ON THE CONNECTION OF THE FIRST-ORDER FUNCTIONAL CALCULUS WITH \aleph_{0} PROPOSITIONAL CALCULUS

JULIUSZ REICHBACH

A simply conclusion from papers [2]-[5] is that for each formula E we may construct a $n(E)$-valued propositional calculus such that if E is not a thesis, then E is false in this calculus by a finite interpretation of the quantifiers; by means of a simply extending of the $n(E)$ valued calculus to \aleph_{0} propositional calculus we may prove in one the converse theorem. This method we have used in [5] and have proved that it is possible to approximate the first-order functional calculus by many valued propositional calculi.

An interest approximation of the first-order functional calculus by \aleph_{0} propositional calculus follows from [3] and [4]. We obtain it by means of constructing of a correspondence between atomic formulas and sequences of numbers 0 and 1 such that:

1. If the atomic formula is of ≥ 2 arguments, then the correspondents sequence is periodic/we shall give the period/.
2. The difference in this correspondence is in general on atomic formulas of one argument whose we must consider an infinite number.
3. For some formulas, e.g. $\Sigma a_{1} \Sigma a_{2} \Pi a_{3} \ldots \Pi a_{k} F$ where \bar{F} is quantifier and individual variable-free, monadic formulas, ..., the \aleph_{0} calculus may be replaced by suitable n - or 2 -valued propositional calculus; one follows from a general theorem.

We shall use the notation of all mentioned papers and in particular:
(1) variables: (1°) individual: x_{1}, x_{2}, \ldots /or simply $x /,\left(2^{\circ}\right)$ apparent: a_{1}, a_{2}, \ldots /or simply $a /$,
(2) finite numbers of functional variables: $f_{1}^{1}, \ldots, f_{q}^{1}, f_{1}^{2}, \ldots, f_{q}^{2}, \ldots, f_{1}^{t}$, $\ldots, f_{\bar{q}}^{t} / f_{i}^{m}$ of m-arguments, $m=1, \ldots, t$ and $i=1, \ldots q /$
(3) logical constants: (negation), + (alternative), Π (general quantifier),
(4) atomic expression: R, R_{1}, R_{2}, \ldots; expressions: E, F, G, E_{1}, F_{1}, $G_{1} \ldots{ }^{1}$

