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TYPES IN COMBINATORY LOGIC1

LUIS E. SANCHIS

The introduction of types in a formal system amounts to giving a clas-
sification of the entities of the system in categories, in such a way that the
category of complex entities is determined by the categories of others that
are simpler. In applications this procedure is used to define the class of
formal entities that are propositions, i.e., those for which the rules of the
propositional and predicate calculus are valid. In most systems the rules
governing types are trivial, and it seems there is little interest in the study
of those rules in a more general setting. In combinatory logic the situation
has evolved in a different way. Curry has studied in several papers a theory
of functionality.2 In this system the combinators are allowed to belong to
many distinct types; this is an important difference from ordinary type
theories in which an entity belongs at most to one type. As a consequence
the theory is not trivial, and very elaborate arguments are used in [7] to
prove some fundamental properties.

In this paper the results of [7] are extended in several directions. For
this purpose some properties of pure combinatory logic are necessary.
Some of them are available in [7] or [9]; others are new, and the proofs are
given in detail.

1. The system Γ. We shall consider a system of combinatory logic in
which there are three primitive combinators: S, Kand I, and possibly other
atoms.3 The atoms that are not combinators are called indeterminates.
Combinations are the following formal entities: the primitive combinators
and indeterminates are combinations; if X and Y are combinations, then the
ordered pair consisting of X and Y in that order is also a combination which
is denoted {XY).A When writing expressions denoting combinations we shall
omit certain parentheses with the understanding that the association is to
the left; parentheses at the end and at the beginning of an expression are
also omitted. In this way any combination can be expressed in a unique way
in the form Xo.. . Xt (t ^ 0), where XQ is a primitive atom, called the lead-
ing atom of the combination. This can be shown easily by induction on the
structure of the combination.

Sometimes we shall say that a combination U is a part of a combination
X and that Y is obtained by replacing the part £7 by the combination V. We
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assume that the meaning of this process is clear. For a more technical
definition the reader is referred to [7].

Letters X,Y,Z,U, V, . . , with subscripts if necessary, will be used to de-
note arbitrary combinations; letters x,y,z,u,υ to denote indeterminates. By
X = Y we mean that X and Y are the same combination.

Given a combination X and an indeterminate x we define a combination
[#]Xby the following inductive rules:

a) IfX =χ then[x]X = I
b) IfX is an atom distinct from x then [x]X = KX
c) IfX = YZ,U = [x]Y, V = [x]Z then [x]X = SUV.

Now if X is a combination, and for n > 1, xl9..., xn are indeterminates,
we define [xl9..., xn]X = [xx ][x2,..., xn_1 ]X,

We need also the following definitions. If X = Xo. . . Xt where Xo is the
leading atom, then any combination Xo... Xf for i ^ t is called a head of X.
If Xo is an indeterminate we say that X is a closed combination. If X is of
one of the forms: S, K, I, SU, SUV, KUwe say that X is an open combina-
tion, A combination that is neither closed nor open is said to be reducible.
If Y is a combination obtained from X replacing a part U by V, where UR V
is a case of one of rules (S), (K) or (I) introduced later, we say that Y is
obtained by a contraction. If U is a head of X it is said to be a &£βd ccw-
traction, otherwise an internal contraction.

To avoid writing long expressions we use abbreviations as follows:

B=S(KS)K
Φ = B(BS)B
J =SB(KI)

In the system Γ we shall define several binary relations by giving
rules, with the understanding that the relation holds in a particular case
only if that follows by a finite number of applications of the rules. To sim-
plify the definitions we state several rules for an unspecified binary rela-
tion R.

Rule (p) X R X
Rule(σ) If X R Y then YRX
Rule (r) If XRY and Y R Z then X R Z
Rule(μ) IfXRY then ZX R ZY
Rule (v) If XRY then XZ R YZ
Rule (S) SXYZ R XZ{ YZ)
Rule(K) KXYRX
R u l e ( I ) \XRX
Rule (Cl) BS(BK) #S(KK)J
Rule(C2) B(BS)(BS(BS)) R ΦB(B(ΦS)S)(KS)
Rule(C3) B(S(BBS)(KK))Ki? BK
Rule(C4) B(BJ)Si?S
Rule (C5) BJK R K
Rule (C6) SK R Kl
Rule(C7) S(KI) R J
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Rule (C8) S(KI)iM

Rules (S), (K) and (I) are called reduction rules and rules (Cl)-(C8) are
called combinatory rules.

Theorem 1. If Ro is a binary relation defined by a subset of the rules
for R that contains rules (p), (r), (μ), {v), some reduction and combinatory
rules, but not rule (σ), then for arbitrary combinations X and Y, X Ro Y if
and only if there is a sequence of combinations Xγ,. . . ,Xk with k ^ 1 such
that Xι = X, Xk = Y and for i ^ 1, X{ is obtained from Xi_\ by replacing a
part U by V where U Ro V is a case of one of the reduction or combinatory
rules in the definition of Ro-

Necessity follows by induction on the derivation of XR0Y. To prove
sufficiency it is enough to consider the case k = 2 and in this case the proof
is by induction on the structure of X.

When rule (σ) enters in the definition of Ro we obtain a similar property
requiring that either U Ro V or V Ro U is a case of one of the reduction or
combinatory rules in the definition of Ro.

The binary relation defined by rules (p), ( r ) , (μ), (v), (S), (K), and (I) is
called reduction and is denoted by X ^ Y.

The binary relation defined by rules (p), (σ), ( T ) , (μ), (v), (S), (K), (I)
is called α-equality and is denoted X =$ Y.

The binary relation defined by rules (p), (σ), ( r ) , (μ), {v), (S), (K), (Cl),
(C2), (C3), (C4), (C5) and (C6) is called /3-equality and is denoted X =β Y.

