
293
Notre Dame Journal of Formal Logic
Volume IV, Number 4, October 1963

PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC. II
(Multi-valued Logics)

S. SUMMERSBEE and A. WALTERS

We consider here in greater detail a problem mentioned en passant in
our previous paper1 viz., the programming of problems in multi-valued
logic for solution by means of a digital computer. Once again, to give the
inquiry a definite direction a particular problem is chosen for discussion.
This problem has already been discussed by Rose2 but from a different
point of view; it has already been attacked from an entirely different direc-
tion, and some solutions obtained, by programme on DEUCE and ACE.3'4

The discussion divides naturally into three parts: a description of the
machine which is to be programmed to obtain a solution to the problem; the
problem to be solved and the formal multi-valued logic used to obtain a
solution.

/ The Machine In our previous paper we discussed the use of a digital
computer working in the binary scale of notation i.e. each number or "ma-
chine word" is represented in the machine in the form

n-1
Σ ai2

i~1 {1 < i < n-1; a{ = 0 or a{ = I).
i=l

Because of such number representation a binary machine is particularly
suitable for operating on the values of two-valued propositional variables.

Our present problem is solved in terms of multi-valued logic, although
a multi-valued logic can be represented within a two-valued system. The
calculation of the values of logical functions is easier of the radix of the
number system coincides with that of the n-valued logic used. However, a
decimal machine is easier to use than a binary machine for programmes
written in an ^-valued logic.

1. This Journal, v. Ill No. 3. No knowledge of this paper is assumed.
2. cf ref. (1) at end.
3. cf ref. (2) at end.
4. See ref. (4).

Received January 22, 1963



294 S. SUMMERSBEE and A. WALTERS

The machine in question uses an instruction form which consists of a
function part and two addresses e.g. the instruction

10 ax a2

may be interpreted as

"add the contents of address ax to the contents of address a2 and return the
result to address α2 "

The instruction

15 d\ a2

may be interpreted as

"test the result of the previous operation: if positive, take aγ\ if negative
take a2; if neither take next instruction."

The word length of the machine is ten decimal digits, one of which is
used as a sign indicator. Positive numbers have a zero in the sign place
and negative numbers have a nine in the sign place and the number stored
as a nine's complement. The machine has a parallel adder and a ferrite-
core memory store operating at a 6 μs cycle time, both of these features
making for relatively fast operating times. The input of information is by
means of punched cards, this speed being 3600 instructions per minute.

These details are sufficient to show that the machine is a fairly con-
ventional decimal digital computer. Although logical functions are avail-
able, e.g. logical "and" (collate) and "negate" no use will be made of these
functions in what follows. Indeed, these functions may be regarded as
something of an anomaly in a machine operating with numbers in the form

n-1
Σ ailO1'1 (1 ^ i ^ n-1; at• = 1, 2 . . . 9).
i=l

II The Problem Suppose that in a department of a school or college there
are 1 lecturers and c classes to be taught by these teachers. If any teacher
can take any class at any teaching period of the week a simple allocation of
one teacher to each class will solve the problem, provided that the number
of classes can be adjusted to suit the number of teachers, or vice versa
(-we neglect the problem of classroom allocation). In fact however there
are other considerations which must be taken into account. If the timetable
to be compiled is for a department it usually means that only a fewer num-
ber of teaching periods are available, than the total number; and moreover
the available teaching periods would be scattered throughout the week.
Usually two classes cannot be merged. Some classes can (sometimes) be
merged but these are exceptions and they merge for single lectures only.

It is usually the case too, that the total teaching time per week is limit-
ed for the teacher, to less than the total time available for teaching. For
example, there may be thirty hours available each week for teaching but
each teacher is limited to twenty hours teaching (''class contact") each



PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC. II 295

week. Also, there will be some teachers who will lecture to certain classes
but not to others, and some teachers may be available for teaching only
during certain periods of the week, and not for other periods.

We can then set out a list of "conditions" which must be satisfied be-
fore a timetable can be said to be compiled. Furthermore, there very often
is more than one solution to a given timetable problem, and some solutions
may be more acceptable to the lecturers and classes than other solutions.
For example, if the last lecture of the day commences at 5 p.m. and the
first lecture begins at 9 a.m. a solution to a particular timetable problem
may give the first and last lectures of each day to one particular lecturer.
While this may be a satisfactory formal solution to the problem it probably
would not be regarded as very satisfactory by the lecturer concerned.