[^0](5) $\left\{s_{m}\right\}$ - the sequence $s_{1}, \ldots, s_{m} ;\left\{s_{i_{m}}\right\}$ - the sequence $s_{i_{1}}, \ldots, s_{i_{m}}$,
(6) $\quad w(E)$ - the number of different individual $/ p(E)$ - apparent/ variables occurring in the expression E,
(7) $\left\{i_{w(E)}\right\}$ or $\left\{j_{w(E)}\right\}$ - indices of all different variables occurring in the expression E,
(8) $n(E)=\max \left\{w(E) \dot{+} p(E),\left\{i_{w(E)}\right\}\right\}$,
(9) $E(u / z)$ - the expression resulting from E by substitution of u for each occurrence of z in $E /$ with knowing conditions/,
(10) $C(E)$ - the set of all significant parts of the formula $E: H \in C(E) . \equiv{ }^{2}$ $H=E^{*}$ or there exist F, G, H_{1} such that: $(H=F) \vee\left(E=F^{\prime}\right) \vee$ $\{(H=F) \vee(H=G)\} \wedge(E=F+G) \vee(\exists i)\left\{H=H_{1}\left(x_{i} / a\right)\right\} \wedge\left(E=\Pi a H_{1}\right)$ Of course, each significant part of the formula E is a formula.
(11) $S k t$ - the set of all formulas of the form $\Sigma a_{1} \ldots \Sigma a_{i} \Pi a_{i+1} \ldots \Pi a_{k} F^{3}$, where F is quantifierless expression containing no free variables, Πa_{j} is the sign of the universal quantifier binding a_{j} and $\Sigma a_{i} G=\left(\Pi a_{j} G^{\prime \prime}\right)^{\prime}, j=1, \ldots, k$,
(12) $S\left(\left\{i_{m}\right\}\right)$ - the set of all atomic formulas R such that all indices of individual variables occurring in R belong to $\left\{i_{m}\right\}$,
(13) M, M_{1}, M_{2}, \ldots - functions of allatomic formulas with values 0 and 1 ; T, T_{1}, T_{2}, \ldots-functions on $S(1, \ldots, k)$, for given k, with values O and 1 /such functions we shall name "satisfiability functions of the rank $k^{\prime \prime}$ or simply: functions of the rank k, if k is finite $/ ;\{\hat{M}\}$-the set which has only one element M,
(14) (K) - for every K; ($\exists K$) - there exists K such that; ($\left\{s_{m}\right\}$)-for each $\left\{s_{m}\right\} ;\left(\exists\left\{s_{m}\right\}\right)$ - there exists $\left\{s_{m}\right\}$ such that;
(15) $\Sigma(F)=0$, if F is a quantifierless formula, $\Sigma(F+G)=\max \{\Sigma(F), \Sigma(G)\}$, $\Sigma(\Pi a F)=\Sigma\{F(x / a)\}$, where x does not occur in F, $\Sigma(\Sigma a F)=w(F)+1$, if $\Sigma\{F(x / a)\}=C^{4}$
$\Sigma(\Sigma a F)=\Sigma\{F(x / a)\}$, if x does not occur in F and $\Sigma\{F(x / a)\} \neq 0$.
If F is not defined above. then $\Sigma(F)=\max \{\Sigma(G)\}$, for each $G \in C(E)$, where if $G=\Pi a H$, then $\Sigma(G)=w(H)+1, \quad \Sigma\left(F^{\prime}\right)=\Sigma(F), \quad \Sigma(F+G)=$ $\max \{\Sigma(F), \Sigma(G)\}$ 。

For example:
(19) If $E \in S k s$ and $E=\Sigma a_{1} \ldots \Sigma a_{i} \Pi a_{i+1} \ldots \Pi a_{k} F$, for some F, then $\Sigma(E)=i$.
(2) If $E=\left\{\Pi \mid a f_{j}^{\prime m}\left(a, x_{2}, \ldots, x_{m}\right)+f_{j}^{\tau}\left(x_{1}, \ldots, x_{r}\right)\right\}^{\prime}$, then $\Sigma(E)=m$.
($\left.3^{\circ}\right) \quad \Sigma(E) \leq w(E)+p(E) \leq n(E)$.
(4) $\quad \Sigma(E)=0 . \equiv . E$ is an alternative of formulas of the form $\Pi a_{1} \ldots \Pi a_{l m} F$ where F is quantifier-free w_{1}, v_{1}, \ldots-numbers 0 and 1.
2. Dots separated more strongly than parentheses.
3. It is Skolem's normal form for theses.
4. We note that if $\Sigma\{F(x / a)\}=0$, then $\Sigma\left\{F\left(x_{i} / a\right)\right\}=0$, for each i. In exactly given cases $\Sigma(E)$ may be less than defined above.

The formal proof E_{1}, \ldots, E_{m} of the formula E we define in the usual way, see [3], [4], but to the proof of given theorems we also must assume that for each $i=1, \ldots, m, E_{i}$ is an alternative of significant parts of the formula E and $\Sigma\left(E_{i}\right)=\ldots=\Sigma\left(E_{m}\right)=\Sigma(E)$; the number m we name the length of the formal proof. The thesis is the last element of a formal proof.