The binary relation defined by rules (p), (σ), ( r ) , (μ), (v), (S), (K), (Cl),
(C2), (C3), (C6), (C7) and (C8) is called equality and is denoted X = Y.

Let X and Y be two combinations and x an indeterminate. The combi-
nation [Y/x]X, called the result of substituting Y for x in X, is defined in-
ductively as follows:

a) // X=x then [Y/x]X=Y
b) If X is an atom distinct from x then [Y/x]X = X
c) // X= YZ, U= [Y/x]Y, V= [Y/x]Z, then [Y/x]X = UV.

Lemma 1. ([x]X)Y ^ [Y/x]x.

The proof, by induction on the structure of X, is easy.
The following two lemmas were proved by Rosser in his dissertation.6

Lemma 2. If X — Y, then there is a combination Z such that Z is ob-
tained from X by a series of head contractions and Y is obtained from Z by
a series of internal contractions.

Lemma 3. If X =a Y, then there is a combination Z such that X ^ Z
and Y>Z.

The rules for the equality relations are formulated in such a way that
some extensionality properties are valid. These properties are expressed
in the following two theorems. Since they are not important for the problem
considered in this paper the proofs are only outlined.7
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Theorem 2. The following properties hold for β-equality:

(i) IfX=aYthenX=β Y
(ii) If X does not contain x then [x]X =β KX

(iii) If X is an open combination then there are combinations Y and Z
such thatX =β SYZ

(iv) If X is an open combination not containing x then

X =β JX =β BX\ =β $(KX)\ =β [x](Xx)

(v)IfX=β Y then [x]X =β [x]Y
(vi) If X and Y are open combinations not containing x and Xx =β Yx

thenX=β Y

To prove (i) we need only to show that rule (I) holds for β-equality and
this follows from rule (C6). Part (ii) follows by induction on the structure
of X using rule (C3), and part (iii) using rules (C4), (C5) and (C6). For part
(iv) use part (iii), rule (C4) and the definitions. Part (v) follows by induction
on the derivation of X =n Y, and part (vi) using parts (iv) and (v).

Theorem 3. The following properties hold for equality:

(i) If X does not contain x then [x]X = KX
(ii) If X does not contain x then [x](Xx) = X

(iii) IfX=Y then [x]X = [x]Y
(iv) If x does not occur in X or Y and Xx = Yx then X = Y.
(v) IfX=β YthenX= Y.

Parts (i) and (iii) are proved as in Theorem 2. Part (ii) follows from
rules (C7) and (C8). Part (iv) is proved using parts (ii) and (iii). To prove
part (v) we need only to show that rules (C4) and (C5) are valid for equality.
For this use part (iv).

2. Some properties of reduction. In this section we shall consider
some relations between reduction and equality. These results will be used
later in the study of normal combinations.

Lemma 4. If X reduces to xXλ. . . Xk by head contractions, and X =a Y,
then Y reduces by head contractions to a combination xYx. . . Y^ such that
Xi =

a Yi

We have xXx... Xk ~a Y> hence by Lemma 3 J here is a combination Z
such that xX±... X% - Z and Y^Z. Clearly Z has to be of the form
xZx... Zk, where Xi — Z* . Further by Lemma 2 there is a combination Zf

such that Y reduces to Z' using only head contractions, and Z' reduces to Z
using only internal contractions. Hence Z' has to be of the form xYγ.. . Y&
where Y{ ^ Z f. From this it follows that X{ =a Y{.

Lemma 5. If X reduces by head contractions to an open combination,
and X =a Y, then Y also reduces by head contractions to an open combina-
tion.

The proof is similar to that of Lemma 4.
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Lemma 6. If X reduces by head contractions to an open combination,
and Y is obtained from X by replacing occurrences of U by V, where either
URVorVRUisa case of one of rules (C1)-(C7), then Y also reduces by
head contractions to an open combination*

The proof is by induction on the number of head contractions in the re-
duction of X. First suppose that U does not occur as a head of X replaced
by V: then if X is open, Y is also open and if X is reducible, Y is also re-
ducible, and the same head contraction can be performed in both X and Y,
and after this the induction hypothesis can be applied. Hence we may sup-
pose that U is a head of X replaced by V. Then X = UϋΊ... Z7&, and Y =
Wi . . Vk where F, is obtained from Ui by replacing occurrences of £7 by
V. Now the following property can easily be checked for each of the rules
(C1)-(C7): depending on k, either both X and Y reduce to an open combina-
tion, or they reduce by head contractions to combinationsXr and Yτ, such
that there exists a combination Y", obtained from Xr by replacing occur-
rences of U by V, and Y" -a Y1. By the induction hypothesis Yn reduces
by head contractions to an open combination, hence by Lemma 5, Yr (and Y)
reduces to an open combination.

Theorem 4. If X reduces by head contractions to an open combination,
and X =β Y, then Y also reduces by head contractions to an open combina-
tion.

We know there is a sequence X1,.. . , Xt, where X1 = X, Xt Ξ Y, and for
i > 1, Xi is obtained from X^ by replacing one occurrence of ί/by V where
either U =β V or V = β U is a case of one of rules (S), (K), (I), (C1)-(C6) .
The proof is by induction on t. The case t - 1 is trivial. For t > 1 we have
either Xt-ι =a Xt, in which case we use Lemma 5, or Xt is obtained from
Xt.ι by a replacement corresponding to one of rules (Cl)-(C6) in which case
we use Lemma 6.

Lemma 7. If X reduces by head contractions to a closed combination
xXi. . . Xk, and Y is obtained from X by replacing occurrences of U by V,
where U R V or VR U is a case of one of rules <(C1)- (C7), then there are
combinations Y1,. . ., F& where Yi is obtained from Xi by replacing occur-
rences of U by V, and Y reduces by head contractions to a closed combina-
tion xZi... Zky where Yi -a Zi.

