this we mean that certain formulae of £ are assumed to be refutable (or are
shown to be refutable either by showing that they are formally refutable or
that they are non-true over the preferred model) and the refutability of
other formulae is then demonstrated by means of rules of refutation.

We now develop these points formally within β.

IX Let £ be a fully-exploited formal system and let the logic of the
preferred model be given by £λ

(13) Let the following be further definitions of β.

[it is assumed in what follows that appropriate extensions have been made
to the formation rules of ^β]

We say that a formula is,

13.1 pragmatically refutable wrt £ if it satisfies Rpa9 defined by ^Ta^
.2 independent of the axioms of £ if it satisfies Inda, defined by

~Rf α& ~Rf~a;

[An independent formula is such that either it or its negation may be taken
as an additional axiom without inconsistency]

.3 strongly-complete wrt £ if it satisfies StrongCompa , defined by
Rfa &Rf~a;

[A strongly-complete formula is such that both it and its negation lead to
inconsistency when taken (separately) as additional axioms.]
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We say that the formal system S is,

.4 strongly-complete if all its irresoluble formulae are strongly-com-
plete; i.e. if it satisfies, (a)(la -+ Rf.a&Rf ~ a), [c/pp 42-43 of [4]]

.5 deductively incomplete wrt the preferred model if it contains an irre-
soluble formula which is truth-valued over the preferred model; i.e. if it
satisfies, (Ea)(Ia EziTa^ Faλ)).

[C/. the definition of deductive incompleteness in the weak sense (7.16)
which can be written, after defined operators are eliminated, as
(Ea)(la&(Ev)(Tav v Fav)). Kence>S is deductively incomplete in the weak
sense if one of its irresoluble formulae is truth-valued over some model;
deductively incomplete wrt the standard model if, specifically, one of its
irresoluble formulae is truth-valued over that model. If it is deductively
incomplete wrt the standard model, it is deductively incomplete in the weak
sense. The converse does not hold in general ].

(14) Let the following be additional axioms of β.

14.1 Rfa-*~Tan

.2 {Pa->Pb)&Rpb->Rpa

(15) Following are further theorems of ̂ H.

[It is assumed that the rules UI (universal instantiation) and EG (existential
generalization) are rules of M if these are not already included in (9)]

15.1 Rfa->~Na (By SC we have ~Tan -*~Na from 11.2. Result by SC
from this and 14.1).

•2 Rfa^>~Pa (By SC we have ~Na^>~Pa from 11.1. Result by SC
from this and 15.1)

.3 StrongCompa-*Ia (Subst. ~a for a in 15.2. Use this and 15.2 to obtain
R/a&Rf ~ a->~Pa&~P~a by SC. Result by 13.3
and 7.11)

[This indicates that a formula which is such that neither it nor its negation
can be taken as an additional axiom without inconsistency, is irresoluble.
This is a further technique for demonstrating ir re solubility. According to
15,4 such formulae are trivial]

.4 StrongCompa-*Trivan (Subst. ~a for am 14.1. Use this with 14.1 to
getRfa&Rf~a->~Tan&~T~an by SC. Re-
sult by 7.1,.7.2 and 13.3)

*5Rfa—>Rpa (By PC universally quantify consequent of 14.1 wrt «. From
this we have by UI Rfa->~Tax. Result by 13.1)

.6 (Pa~+Pb)&Rfb->Rpa (By SC we have Rpb-*((Pa-*Pb)->Rpa from 14.2.
Subst b for a in 15.5. Result by SC)

.7 Rpa->~ Taλ (A case of SC is Rpa-*Rpa. Replace consequent by defined
equivalent using 13.1)

.8 Rpa&Rp~a->~Tdi&~Faι (Subst ~a for a in 15.7. Result by SC
from this and 15.7 using 7.1)

.9 {la->Rpa &Rp~a) -> {la ->~ Taι&~Fa1) (By SC from 15.8)
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.10 (a)(Ia->Rpa &Rp ~ α)-> ~{Ea){Ia SiiTa^Faλ)) (Universal ly quantify

15.9 wrt a. Result by PC and SC)

[S is deductively complete wrt the preferred model if all its irresoluble
formulae are such that both they and their negations are pragmatically re-
futable]

.11 Rpa^>~Na (By EG we have Rpa^> (En)~Tan from 15.7. Result by
PC and 7.5)

.12 RpahRP~a^Ca (Subst. ~α for a in 15.11. Result by SC from this
and 15.11 using 7.8)

.13 {la-*Rpa&Rp~ά)-+{Ia-*Ca) (By SC from 15.12)

.14 (a)(la-*Rpa &RP ~ a) -> ~ (Ea)StrongIa (Universally quantify 15.13 wrt
a. Result by PC and SC using 7.8 and 7.13)

[S is deductively complete in the strong sense if all its irresoluble formulae
are such that both they and their negations are pragmatically refutable.
Hence if S satisfies (a)(la-*Rpa &RP ~ a) it is not incomplete in any signifi-
cant sense in view of 15.10 and 15.14. It may however contain an irresoluble
formula which is true over some model other than the standard model. In
view of 15.17 this will not be so if S is strongly-complete.]