Of course:
L.O. If the length of a formal proof of E is m, then the length of some formal proof of $E(x / y)$ also is m.
L.1. For each formula E may be written a formula $F \in S k t$ such that E is a thesis if and only if F is a thesis and $E^{\prime}+F$ is a thesis/it is possible to replace the assumption $F \in S k t$ by: F is an alternative of formulas belonging to $S k t$ of the form $\Sigma a_{1} \ldots \Sigma a_{m-1} \Pi a_{m} H$ where H is quanti-fier-free/.
L.1. asserts the existence of Skolem's normal form, [1], for theses.

In the following we shall interpret the signs ' and + as Boolean operations $7 /$ complemention/ and $\dot{+}$ /addition/ respectively; therefore Π is interpreted as an infinite Boolean multiplication. By this interpretation we have extended the function M, see (13), on all formulas and therefore we shall use the symbol $M(E)$ for an arbitrary E.

It is known:
T.1. A formula E is a thesis if and only if for each M we have $M(E)=1$.

Let $M / s_{1}, \ldots, s_{k} /$ be a function on $S(1, \ldots, k)$ such that for an arbitrary $R \in S(1, \ldots, k)$ we have:
$M / s_{1}, \ldots, s_{k} /(R)=M\left\{R\left(x_{s_{1}} / x_{1}\right) \ldots\left(x_{s_{k}} / x_{k}\right)\right\}^{5}$.
Of course:
L.2. If $i_{1}, \ldots, i_{m} \leq k$, then:
$M / s_{1}, \ldots, s_{k} / / i_{1}, \ldots, i_{m} /=M / s_{i_{1}}, \ldots, s_{i_{m}} /$.
L.3. If T_{1}, T_{2} are functions of the rank k and $r_{1}, \ldots, r_{i} r_{i+1}, \ldots, r_{j}$, $r_{j+1}, \ldots, r_{m}(m \leq k)$ is a sequence of different natural numbers $\leq k$, then if $T_{1} / r_{1}, \ldots, r_{i} /=T_{2} / r_{1}, \ldots, r_{i} /$, then there exists afunction T° of the rank k such that:
$T \% / r_{1}, \ldots, r_{1}, r_{i+1}, \ldots, r_{j} /=T_{1} / r_{1}, \ldots, r_{i}, r_{i+1}, \ldots, r_{j} /$,
$T^{\circ} / r_{1}, \ldots, r_{i}, r_{j+1}, \ldots, r_{m} /=T_{2} / r_{1}, \ldots, r_{i}, r_{j+1}, \ldots, r_{m} /$ 。
D.1. $M \in Q_{k} . \equiv$. for an arbitrary $s_{1}, \ldots, s_{k}, s_{1}^{\prime}, \ldots, s_{k}^{\frac{1}{2}}$:

If $M / s_{1}, \ldots, s_{k} /=M / s_{1}^{\prime}, \ldots, s_{k}^{\prime} /$, then $s_{1}=s_{1}^{\prime}, \ldots, s_{k}=s_{k}^{l}$.
$M \in Q_{k}$ asserts that functions of the form $M / s_{1}, \ldots, s_{k} /$ are different; examples may be easily given. It is clear that if $M \epsilon R_{1}$, then $M \epsilon R_{k}$, $k=1,2, \ldots$
5. If M is defined. We may replace here $1, \ldots, k$ by $i_{1}, \ldots, i_{w(R)}$.

By an extension of a function M_{1} we mean a function M which is equal to M_{1} on all formulas for which M_{1} is defined.
L.4. Each function M_{1} may be extended to $M \epsilon R_{1} /$ therefore $M \epsilon R_{k}$, $k=1,2, \ldots /$,

Proof: Let
(0) $\left(x_{1}, x_{2}\right),\left(x_{1}, x_{3}\right),\left(x_{2}, x_{3}\right), \ldots$
be the sequence of all pairs of different individual variables and $g_{1}^{1}, g_{2}^{1}, \ldots$, $g_{i m}^{1}, \ldots$ an infinite sequence of functional variables of one argument which do not occur in formulas for which M_{1} is defined.