The proof is by induction on the number of head contractions. First
suppose that U does not occur as a head of X replaced by V; then, if X is
closed the lemma is trivial, and if X is reducible the same head contraction
can be applied to both X and Y, and after this the induction hypothesis can
be applied. Hence we assume that U is a head of X replaced by V. By the
argument used in the proof of Lemma 6 it follows that X reduces by head
contractions to a combination Xf, and Y reduces to a combination Y', such
that there exists a combination Y", obtained f rom X' by replacing occur-
rences of U by V, and Y" =a Y\ By the induction hypothesis and Lemma 4
the lemma follows.
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Theorem 5. If X reduces by head contractions to a closed combination
xXt. . . Xk, and X =β Y, then Y reduces by head contractions to a combina-
tion xYi. . . Yk, where X{ =n Yi.

The proof is similar to that of Theorem 4 using Lemmas 4 and 7.

Corollary. IfX=βx then X>x.

Lemma 8. If X reduces by head contractions to a closed combination
xXγ. . . Xk, and Y is obtained from X by replacing occurrences of I by S(KI),
then there are combinations Yγ,. . . , Yk, where Yi is obtained from X{ by
replacing occurrences of 1 by S(KI), and for any indeterminate y, Yy
reduces by head contractions to xYx.. . Yf&y

The proof is by induction on the number of head contractions, and we
need to consider only the case in which I is a head of X replaced by S(KI).
In this case it is easy to check that X and Yy reduce by head contractions to
combinations U and Vy where V is obtained from U by replacing occurrenc-
es of I by S( Kl). Using the induction hypothesis the lemma follows.

Lemma 9. If X reduces by head contractions to a combination
xXi. . . Xk, and Y is obtained from X by replacing occurrences o/S(KI) by
I, then Y reduces by head contractions to a combination xYγ. . . Yk, where
Yi is obtained from X{ by replacing occurrences o/S(KI) by I.

The proof is similar to that of Lemma 8.

Theorem 6. If X reduces by head contractions to a combination
xXi... Xk, and X = Y, then for some n ^ 0, given indeterminates yγ,..., yn,
the combination Yyi...yn reduces by head contractions to a combination
xYγ... Yk Uγ. . . Un where X{ = Yi and Uj = yj, i = 1,. . . , k, j = 1,. ., n.

The proof is similar to that of Theorem 4, using Theorem 5 and Lem-
mas 8 and 9.

Corol lary . If X = Y, X = xXγ. . . Xk, Y=yYγ... Yt, then k = t, x = y and

Xi = Yi.

3. Normal combinations. In the system of lambda conversion combina-
tions in normal form play a special role. A similar notion has been intro-
duced in combinatory logic using strong reduction. In this section the class
of normal combinations is introduced by an intrinsic definition that is inde-
pendent of the algorithm used for the abstraction operator. Only the defini-
tion of the normal form of a normal combination depends on that algorithm.

First we introduce two new algorithms for abstraction that are more
convenient for the purposes of this section. The first, called the strong
algorithm, is defined by the following rules:

a) IfX = x then [x]X = I
b) If X does not contain x then [x}X Ξ KX
c) If X = Yx, where Y does not contain x, then [x]X - Y
d) IfX= YZ, U=[x]Y9 V= [x]Z, then [x]X = SUV
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The weak algorithm is obtained dropping rule c). When two different
rules can be applied to a combination, the earliest rule in the list is to be
applied.

Lemma 10. If Y = [y/x]X where y does not occur in X then [x]X = [y]Y,
for the weak and strong algorithms.

The proof by induction on the structure of X is easy.

Lemma 11. If x does not occur in F, and is distinct from y, then

[x][Y/y]X^[Y/y][x]x

The proof is by induction on the structure of X, and covers both the
strong and the weak algorithms,

(i) X is x. Then

[x][Y/y]X = [x]x ^ I = [Y/y]\ - [Y/y][x]x

(ii) X does not contain x. Then

[x][Y/y]X ^ K([Y/y]X) = [Y/y](KX) = [Y/y][x]X

(iii) X = Zx where Z does not contain x. Set U = [Y/y ]Z. Then

[x][Y/y]X = [x]Ux =U= [Y/x][x]X

(iv) X = UV. In this case use the induction hypothesis for U and V, and
the definitions.

We define now a special class of combinations, called normal combina-
tions. The definition is by induction according to the following rules that
associate with each normal combination a length and a degree.

(i) Every indeterminate is a normal combination of length 1 and de-
gree 0.

(ii) If X = xXi. . . Xk, k ^ 1, and Xl9. . . , X& are normal combinations
of lengths mί9. . . , πik, respectively, then X is a normal combination of
length 1 + max{mlf. . ., mk) and degree 0.

(iii) If X is an open combination and Xx is a normal combination of
length m and degree n, then X is a normal combination of length m + 1 and
degree n + 1.

{iv) If Y is obtained from X by a head contraction and Y is a normal
combination of length m and degree n, then X is a normal combination of
length m + 1 and degree n.

Lemma 12. If Y = [y/x]X and Y is a normal combination of length m
and degree n, then X is a normal combination of length m and degree n.

The proof is by induction on m. Note that Y is open, closed, or re-
ducible if and only if X is open, closed, or reducible respectively. Cases
(i) and (ii) of the definition are trivial. Suppose X and Y are open. Then
for some indeterminate z, Yz is a normal combination of length m - 1 and
degree n- 1. Take an indeterminate w not occurring inX, and distinct from
x and y. Then
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Yz = [z/w][y/x](Xw)

hence, by the induction hypothesis, Xw is a normal combination of length
m - 1 and degree n - 1. It follows that X is a normal combination of length
m and degree n. If both X and F are reducible, and reduce by a head con-
traction to Xx and Y1 respectively, then Yx = [y/x\Xχ. By the induction
hypothesis the lemma follows.