.15 R/a&,Rf~a->^(En)(TanvFan) (Universally quantify consequent of
15.4 wrt n. Result by 13.3, 7.2 and PC)

.16. (la->Rfa&Rf~a)->(la->~(En)(TanvFan)) (By SC from 15.15)

.17 (a)(Ia->Rfa&Rf~a)->~(Ea)WeakIa (Universally quantify 15.16 wrt
a. Result by PC using 7.4 and 7.12)

[If S is strongly-complete it is not deductively incomplete in the weak
sense]

We consider finally how β may be extended if it is specified that S con-
tains the predicate calculus of first order. It was noted in (9) that none of
the conditions so far imposed on S exclude its containing the PC; that is, all
the existing theorems of β hold of such an S. On the other hand, if it is
known that S does in fact contain the PC, then certain special theorems hold
in β which would not hold of all other S which satisfy the previous condi-
tions.

X Let S contain the predicate calculus of first order.

(16) Let the following be additional formation rules of β:

16.1 A formula-variable followed by one or more of the letters ζχ', 'y', V
in parentheses is a wff (e.g. a(χ), b(χ,y)). [if more letters are required,
primes may be added]. The values of these expressions are formulae of S
which contain free individual variables, the number of different individual
variables in the / ; is indicated by the number of different letters in the
parentheses adjoined to the formulae-variables,,

.2 Let such formulae as are defined in 16.1 be wff if the formulae-
variables bear subscripts (e.gβ #i(#), bn (#,3>))
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.3 If a is a wff defined in 16.1 then ( )a and (E )a are wff when the blanks
are filled by one or more of the letters which occur in the parentheses of a
(e.g. (x)a(x), (Ey)b(x,y)). The values of such wff are respectively univer-
sally quantified and existentially quantified formulae of £. The values are
closed formulae wrt the individual variables in them if all letters which oc-
cur in the parentheses of a occur in ( ) or (E ); otherwise open wrt as many
individual variables as there are letters in the parentheses of a which do
not occur in ( ) or (E )o

.4 Let such formulae as are defined in 16.3 be wff if a bears a subscript
(i.e. apply a rule similar to 16.3 to the formulae of 16.2)

[The rules 16.3 and 16.4 may be extended to admit ( )(E )a, (E )( )a, etc.,
which take as values formulae of S with mixed quantifiers, ]

.5 Let the formation rules of (5) (which apply to formulae-variables apply
also to the formulae of 16.1 and 16.3 (e.g. a(x) & b(y), Pa(x), P(Ex)a(x)).

06 Let the formation rules of (5) which apply to formulae-variables with

subscripts apply also to the formulae of 16.2 and 16.4 (e.g aγ(x) &,bι(y),

Tan{x), T(x)θn(x)9 but not fli (x) &δ2 (y) etc)

[Formulae such as (jEx)Pa(x) which have quantifiers on the LHS of an opera-
tor have not been defined as wff. Such formulae may be admitted but have
to be interpreted with care]

(17) The following conditions govern the use of the formulae of (16):

17ol Let the definitions of (7) apply to the formulae of (16).
.2 Let the interpretations put on the various operators of β remain the

same when these occur in conjunction with formulae of (16).
.3 Let ( )a and (E )a be interpreted respectively as, for all . . . a— and,

there is a . . . such that a — , where the dots are replaced by the letters
in ( ) of (E ) and the dashes by the letters in the parentheses of a.

A Let the transformation rules of (10) apply to the formulae of (16),
where it is understood that when wff containing quantifiers are excluded
from the operation (e.g. (10.3), the reference is specifically to subscript
quantifiers and quantifiers over formulae-variables, not to the quantifiers
introduced in (16).

.5 Let the transformation rules of PC apply to the formulae of (16). In
particular, let the letters V , ζy* and V be treated for the purposes of sub-
stitution etc as the individual variables of the PC are treated. [In this way
we mirror within β the operations which can be carried out on such of the
/ ; of S as are PC formulae]

(18) Let the following be additional axioms of ffl.