Now, we assume that we consider all formulas which are built from $f_{1}^{1}, \ldots, f_{q}^{1}, \ldots, f_{1}^{t}, \ldots, f_{q}^{t}$ and also from $g_{1}^{1}, g_{2}^{1}, \ldots, g_{m}^{1}, \ldots$ in the way given above.

Let $M(R)=M_{1}(R)$, if $M_{1}(R)$ is defined and:
(1°) if $M_{1} / 1 /=M_{1} / 2 /$, then $M\left\{g_{1}^{1}\left(x_{1}\right)\right\}=1$ and $M\left\{g_{1}^{1}\left(x_{i}\right)\right\}=0, i=2,3, \ldots$
$\left(2^{\circ}\right)$ if (x_{i}, x_{j}) is the m-th pair of the sequence (0), $M_{1} / i /=M_{1} / j /$, then $M\left\{g_{m}^{1}\left(x_{i}\right)\right\}=1$ and $M\left\{g_{m}^{1}\left(x_{j}\right)\right\}=0$, for $i \neq j$.

Of course $M \epsilon R_{1}$ and M is an extension of M_{1}.
Another extension of M_{1} to function $M \epsilon R_{1}$ may be obtained from [2].
In the sequel we shall write $M /\left\{s_{k}\right\}$ instead of $M / s_{1}, \ldots, s_{k} / ; M /\left\{s_{i_{m}}\right\}$ instead of $M / s_{i_{1}}, \ldots, s_{i_{m}} /$.
D.2. $T \in M[k]$. ․ ($\left.\exists\left\{s_{k}\right\}\right)\left(T=M /\left\{s_{k}\right\}\right)$.
$M[k]$ is the set of all functions of the form $M /\left\{s_{k}\right\}$.
We note that if M is defined as in the proof of $L .4$. then $M[k]$ has the following property:
(I) There exists only a finite number $\leq 2^{q t k^{t}}$ functions belonging to $M[k]$ which differ on atomic formulas of ≥ 2 arguments and:
(1°) for each m and $T \in M[k]$ we have $T\left\{g_{m}^{1}\left(x_{i}\right)\right\}=0, i=1, \ldots, k$ or there exists $i \leq k$ such that $T\left\{g_{m}^{1}\left(x_{i}\right)\right\}=1$ and $T\left\{g_{m}^{1}\left(x_{j}\right)\right\}=0$, for $j \neq i$ and $j \leq k$.
(2 2° for each m there exist $T \in M[k]$ and $i \leq k$ such that $T\left\{g_{m}^{1}\left(x_{i}\right)\right\}=1$.
By a modification of the proof of L.4. the reader may obtain other properties of the considered $M[k]$.

We shall also consider a Boolean algebra whose elements are infinite sequences of numbers 0 and 1 and operations \urcorner (complemention) and $\dot{+}$ (addition); the Boolean algebra determines an \aleph_{0}-valued propositional calculus.

Let k be a natural number and Q a function of atomic formulas $R \in S(1, \ldots, k)$ whose values are infinite sequences of numbers 0 and 1 , such a function Q we shall name a sequence function of the rank k, and we shall write briefly $Q(k)$.

The function $Q(k)$ gives a table of infinite sequences of numbers, we name it also Q :

Each line j of Q determines a function $T_{j} Q$ of the rank k such that $T_{j}\left(R_{i}\right)$ $=w_{j i}$, where $i=1, \ldots, u$ and $j=1,2, \ldots$

If we consider $T_{j}(Q)$ on $S\left(\left\{j_{m}\right\}\right)$, then we shall say that we consider the segment $\left\{j_{m}\right\}$ of the line j of Q.
D.3. $Q^{\circ}=Q / t_{1}, \ldots, t_{k} / \equiv .(j)\left\{T_{j}\left(Q^{\circ}\right)=T_{j}(Q) / t_{1}, \ldots, t_{k} /\right\}^{6}$.
D.4. $Q / T,\left\{i_{m}\right\}$. $\equiv .(\exists j)\left(\exists\left\{j_{m}\right\}\right)\left(T_{j}(Q) /\left\{j_{m}\right\}=T /\left\{i_{m}\right\}\right)$.
$Q / T,\left\{i_{m}\right\}$ asserts that $T /\left\{i_{m}\right\}$ is a segment of some line of Q in the meaning of homomorphism; in this case we shall say briefly: $T /\left\{i_{m}\right\}$ is a segment of some line of Q.