Lemma 13. If X is a normal combination of length m and degree nr

then m and n are uniquely determined.

The proof is by induction on m. All cases are trivial except when X is
open, and here we use Lemma 12.

The next step is to associate with every normal combination a normal
form invariant under the equality relations. This normal form depends on
the algorithm for abstraction. The normal form obtained with the weak al-
gorithm is called the weak normal form, and that obtained with the strong
algorithm is called the strong normal form. The defining rules are as fol-
lows.

(i) If X is an indeterminate the normal form of X is X itself.
(ii) If X = xXί. . . Xk, where X{ is a normal combination with normal

form Ui, then xUΊ . . . ί/& is the normal form of X.
(iii) If X is an open combination not containing the indeterminate x, and

U is the normal form ofXx, then [x]U is the normal form of X.
(iv) If X is reducible, Y is obtained from X by a head contraction, and

U is the normal form of F, then U is also the normal form of X.

For a fixed abstraction algorithm this definition assigns a unique nor-
mal form to each normal combination. In fact, from Lemma 12 it follows
that in part (iii) of the definition of the normal combinations the indeter-
minate x can be assumed not occurring in X; further from Lemma 10 it
results that the normal form is independent of the indeterminate x.9

Theorem 7. If X is a normal combination of length m and degree n,
and xί9. . . , Xk are distinct indeterminates not occurring in X,(0 ^ k —n)9

then Xxγ.. . x^ reduces by head contractions to a normal combination Y, of
degree n - k, with normal form U such that Y is open if k<.n, and is closed
if k = n, and the normal form of X is \xx,. . ., Xk\U.

The proof is by induction on m, and covers both the weak and the strong
normal forms.

(i) and (ii) X = xX1...Xt, t^O. Then n = k = 0, and the theorem fol-
lows taking Y = X.

(iii) X is open, hence n> 0. For k = 0 the theorem is trivial. Assume
k > 0. Now Xxγ is a normal combination of length m - 1 and degree n - 1.
By the induction hypothesis Xxt... Xk reduces by head contractions to a
combination F, with normal form U, such that the normal form of Xxx is
[x2,.. . , Xk\ϋ. Further F is open if k - 1 < n - 1 and is closed if h - 1 =
n - 1. By definition the normal form of X is [xγ ][x2,..., ΛΓ&]Z7, and this is
[ # ! , . . . , Xk]uby definition.
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(iv) When X is reducible the theorem follows immediately from the in-
duction hypothesis.

Theorem 8. If X is a normal combination, and xx,. . . , X& are distinct
indeterminates not occurring in X, then Xxx. . . %k is a normal combination,
and the strong normal form of X is [xl9. . . , Xk]U where U is the strong
normal form of Xx1. . . x^, and the strong algorithm is used.

That Xxx. . . Xk is a normal combination follows easily from the defini-
tion and Lemma 12. The second part is proved by induction on the length of
X.

(i) and (ii) X = xXx. ,.Xt,t^O. The normal form of xXlm . .Xtx1. . . xk

is xU1.. . UtXi. . . %k> where Z7, is the normal form of X{. Also the normal
form of X is xUι. . . Ut. Since every indeterminate occurring in Ui must
occur also in X{, we have by clause c) of the strong algorithm that

[xi, " iXkUxUί. . . UtXi. . . Xk) = xUλ. . . Ut

(iii) and (iv) The cases in which X is open or reducible follow easily
using the induction hypothesis and the definitions.

Lemma 14. If X is a normal combination of degree n, and X =β Y,
then Y is a normal combination of degree n.

The proof is by induction on the length of X,

(i) and (ii) X = xXx. . . Xt, t ^ 0. By Theorem 5, Y reduces by head
contractions to a combination xYγ... Yt such that X{ =o Yf, by the induction
hypothesis Γ; is a normal combination. Since Y reduces by head contrac-
tions to a normal combination of degree 0 it is a normal combination of de-
gree 0.

(iii) X is open. By Theorem 4, Y reduces by head contractions to an
open combination Z. Then Xx =β Zx, and by the induction hypothesis Zxis
a normal combination of degree n - 1. Hence Z and Y are normal combina-
tions of degree n.

(iv) X is reducible. This case follows immediately using the induction
hypothesis.

Theorem 9. If X is a normal combination, with normal form U, and
X =β Y, then U is also the normal form of Y.

The proof is by induction on the length of X and covers both the weak
and the strong normal forms. Suppose the degree of X and Y is n ^ 0. Take
indeterminates xl9. . . , xn, all distinct and not occurring in X or Y. By
Theorem 7, Xx1...xn reduces by head contractions to a combination
xXi... Xk such that

[#!,. . . 9Xn\xUl. . . Uk)

is the normal form of X and Ui is the normal form of Xi. Hence, by
Theorem 5, Yxι.,.xn reduces by head contractions to xYλ... Yk where
Xi =β Y{. By the induction hypothesis Ui is the normal form of Yz . Hence,
by Theorem 7, U is the normal form of Y.
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Lemma 15. If X is a normal combination, with strong normal form U,
and Y is obtained from X by replacing occurrences of S(KI) by I, then Y is
also a normal combination with strong normal form U.

The proof is by induction on the length of X. Suppose X is of degree
n ^ 0. Take indeterminates x19..., xn, all distinct and not occurring in X
or Y. Then Xxx... xn reduces by head contractions to a combination
xXx...Xk, with strong normal form xU^... Uk, where U{ is the strong
normal form of X{. By Lemma 9, Yxx... xn reduces by head contractions
to xYλ... Yk> where Y{ is obtained from X{ by replacing occurrences of
S(KI) by I. By the induction hypothesis Ui is the strong normal form of Yi,
hence xUx... U% is the strong normal form of Yxλ... xn. It follows that Y
is a normal combination and by Theorem 8 the strong normal form of Y is

U = [xι,...,x»lxU1... Uk)

Lemma 16. If X is a normal combination, with strong normal form U,
and Y is obtained from X by replacing occurrences of I by S(KI), then Y is a
normal combination with strong normal form U.