18.1 Pa(x)-*P(x)a(x)
»2 Tan{x) - T(x)an(x)

[18.1 expresses the fact that a provable open formula of S may be univers-
ally quantified wrt to its free individual variables to yield a further theorem.
18.2 expresses the essential meaning of 'true open interpreted formula'. In
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view of 16.4, formulae such as Tax{x) are admitted; and in view of 17.2, the
operator T takes its previous interpretation. Hence we are presupposing
that it is significant to say of an open interpreted formula of S that it is
true (or false)« This is consistent with VΠ(i) and is inevitable if we wish to
say that ~Taλ{x)&~Fat(pc), e.g., is significant; Le. if we wish to say of an
open interpreted formula of £ that it is neither true nor false. Using 18.2
we are now able to explicate the meaning of 'true(false) open interpreted
formula'. We show that such a formula is true if, and only if, the closed
formula which is obtained from it by universally quantifying all the free in-
dividual variables is true; false, if, and only if, the formula which is ob-
tained by existentially quantifying the free individual variables is false. ]

(19) Following are further theorems of β.

19O1 Tan(x)<^T(x)an(x) (A case of PC is (x)an(x)->an(y). By 10.3 we have
T{{x)θn{x)-*an(y)). A Tn theorem is T(an->_bn )-*\Tan-γΓbn ) (cf 11.12). Now
der ive T(x)an(x)->Tan(y). Subst. x for the f ree y (if n e c e s s a r y re-wr i t ing

the bound var iab le twice) to obtain T{x)an{x)->Tan{x). Result by SC on this

and 18.2)

02 Fan{x)<->F{Ex)an(x) (Subst. ~a(x) for a(x) in 19.1. Resul t by P C

and 7.1)

0 3 ~Tan(x)&~Fan(x)*+~T(x)qn(x)&~F(Ex)an(χ) (By SC from 19.1 and
19.2)

A T(Ex)~an(x)&T(Ex)an{x)->~Tan{x)&~Fan{x) (Subst. {x)a(x) for a in
Ilo8(l) and use 7O1 and PC to obtain T(Ex)^an(pc)-^^τ(pc)an(x). Now subst.
(Ex)a(x) for a in 11.8(1) and transpose to obtain T(Ex)an(x)-*~F(Ex)an(x).
Result by SC and 19.3)

[LetS be formalized arithmetic and Sx the (standard) numerical interpreta-
tion. Let fl be 2x + 2x=4x; let/* be 2x + 2x=5x; let/f be x> 10. Then
by 19.1, to say that fl is true is just to say that (x)(2x+2x= 4x) is true; by
19ol, to say that/? is false is just to say that (Ex)(2x+2x= 5x) is false; by
19.4, fl is neither true nor false, since it is true that ~(5 > 10) and
(11 > 10); from which, by EG, we conclude that (Ex)~(x >10) and
{Ex)(x > 10) are both true. In general, an open interpreted formula is true
if it holds for all values of the variables, false if it fails for all values, and
neither true nor false if there is a value for which it holds and a value for
which it fails. ]

Theorems similar to 19.1 to 19.4 with P in place of T and P ~ in place
of F may be obtained if the above proofs are repeated using formulae-vari-
ables without subscripts and 11.8(2) in place of 11.8(1), 11.12 in place of the
Tn theorem in 19.1, and 18.1 in place of 18.2* These theorems may be
numbered 19.5 to 19.8. 19.7 and 19.8 indicate criteria for demonstrating
the irresolubility of certain open formulae of g.
No further theorems of ffl will be given here. Further extensions suggest
themselves. In particular, let the free individual variables of S range over
a denumerable set of constants, vι ,Ί? ,υ3,..., which are represented in 0
by the numerals, 1,2,3,..., and let a(l), a(2),b(l), a(l,2), b(x,l), etc., take
as values the / ; of S which result from open formulae when some or all of
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the individual variables are replaced throughout by constants se-
lected from the v1^2,..., (the numeral(s) in the parenthesis in-
dicating which constants(s) is chosen). Then we may within β
investigate the concepts of ω-completeness and ω-consistency. For
S is co-complete if it satisfies Pa{l)&Pa(2)& . . . ->P(x)a(x) for all
a'± ω-inconsistent if it satisfies P(Ex)a(x) & P ~ a (ϊ) & P~ a(2)& . . . for
some a. [Such extension requires the admission of formulae of infinite
length within β\.

Again, if we permit individual-variable quantifiers on the LHS of an
operator, then we may express the fact that, e.g., there is a value for which
an open / ; is provable, by the notation {Ex)Pa(x). Such a formula of β will
be a consequence of each of Pa{l), Pa(2), etc. Similarly, we can express
the principle UG (Universal generalization) by (y)Tan(y)-*T(x)an(x), thus
indicating the difference between it and the non-law an {y)-* {x)an{x). The
principle El (Existential instantiation) is expressed by T{βx)an{x)-*
(Ey)Tan(y). [P-versions of these, if taken as theorems, indicate that UG
and El are rules oi £].

It is not claimed that the theorems of β which have been given establish
new results in methodology. The purpose of this paper as stated at the be-
ginning has been to axiomatize β rather than to develop the meta-theory of
a given S.
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