$$
\begin{array}{ll}
\text { D.5. } & Q / Q^{\circ} . \equiv .(\exists j)(\exists k)(T)\left(T^{\circ}\right)\left(\left\{i_{m}\right\}\right)\left\{(j \geq k \geq m) \wedge Q(j) \wedge Q^{\circ}(k) \wedge\right. \\
\left.\left(i_{1}, \ldots, i_{m} \leq k\right) \wedge\left(T^{\circ}=T / 1, \ldots k /\right) \rightarrow\left(Q / T,\left\{i_{m}\right\} . \equiv . Q^{\circ} / T^{\circ},\left\{i_{m}\right\}\right)\right\}^{7} .
\end{array}
$$

Q / Q° asserts that the relation $Q / T,\left\{i_{m}\right\}$ is invariant for each T, T°, $\left\{i_{m}\right\}(m \leq k)$ such that $T^{\circ}=T / 1, \ldots, k /$.
D.6. $Q \sim M[k]$. ${ }^{\text {. }}(T)\left\{T \in M[k]\right.$. $\left.{ }^{(T)}(\exists j)\left(T=T_{j}(Q)\right)\right\}$.
D.6. asserts that $M[k]$ is the set of all functions defined by lines of Q. It is easy to show:
L.5. If $Q / T,\left\{i_{m}\right\}$ and $\left\{i_{j}\right\} \subset\left\{i_{m}\right\}, j \leq m$, then $Q / T,\left\{i_{j}\right\}$.
L.6. If $Q^{\circ}(k), Q=Q^{\circ} / 1, \ldots, k, k /$, then Q / Q°.
L.7. If M is a satisfiability function and $Q \sim M[k]$, then $\{\hat{M}\} / Q$.
L.8. If M is a satisfiability function defined on formulas in which occur only a finite number of functional variables, see (2), and $Q \sim M[k]$, then there exists a function T of the rank $\leq k 2^{q t k^{t}}$ such that $Q \sim T[k]$ and $\{T\} / Q(T$ is a segment of $M) .{ }^{8}$
D.7. $Q\{r, k\} . \equiv .(r \leq k) \wedge Q(k) \wedge\left(\left\{i_{m+1}\right\}\right)(T)\left\{(m<r) \wedge\left(i_{1}, \ldots, i_{m+1}\right.\right.$ are different numbers $\leq k) \wedge Q / T,\left\{i_{m}\right\} \wedge Q / T, i_{m+1} \rightarrow\left(\exists T_{1}\right)\left(Q / T_{1},\left\{2_{m+1}\right\}\right.$ $\left.\left.\wedge\left(\left\{j_{m}\right\}\right)\left\{\left(\left\{j_{m}\right\} \subset\left\{i_{m+1}\right\}\right) \wedge Q / T,\left\{j_{m}\right\} \rightarrow\left(T_{1} /\left\{j_{m}\right\}=T /\left\{j_{m}\right\}\right)\right\}\right)\right\}$.

[^1]$Q\{r, k\}$ asserts that for each $\left\{i_{\mid m+1}\right\}$ of different number, $m<r \leq k$ and all T of the rank k, if $T /\left\{i_{m}\right\}$ and $T / i_{: m+1}$ are segments of some lines of Q then there exists T_{1} of the rank k such that $T_{1} /\left\{i_{m+1}\right\}$ is a segment of some line of $Q T_{1} /\left\{i_{m}\right\}=T /\left\{i_{m}\right\}$ and for each $\left\{j_{m-1}\right\} \subset\left\{i_{m}\right\}$ if $T /\left\{j_{\mid m-1}\right\}, i_{m+1}$ is a segment of some line of Q, then $T_{1} /\left\{j_{\mid m-1}\right\}, i_{m+1}=$ $T /\left\{j_{m-1}\right\}, i_{m+1}$.