The proof is by induction on the length of X. Supposed is of degree
n — 0. Take indeterminates x19..., xn,y, all distinct and not occurring in
X. Then Xxx... xn reduces by head contractions to a combination xXγ... Xk,
with strong normal form xUx.. . Uk By Lemma 8, Yxx... xny reduces by
head contractions to a combination xYγ.. • Yuy, where y, is obtained from
Xi by replacing occurrences of I by S(KI). By the induction hypothesis the
normal form of Yxx... xny is xU1... U^y, and by Theorem 8 the normal
form of Y is

[xi,. . . fXmy](xUi> Uky) =[x,..., x](xUι.. . Uk)

since y does not occur inxUί... Uk

Theorem 10. If X is a normal combination, with strong normal form U,
and X = Y then Y is a normal combination with strong normal form U.

This follows from Theorem 9, Lemma 15 and Lemma 16 noting that
rule (C7) is valid for ^-equality.

Theorem 11. If X is a normal combination of degree n, with normal
form U, Y is a normal combination of degree 0 with normal form V, y is
some indeterminate, and Z = [Y/y]X, then Z is a normal combination of de-
gree n with normal form [V/y]U.

The proof is by induction on the length of X, and covers both the weak
and the strong normal forms.

(i) X = xXi... Xky k ^ 0, where x is not y. Then Z = xZx... Zk where
%i = [Y/y]Xi By the induction hypothesis Zi is a normal combination with
normal form [V/y]Uu hence Z is a normal combination with normal form
[V/y]U.

(ii) X = yXι...Xkf k ^ 0. Then Z = YZY... Zk, where Z{ = [Y/y]X.
By the induction hypothesis, Z, is a normal combination with normal form
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Uj = [V/y]ϋi, where U{ is the normal form of Xf . Since Y is of degree 0, it
reduces by head contractions to a combination xY1... Yt, and V = xVx... Vt

where Vj is the normal form of Fy. Hence Z reduces by head contractions
to xYi. . . YtZι... Zk, which is a normal combination with normal form
xVx... VtU[... U'k. Since

[V/y]U= VU'i...U
r

k^xV1... VtU'Ί... U'k

the theorem is proved in this case.
(iii) X is an open combination. Take an indeterminate x not occurring

in X or Y, and distinct from y. Let U1 be the normal form of Xx. By the
induction hypothesis Zx = [Y/y ](Xx) is a normal combination of degree n - 1
with normal form [V/y]ϋ1. Since Z is open, this means that Z is a normal
combination of degree w, and the normal form of Z is

MIT/JO^I Ξ [v/y\x}Uι = [F/;y]ί/

by Lemma 11.
(iv) The case in which X is reducible follows easily by the induction

hypothesis.

Theorem. 12. If X is a normal combination, and U is the strong {weak)
normal form of X, then X = U(X =n U).

The proof is by induction on the length of X. All cases are trivial ex-
cept when X is open. Here we apply the induction hypothesis, for equality
Theorem 3 (iv), and for 0-equality Theorem 2 (vi), noting that for the weak
algorithm [#]£/• is always an open combination.

We have proved the properties of the normal combinations that are
needed for our subject. It is convenient here to make a remark about the
role of indeterminates in the definitions and proofs given in this section. It
is clear that in order to be able to show that a combination is normal we
must have at least one indeterminate in the system Γ. The function of this
indeterminate is quite similar to that of variables in the predicate calculus
when used to prove closed formulas without free variables. In both cases
we use some kind of dummy element, to prove properties involving some
constants that are completely independent of that element. This also shows
that the process of proving that a combination is normal involves some kind
of quantification. Further, our proofs seem to require the existence of n
distinct indeterminates for arbitrary n, i.e. that we must have an infinite
set of indeterminates. This is not the case: for a given X, those proofs
describe inductions in which only a finite number of indeterminates is nec-
essary. We may say that for each given case, we extend our system adding
enough indeterminates in order to perform the induction described in the
proof. Since in all cases the properties proved are independent of the num-
ber of indeterminates in the system, we get a proof for the original system.

4. Normal combinations and logical paradoxes. Our system of com-
binatory logic allows us to construct complex functions out of the con-
stants given as primitives, and to derive equations that correspond to some
extensionality principles. The primitives are S,K,I and possibly other con-
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stants introduced with some intended meaning. With respect to the relations
studied in the preceding sections, these constants are of course indetermi-
nates. When speaking of constants, we shall exclude the combators S,K and
I.

To formalize the intended meaning of the constants we must introduce
new relations, with adequate defining rules. Suppose there is a constant P
representing implication, and that some class of combinations, called prop-
ositions, is defined in such a way that if X and Y are propositions then PXY
is a proposition, and if X is a proposition and X = Y, then Y is a proposition.
The definition of the combinations that are propositions involves several
difficulties. First we show that under some very general conditions the
system would become inconsistent. Suppose we have a unary relation de-
noted with the prefix (-, such that for arbitrary propositions X and Y the
following conditions are satisfied:10

(i) \~P{PY{PYX)){PYX)
(ii) // \~X, and X =a Y, then \-Y

(iii) If \-PXY, and \-X, then \-Y

For a given proposition U, consider the combination

Z = [x](P(xx)(P(xx)ϋ)]

The combination Z is intuitively a class; suppose we have defined the class
of propositions in such a way that the combination ZZ is a proposition.
Then we have

ZZ>P{ZZ)(P{ZZ)U) > P{P(ZZ){P(ZZ)U))(P(ZZ)U)
\-P(P(ZZ)(P(ZZ) U))(P(ZZ) U) by (i)
hP(ZZ){P(ZZ)U) by(ii)
VP{ZZ) U by (iii)
VZZ by (ii)
\-U by (iii)

The preceding argument is just a generalization of the Russell paradox
due to Curry. It is easy to see that the combination ZZ is not normal. Now
suppose that the class of propositions has been so defined that every propo-
sition is a normal combination. We assume also that there is a constant
representing negation and the class of proposition is closed under negation.
In place of condition (i)we assume now some set of axiom schemata that are
tautologies in the usual sense, and take conditions (ii) and (iii) as the only
rules of derivation. The system so obtained is consistent. For if \-X holds
with some derivation, and U is the normal form of X, we can obtain a de-
rivation of \-Uiϊ in the derivation of \-X we replace each combination by its
normal form. In this new derivation rule (iii) is not used, since combina-
tions in normal form are equal if and only if they are identical. Hence we
have a derivation in the sense of the predicate calculus; since the normal
form of a tautology is again a tautology, it follows that U is a tautology.

This consistency result is not specially deep, since no definition of the
class of propositions has been given that satisfies the requirements and is
acceptable on any reasonable grounds. Later it will be shown that if a
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classification in types is used in order to define the propositions, then the
requirement of normality is satisfied. Our aim here is to show that in
order to avoid certain kinds of paradoxes that involve only the propositional
calculus and rules for equality, we are not obliged, in principle, to intro-
duce types.

Suppose again a class of propositions has been defined in such a way
that the normality condition is satisfied. We want to introduce a universal
quantifier with the usual properties. Let ir be a primitive constant repre-
senting the quantifier. We assume there are in the system atomic entities
with the properties of variables. Then, if X is a proposition and x is a var-
iable, the combination TΓ([ΛΓ]X) is a proposition. We want the following rule:

(iv) // \-TΪY then \-YU

where U is a combination satisfying some conditions. The problem now is
to give conditions in this rule to assure that the combination YU is normal.
For, even if Y and U are both normal, it may happen that YU is not normal.
For instance if we take both Y and ί7to be the combination Z defined at the
beginning of this section.

A possible solution would be to restrict U to be a combination of de-
gree 0. Then, by Theorem 11, YU is also a normal combination. In this
way we exclude open combinations from the range of the quantifier. Since
classes and functions are represented by open combinations, the system ob-
tained in this way would be similar to first order logic.

Another possible solution is to introduce types; this will be considered
in detail in the next sections.

5. Types in combinatory logic. The preceding discussion intended to
suggest the following conclusion: types are necessary to give conditions
for Y and U in order to secure that YU is a normal combination even if U is
of positive degree. In this section there is considered a formalization of the
theory of types of a very general character. In a forthcoming paper I hope
to apply the results obtained here to a more conventional system.

As before, the system Γ consists of the combinations generated by
S,K,I and possibly some indeterminates. We consider also a set of formal
objects generated by an atom denoted by the letter F,and anon-empty set
of elements called atomic types. These formal objects are called types,
and are defined by the following rules:

a) Each atomic type is a type.
b) If a and β are types, then the triple consisting of F, a and β in this

order is also a type. This triple is denoted: Faβ.

Lower case Greek letters will denote types. We also use the following
notation:11

F*αi...Gϋnj8 for FGΊ F , ^ a2... anβ
where n > 1 and Fi is F

We assume that with each indeterminate x of the system Γ a type a has
been associated, and x is said to be of type a. A relation between combina-
tions and types is defined by the following rules, where X and Y stand for
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arbitrary combinations, and a,β and μ stand for arbitrary types. For this
relation we use the notation: X/a which is read: X is of type a.

Rule (Ax) If x is an indeterminate of type a , then x/a
Rule (S) S/F3F2aβι±Faβaμ
Rule (K) K/F 2aβa
Rule (I) I/Fαα
Rule (F) IfX/Faβ, Y/a then XY/β

Several elementary properties of this relation are stated in the follow-
ing lemmas. The proofs can be easily obtained using the definitions.

Lemma 17. If X/a and X = X0Xi... Xk, where Xo is the leading atom,
then there are types βx..., βk such that

Xo/Fkβi- βk<*

Xi/βi i= l,...,k

Lemma 18. If X/a and X is an open combination, then a is not atomic.

Theorem 13. IfX/β, x/a and Y= [x]X, then Y/Faβ.

The proof is by induction on the derivation of X/β, and covers both the
weak and the strong algorithm. We have the following cases:

(i) X = Zx where Z does not contain x, and Y = Z. The only way to
derive Zx/β is from Z/Faβ and x/a.

(ii) X does not contain x, hence Y = Kx. Here from K/F2βaβ and X/β
we obtain by rule (F), KX/Faβ.

(in) X is x, hence β = a, and Y = I. By rule (I) we have \/Fota.
(iv) X = X,X2. Suppose Yι = [x]Xλ, Y2 = [x]x2, and Y = SFX Y2.

We have the following derivation:

XjFμβ X2/μ

XiXz/β

Using the induction hypothesis we have

S/F3F2aμβFaμaβ Y1/F2aμβ

SYjFFaμFaβ Y2/Faμ

SYxY2/Faβ

Theorem 14. If X/a and X > Y then Y/a.

The proof by induction on the derivation of X^ Y is easy.12

Theorem 15. IfX/β, Y/a, x/a and Z = \Y/x]X then Z/β.

By Theorem 13 we have [x]x/Faβ, hence by rule {F),{[x]X)Y/β. Since
([#]X)r> Z, we haveZ//3by Theorem 14.