In other words, $Q\{r, k\}$ asserts that for each $\left\{i_{: m+1}\right\}$ of different numbers $k, m<r \leq k$, if $\left\{i_{m}\right\}$ and i_{m+1} are segments of some lines of Q, then there exists a line n such that $\left\{i_{m+1}\right\}$ is a segment of line n of Q and for each $\left\{j_{m}\right\} \subset\left\{i_{m+1}\right\}$ if $\left\{j_{m}\right\}$ is a segment of some line s_{m} of Q for each $\left\{j_{m}\right\}$ we only choose one s_{m} and if every two of these segments of lines s_{m} are equal on equal sequences of numbers included in $\left\{j_{m}\right\}$, then $T_{n}(Q) /\left\{j_{m}\right\}=$ $T_{s_{m}}(Q) /\left\{j_{m}\right\}$.
L.9. If $Q\{r, k\}$, then:
$\left(\left\{i_{m+1}\right\}\right)(T)\left\{(m<r) \wedge\left(i_{1}, \ldots, i_{m}\right.\right.$ are different numbers $\left.\leq k\right) \wedge Q / T$, $\left\{i_{m}\right\} \wedge\left\{Q / T, i_{m+1} \rightarrow\left(\exists T_{1}\right)\left(Q / T_{1},\left\{i_{m+1}\right\} \wedge\left(\left\{j_{s}\right\}\right)\left\{\left(j_{1}, \ldots \ldots, j_{s}\right.\right.\right.\right.$ are different numbers $\left.\left.\left.\leq k) \wedge Q / T,\left\{j_{s}\right\} \rightarrow\left(T_{1} /\left\{j_{s}\right\}=T /\left\{j_{i s}\right\}\right)\right\}\right)\right\}$.

This lemma follows from D.7. by using many times of $L .3$; we note that if in D.7. or L.9. we have $Q / T,\left\{i_{m+1}\right\}$, then $T_{1}=T$.

Of course:
L.10. If $M \epsilon R_{1}$ and $Q \sim M[k]$, then for each $r \leq k$ we have $Q\{r, k\}$.
L.11. If M is a satisfiability function defined only on atomic formulas of one argument and $Q \sim M[k]$, then for each $r \leq k$ we have $Q[\{r, k\}$.
L.12. If $Q \sim M[k]$, then;

1. If T is a function of the $\operatorname{rank} k, i, j \leq k, Q / T, i, Q / T, j$ then there exists T_{1} of the rank k such that ${ }^{9} Q / T_{1}, i, j$ and: $T_{1} / 1, \ldots, i-1$, $i+1, \ldots, k /=T / 1, \ldots, i-1, i+1, \ldots, k, T_{1} / 1, \ldots, j-1, j+1, \ldots, k /-$ $T / 1, \ldots, j-1, j+1, \ldots, k /$.
2. If $k \geq 2$, then $Q\{2, k\}$.
L.13. If $Q^{\circ}\{r, k\}$ and $Q=Q^{\circ} / 1, \ldots, k, k /$, then $Q\{r, k+1\}$.
D.8. $T, Q / T_{1},\left\{i_{m}\right\} ; i . \equiv .\left(T /\left\{i_{m}\right\}=T_{1} /\left\{i_{m}\right\}\right) \wedge Q / T_{1},\left\{i_{m}\right\}, i$.
D.9. $H \in A(E)$. \equiv. $\left(\exists\left\{F_{j}\right\}\right)\left(E=F_{i}+\ldots+F_{1}+H+F_{i+1}+\ldots+F_{j}\right) \wedge(F)(G)(H \neq F+G)$.