A combination Y is said to be a β-normal combination if the following
condition is satisfied: given X,a, and y such that X/a, y/β and X is a
normal combination, then [γ/y]x is a normal combination.
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Taking X to be y, it follows that if Y is β-normal it is a normal combi-
nation.

Lemma 19. If X/Fβa, and X is normal and Y is β -normal, then XY is
normal.

Let y be an indeterminate of type β not occurring in X. Then Xy/a.

Since Y is β-normal, [Y/yK-X/y) = XY is normal.

Theorem 16. If Y is normal and, Y/β, then Y is β-normal.

The proof is by induction on the structure of β. We assume that if Z
is a normal combination, Z/μ, and μ is a proper part of β, then Z is
μ-normal. Now suppose μ is fixed. Let X be some normal combination of
length m, such that for some a, X/ot. We show that given a normal combina-
tion Y, with F//3 and y/β, then the combination [γ/y]Xis normal. The proof
of this is by induction on m. We have the following cases:

(i) X is an indeterminate. This case is trivial.
(ii) X = xXx. . . Xk, k — 1, where x is not y. Since X/a, we have for

some types βx,. . . , βk that

tf/Fjfe/Si... βka

Xi/βi i = l,...,k.

By the induction on the length, Z; = [Y/y]Xi is normal. Then [Y/y]x =
xZγ... Zk is also normal.

( i i i ) X = yXι...Xkj k ^ 1. S u p p o s e [γ/y]χ = YZX... Zk, w h e r e Z{ Ξ

[Y/y]Xi. Again we have

y/Fkβi ..βk<*

Xi/βi i = l,...k

It follows that

β Ξ FΛ]8i.. . βk<*

As in case (ii) Z z is normal. Further since Y/β, by Theorem 15 we have
Zi/βi. Since & is a proper part of β, it follows that Zi is β -normal. Now,
from Y/β, using k times Lemma 22 we obtain that Γ ^ . . . Zk is a normal
combination.

(iv) X is an open combination. Then a is not atomic. Suppose a = Fc^c^.
Take an indeterminate #, distinct from y, and not occurring in X. Then
J£ar/#2 a n d by t n e induction hypothesis [Y/y](Xx) = ([Y/y]X)x is normal.
Hence [Y/y]x is normal.

(v) X is reducible. Suppose that Xx is obtained from X by a head con-
traction. By the induction hypothesis [Y/y]Xx is normal. Since [Y/y]Xγ is
obtained from [r/y]X by a head contraction, it follows that |.y/;y]x is
normal.

Theorem 17. If X/a , then X is a normal combination.13

The proof is by induction on the derivation of X/a. Rules (Ax), (S), (K)
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and (I) are trivial. Consider rule (F) and suppose we have the following
derivation, where X = XλX2

XjFβa X2/β
X1X2/ot

By the induction hypothesis Xλ and X2 are normal. By Theorem 16, X2 is
β-normal. Hence, by Lemma 19, XXX2 is normal.

Theorem 18. If X/Fφ±. βk&, where a is atomic then the degree of
the normal combination X is not greater than k.

For indeterminates yλ,..., y^ of type βγ,..., βk respectively, we have
JζVjL... y k/a. Since Xyι... y^ is normal, it reduces by head contractions to
a combination Z that is open or closed, according to whether its degree is
greater or equal to 0. Further Z/a. Since a is atomic, Z must be closed.
Hence the degree of X is not greater than k.

Theorem 19. If X/a and U is the normal form of X9 then U/a .

The proof is by induction on the length of X, and covers the weak and
strong normal forms. We have the following cases:

(i) Xis an indeterminate. This case is trivial.
(ii) X = xXx.. . Xk, k — 1. This case follows easily using the induction

hypothesis.
(iii) X is open. Then a is not atomic, say a = Fμβ. Take an indetermi-

nate x not occurring in M, of type μ. Then Xx/β. If V if the normal form of
Xx, by the induction hypothesis we have V/β. Since U = [x]V, by Theorem
13 we have U/Fμβ.

(iv) X is reducible. This case follows easily using the induction
hypothesis.

Lemma 20. If for a closed combination X we have both X/a and X/β
then a = β.

This follows from the definitions.

Lemma 21. If X/a, Y/β, X = Y and the strong normal form of X and Y
is closed, then a = β.

This follows from Theorem 19, and Lemma 20.

Corollary. If X/a, Y/β, X = Y, and a is atomic, then a = β.

We remark here that there are normal combinations for which no type
can be assigned. The combination SI I is an example of such a normal com-
bination.

6. General models for type theory. With each type a associate a set
a* in the following way: if a is atomic, then a* is some given non-empty
set; (Fβa)* is a non-empty set of functions, each one with domain β* and
range included in a*. We shall use the following notation: if fe(Fβa)*, and
b e β*, then [f]{b) denotes the value obtained when the function/is applied
to b. For n > 1, if / e (Fn βx... βna)*, and b{ e βf9 then [f](b1,..., bn) =
[[flb1,...,bn.J](bn).
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The system of sets o* is called a general model if it satisfies the fol-
lowing conditions:

(i) For arbitrary μ,β and a, ( F 3 F2μβaFμβμa)* contains the function
Sμβa defined as follows: for fe(F2μβa)*, g e(Fμβ)*and c e μ*9[SμβaHίf,g9c)
= [[f](c)]([g](c)).

(ii) For arbitrary μ and β, the set (F 2 μβμ)* contains the function Kμβ,
defined as follows: for c e μ* and b e β* [ Kμβ](c,b) = c.

(iii) For arbitrary β, the set (F/3β)* contains the function \β defined for
be β*, [\β](b) =b.

Note that condition (i) means also that (FFμβFμa)* contains the function
[Sμβalif), and that (Fμα)* contains the function[[Sμβ ](f)](g). Condition (ii)
means also that (Fβμ)* contains the function [Kμβ](c).