The meaning of D.8. and D.9. are clear.
Let V be the functional defined for an arbitrary function of the rank k, for each $Q(k)$ and for an arbitrary formula E whose indices of individual variables occurring in it are $\leq k$, in the following way:
(1d) $V\left\{T, Q, f_{j}^{m}\left(x_{r_{1}}, \ldots, x_{r_{m}}\right)\right\}=1 . \equiv . T\left\{f_{j}^{m}\left(x_{r_{1}}, \ldots, x_{r_{m}}\right)\right\}=1$,
(2d) $V\left\{T, Q, F^{\prime}\right\}=1 . \equiv 。 \sim V\{T, Q, F\}=1 . \equiv . V\{T, Q, F\}=0$,
(3d) $V\{T, Q, F+G\}=1 . \equiv . V\{T, Q, F\}=1 \vee V\{T, Q, G\}=1$,
(4d) $V\{T, Q, \Pi a E\}=1 . \equiv .(i)\left(T_{1}\right)\left\{(i \leq k) \wedge T, Q / T_{1},\left\{i_{w(F)}\right\} ; i \rightarrow V\left\{T, Q, F\left(x_{i} / a\right)\right\}=1\right\}$.
9. If $Q / T, i, j$, then we assume $T=T_{1}$. It may be proved the other properties of $Q \sim M[k]$.
D.10. $E \in P Q . \equiv$ 。 $(T)\left\{(H)\left(\{H \epsilon A(E)\} \rightarrow Q / T,\left\{i_{w(H)}\right\}\right) \rightarrow V\{T, Q, E\}=1\right\}$.
D.11. $E \in P\{r, k\}$. \equiv. (Q) $\{Q\{r, k\} \rightarrow(E \in P(Q))\}$.
D.12. $E \in P$. $\equiv . E \in P\{\Sigma(E), n(E)\}$.

We explain the meaning of ones:

1. $V\{T, Q, E\}=1$ may be read: T satisfy E relatively to Q.
2. If M is a satisfiability function and $Q \sim M[k]$, then $T_{j}(Q)$ are segments of M, the number i in (4d) is a name of an arbitrary individual variable and in $D .10$ - D.12. we assume that we only consider segments of M; in D.12. we associate to each formula a pair of numbers.
3. Obviously, if E is quantifier-free, then: $E \in P . \equiv . E$ is true.
L.14. Let E° results from E by replacing individual variables with indices $i_{1}, \ldots, i_{w(E)}$ correspondingly by individual variables $j_{1}, \ldots, j_{w\left(E^{\circ}\right)}$, $w(E)=w\left(E^{\circ}\right)^{10}$ and $T /\left\{i_{w(E)}\right\}=T \%\left\{j_{w\left(E^{\circ}\right)}\right\}$. Then: $V\{T, Q, E\}=1 . \equiv$. $V\left\{T^{\circ}, Q, E^{\circ}\right\}=1$
L.15. Let $k \geq n(E), Q^{\circ}(k), Q / Q^{\circ}$ and $T^{\circ}=T / 1, \ldots, k /$; then: $V\{T, Q, E\}=$ $1 . \equiv \quad v\left\{T^{\circ}, Q^{\circ}, E\right\}=1$.

The proofs of $L .14$. and L.15. are inductive on the length of the formula E and are analogic to the proofs of L.12. and L.14. respectively from [2].
L.16. If $E \in P\{r, k\}$ and $k \geq k_{0}$, then $E \in P\left\{r, k_{0}\right\}$.
L.16. follows from the definitions, L.6, L.13. and L.15, see [3], [5].
T.2. If $E \in S k t, F \in C(E), M\{E\}=0, Q \sim M[k]$, then:
(1) If $M /\left\{s_{i, v(F)}\right\}=T /\left\{i_{w(F)}\right\}$ and $M\left\{F\left(\left\{s_{i_{w(F)}}\right\}\right)\right\}=0$, then $V\{T, Q, F\}=0$
(2) $E \in P(Q), E \bar{\epsilon} P\{2, k\}$.
(3) If $M \epsilon R_{1}$, then $E \bar{\epsilon} P$.

Proof: First of all we notice that (2) follows from the assumptions, (1) and L.12; however (3) follows from (2) and L.10.

The proof of (1) is inductive on the number of quantifiers occurring in F and is analogous to T.2. of [3].
T.3. If E is a thesis, then $E \in P\{\Sigma(E), k\}$, for each $k \geq n(E)$.

The proof of T.3. is inductive on the length of the formalized proof of the formula E; we use here $L .0, L .2, L .3, L .5, L .9, L .14, L .16$. and definitions; the whole proof is analogous to the proof of T.3. from [3].
T.4. A formula E is a thesis if and only if $E \in P$.
T.4. follows from T.1-3, L.1, L.7, and L.15., see [3]. It is easy to see:

1. T.4. remains true if we shall only consider $Q(k)$ with property (I), $p \ldots$, where $M[k]$ is replaced by the set of all $T_{j}(Q)$ and $k=n(E)$; therefore Q has properties given on $p .73$.
2. Then E results from E° by an inverse substitution.
3. If $E \in S k t$ and $E=\Sigma a_{1} \ldots \Sigma a_{i} \Pi a_{i+1} \ldots \Pi a_{k} F$, then E is a thesis if and only if $E \in P\{k, i\}$.
4. The classes $P\{1, k\}$ and $P\{2, k\}$ are decidable, $k=1,2, \ldots$ (follows from L.12, T.3. and T.4.).

The monadic first-order functional calculus is decidable (follows from L.11, T.3. and T.4.)].

From L.8. and L.15. it also follows that in $T 4$. we may assume that Q has only one line whose rank is $\leq k 2^{q t k^{t}}$, where $k=n(E)$.

The above consideration describes a method of decidabling of arbitrary formulas; the examples we shall give in [6].

BIBLIOGRAPHY

[1] D. Hilbert - P. Bernays: Grundlagen der Mathematik II, Berlin 1939.
[2] J. Reichbach: On the first-order functional calculus and the truncation of models, Studia Logica, VII, 1958.
[3] J. Reichbach: On characterizations of theses of the first-order functional calculus, sent to Fundamenta Mathematicae.
[4] J. Reichbach: On characterizations of the first-order functional calculus, Notre Dame Journal of Formal Logic, II, 1961, pp. 1-15.
[5] J. Reichbach: On the connection of the first-order functional calculus with many valued propositional calculi, Notre Dame Journal of Formal Logic, III, 1962, pp. 102-107.
Reasume: Proceeding of the fourth Contress of Scientific Society, Rehewet, April 2-5, 1961, Israel.
[6] J. Reichbach: Some examples of different methods of formal proofs, in preparation.
[7] J. Reichbach: A note to my paper: On the characterizations of the first-order functional calculus, Notre Dame Journal of Formal Logic, II, 1961, pp. 251-252.

Tel Aviv, Israel

[^0]: 1. Expressions and formulas we define in the usual way; the expression in which an apparent variable a belong to the scope of two quantifiers Πa is not a formula; if a does not occur in E, then $\Pi a E$ is not a formula.
[^1]: 6. $T_{j}\left(Q^{\circ}\right)$ is the function defined by the line j of Q°; the meaning of $D .3$. is simply.
 7. If for each line j of Q and each permutation t_{1}, \ldots, t_{k} of numbers $\leq k T_{j}(Q) /\left\{t_{k}\right\}$ also is a line of Q, then $\left\{j_{m}\right\}$ may be replaced by $\left\{i_{m}\right\}$.
 8. We understand the word "segment" in the meaning of homomorphism.