A valuation V, is a mapping which to each indeterminate x of type a
gives a value V(x) e α*. If V is a given valuation, then for each type a and
comvination X, a set V(X,a) is defined by induction on the structure of X, as
follows:

(i) If X is an indeterminate of type a, the V(X) e V(X,a).
(ϋ) Sμβae V(S, F3F2μβaFμβμa)

(iii) Kμβ e V(K,F2μβμ)
(iv) |£ e V(l, Fββ)
W If X = YZ, and for some type β, f e V(Y,Fβa), b e V(Z,β) then

[f](b) eV(X,a).

Lemma 22. V(X,a) is non-empty if and only if X/a.

The proof by induction on the structure of X is trivial.

Lemma 23. If V1 and V2 are two valuations that give the same value to
all the indeterminates occurring in X, then for all types a, Vι{X,d)- V2(X,a).

By induction on the structure of X it can be shown that ViiXyά) c
V2 {X, a) and V2 (X, a) c Vι {X, a).

Lemma 24. //X > F, thenV(X,a) <zV(Y,a).

The proof by induction on the derivation of X ^ Y is easy.

Theorem 20. If V{X,a) is non-empty, then it contains exactly one ele-
ment.

By Lemma 22 X is a normal combination. The proof is by induction ,on
the length of X. We have the following cases:

(i) X is an indeterminate. In this case V{X) is the only element in
V(X,ά).

(ii) X = xXx... Xk, k ^ 1. Then for given ft , . . . , βk, any element in
V(X,a) is of the form [f](bly..., bk) where / is the unique element in
V{x, F^/3χ.-.. βkCt) and, by the induction hypothesis, 6t is the unique element
inV(Xi,βi).

(iii) X is open. Then a is not atomic, say a = Fβμ. Take an indetermi-
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nate x of type β not occurring in X. Then Xx/μ, and by the induction
hypothesis V(Xx,μ) contains exactly one element for all valuations V. Now
let V be some valuation, and suppose / e V{X,a), g e V(X,a). Take δ e μ * .
Consider the valuation VΊ which gives to x the value b, and otherwise is
identical with V. Then, by Lemma 24, V(X,a) = Vι{X,ά), hence/ and g are
in Vx{Xyot). Also we have [f](b) e Vλ(Xx,μ) and [g](b) e Vλ(Xx,μ)9 hence
[f](b) = [g](b). This is true for arbitrary b in 0*; hence f=g.

(iv) X is reducible. This case follows easily using the induction
hypothesis and Lemma 24.

We now introduce the following notation: if V(X,a) is not empty, then
Va(X) denotes the unique element in V(X,a).

Lemma 25. If X/a, and X > Y, then Va(X) = Va(Y).

This is a consequence of Lemma 24.

Lemma 26. LetX/Fβμ, f= VFβμ{X), and b e β*. Then[ f](b) = V%Xx),
where x is some indeterminate of type β not occurring in X, and Vι is a
valuation that gives to x the value b, and otherwise is identical with V.

By Lemma 24, V^μ(X) = VF^(X) =/, and by definition [f](b) = V^Xx).

Theorem 21. If X/<*> and U is the normal form of X, then Va(X) = Va{U).

The proof is by induction on the length of X, and covers both the weak
and the strong normal forms.

(i) X is an indeterminate. This case is trivial.
(ii) X = xXλ. .. Xkt k — l This case follows easily using the induction

hypothesis.
(iii) X is open. Then a is not atomic, say a = Fβμ. Take an indetermi-

nate x of type β, not occurring in X. Suppose b e β* and V1 is a valuation
that gives to x the value b, and otherwise is identical with V. By Lemma 26
we have

[VQ(X)](b) =V?(Xx)

[Va(U)](b) =VΪ(Ux)

If Y is the normal form of Xx9 by the induction hypothesis

V?(Xx) =V?(Y)

Also Ux ̂  y, hence by Lemma 25

VΪ(Ux) =VΪ(Y)

It follows that for arbitrary b e β*

[Va(X)](b) = [Va(U)](b)

Hence that Va(X) = Va(U)

(iv) X is reducible. This case follows using the induction hypothesis
and Lemma 25.
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Corollary. If X/a, Y/a and X = Y, then Va(X) = Va(Y).

NOTES

1) This paper is based on part of a doctoral thesis submitted to the
Pennsylvania State University in 1963. The author wishes to express sin-
cere thanks to Dr. H. B. Curry for his assistance and to the Consejo
Nacional de Investigaciones Cientίficas y Tecnicas dela Repύblica Argentina
for a fellowship that allowed him to study in the U.S.A.

2) See [3], [4], [5] and [7].
3) For all the purposes of this paper it would be sufficient to take S and

K as the only primitive combinators. Since I plays a fundamental role we
think it is convenient to take it as a primitive.

4) In the terminology of Curry there is an operation, called the applica-
tion operation, which when applied to X and Y produces (XY).

5) In connection with this definition see [7], Chapter 6A.
6) See [9], Section C, Theorems 10 and 12.
7) For a more detailed exposition see [7], Chapter 6.
8) In this paper the expression: "replacing occurrences" includes the

case in which no replacement is made.
9) We avoid giving here the details of the proof of uniqueness of the

normal form. They can be easily furnished by the reader.
10) See also [θ] and [7], Chapter 8.
11) The notation we use for types satisfies the conditions of the Lukasie-

wicz notation, hence we may avoid writing parentheses. In any formula Fn

must be followed by n + 1 arguments.
12) See also [7], Theorem 9C2.
13) A proof of this theorem is given in [7] by means of a formalization

in which the technique of Gentzen is used, and a form of the elimination
theorem is proved.
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