The problem of compiling a timetable may therefore be regarded as the
problem of finding a satisfactory arrangement of period-class-lecturer
throughout the week given (i) the number of lecturers (ii) the number of
classes (iii) the total number of lecture periods per week; and a set of con-
ditions such as "no lecturer may teach two classes simultaneously" "no
lecturer may teach for more than n-hours per week" "lecturer lz is not
available during teaching periods px and py," etc.

When the timetable problem has been solved for a particular depart-
ment it usually has to be fitted into the timetables for other departments in
the College, and then an allocation of classrooms, laboratories and work-
shops made to the appropriate period-class-lecturer arrangement.

It might be worth mentioning that this is only an example of a more
general type of scheduling problem; air traffic control and scheduling fac-
tory work are other examples.

/// The Logic The formal logic employed is multi-valued i.e., its propo-
sitional variables can take values other than 1 or 0 (or other than T or F).
The range of values which the propositional variables can take must be
fixed. For example, a value υ may lie in the range 0 ^ v ^ 1, or the range
may be so chosen that any integral number greater than 1 may be a value.
For convenience we adopt the latter course i.e., the range of values of v
will be 1 ^ v ^ m, where m defines the logic i.e. the logic is m-valued. In
multi-valued logic there are functions which are analogous to the functions
of two valued logic. For example, a function of two variables, f{P,Q), may
be defined in m -valued logic which is analogous to the function conjunction,
in two-valued logic, and in fact will reduce to conjunction in the two-valued
case when m =2. There is however a difficulty here since there is no ac-
cepted notation for the functions of multi-valued logic. In the two-valued

case the notation of Lukasiewicz will be used, " C " for "if then
» ; «κ» for " and " "A" for "either

o r " " N " for "not " . Similar symbols will be used for
the multi-valued case except that a bar will be written above the appropriate
symbol. Thus in the multi-valued case, the "conjunction" of P and Q will
be written as "KPQ".

In two-valued logic, of the two possible values which a propositional
variable can take, one is a "designated" value; the one attached to propo-



296 S. SUMMERSBEE and A. WALTERS

sitions which are asserted—the other is attached to propositions which are

denied. Because in two-valued logic there are two values and because as-

sertion and denial are two cases the value attached to propositions which

are asserted can be taken to be a sign of assertion itself. However, in the

multi-valued case this systematic ambiguity no longer holds. A proposi-

tional variable can have any of the values 1 < υ ^ m attached to it, and here

there is no sharp distinction between those propositions which are asserted

and those which are denied. The following rule5 may be adopted to meet

this situation; there is a truth-value v such that 1 ̂  v ^ m, and the truth-

values 1 v are referred to as "designated" while the truth-values

v + 1, m are undesignated.

These values may be interpreted in the following way. First note that

" I " is always a designated value and that "m" never is, so that these two

represent the extreme ends of a scale of values, with the others lying inbe-

tween. At one end of the scale there is the value "truth" (l), or the greatest

assertability, while at the other end of the scale there is "falsehood" (m)

or the least assertability. Between these two extremes of any two values

the lesser one has the greatest assertability. For example, in a four-valued

logic a proposition P may take any one of four values I, 2, 3, 4; these may

be interpreted as

P = 1; P is true

P = 4; P is false

P = 2; P is more likely to be true than not.

P = 3; P is more likely to be false than not.

This interpretation is only one of many and in fact below a different

one will be used.

In the two-valued case the truth-table for APQ is

TABLE I

P Q APQ

1 1 1

1 0 1

O i l

0 0 0

that is, APQ has the highest value of P and Q or, if p and q are the truth-

values of P and Q} then the truth-value of APQ is max (p,q).

Since however "1" is always to be a designated value in multi-valued

logic APQ is taken as min (p,q). For example, in the three-valued case

5. cf ref. (3) at end.



PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC. Π 297

TABLE II

P Q APQ

1 1 1
1 2 1
1 3 1
2 1 1
2 2 2
2 3 2

3 1 1
3 2 2
3 3 3

Conjunction and negation for multi-valued logic is given by max (/),^)
and ((m - p) + l). For the three-valued logic these values are given in

TABLE III

P Q NP KPQ NQ ANPNQ NANPNQ

1 1 3 1 3 3 1
1 2 3 2 2 2 2
1 3 3 3 1 1 3
2 1 2 2 3 2 2
2 2 2 2 2 2 2
2 3 2 3 1 1 3
3 1 1 3 3 1 3
3 2 1 3 2 1 3
3 3 1 3 1 1 3

The last three columns of the table give the values of NQ, ANPNQ and
NANPNQ and a comparison of the last column with the fourth column shows
that the equivalence of KPQ with NANPNQ of two-valued logic holds for
multi-valued logic.

In two-valued logic the equivalence of two functions is defined as
KCPQCQP. If a table is drawn up for a three-valued logic then the values
of this function will be as TABLE IV, where the value of CPQ is given by
max {l,(q - p) + l ) .



298 S. SUMMERSBEE and A. WALTERS

TABLE IV

P Q CPQ CQP KCPQCQP

1 1 1 1 1
1 2 2 1 2
1 3 3 1 3
2 1 1 2 2
2 2 1 1 1
2 3 2 1 2
3 1 1 3 3
3 2 1 2 2
3 3 1 1 1

It will be noticed that when P and Q have the same values the value of
the equivalence function is 1, i.e. KCPQCQP takes the designated value;
when the difference in values of P and Q is greatest (when p = 3 and q = 1,
or when p = 1 and q = 3) then the value of KCPQCQP is m and for other
values of P and Q, KCPQCQP takes a value intermediate between 1 and ra.
If "KCPQCQP" is abbreviated to "EPQ" (taking a value e), then this func-
tion may be interpreted as

e = 1; P and Q are equivalent
e = 2; P and Q are nearly equivalent
e = 3; P and Q are not equivalent

As will be shown below the functions cited above will be used extensively
in the solution of the time-table problem. It may not be out of place here to
discuss the manner in which the machine handles such functions.

The machine has a "word length" of ten decimal digits and for our
purpose may be taken as operating in the range

+ 999,999,999 > x > - 999,999,999

and consequently if the number which each register holds can represent the
value of one of the variables of an m-valued logic, a logic of m = 999,999,999
values can be dealt with by the machine.

The machine can be programmed to calculate the values of the functions
given above from the values of the variables.

If the values of P and Q are given, the value of KPQ can be calculated
from the rule max (p,q). The flow diagram, or logic, of the calculation is
given by the machine programme.

Y E S / \ V NO

Store p in z. Test sign of p - q

\

+ ve I N. - ve

Store p in z. Store q in z.

\J /
Jump to next part of programme



PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC. II 299

In the language of the machine the calculation is as follows: c(x) = p,

c(y) = Q C{z) = KPQ (at end).

Programme Function Address Address

Step l(aj 2{aJ

n 13 x y p-q. Result used for test.

n+1 15 n+2 n+4 Test sign: +ve jump a1

- υe jump a2

n+2 14 x z p-*z

n+3 18 Return link to main

programme.
n+4 14 y z q-*z
n+5 18 n+3 Jump to (n+ 3).

The value of APQ can be calculated in a similar way:

p = q?

YES / \ N O

Store q in z Test sign of p - q

\

+ ve / >v - ve

Store q in z Store p in z

Jump to next part of programme

Programme Function Address Address

Step i(βj) 2{a2)

n 13 x y p-q. Result used for test.
n+1 15 n+2 n+4 Test sign: +ve jump a±;

- υe jump a2.

n+2 14 y z q~^z
n+3 18 Return link to main pro-

gramme
n+4 14 x z p—*z
n+5 18 n+3 Jump to (n + 3).

The time of execution of both of these programmes will depend on
which branch of the programme is followed.

The maximum time taken for both of these programmes to be executed
is 56 micro-seconds, and the minimum time is 50 micro-seconds. If now
either of Table II or Table IΠ is examined it will be seen that for a three-
valued logic the short branch of the programme will be followed for one
third of the total number of executions of the programme (i.e. in just those
cases where p-q). And the long branch of the programme will be followed
in the remaining number of executions of the programme. Hence a mean
time of execution would be 54 micro-seconds.



300 S. SUMMERSBEE and A. WALTERS

The time taken to calculate the value of NP from the value of P is 72
micro-seconds, while the mean time of execution of a programme to cal-
culate the value of CPQ from the values of P and Q is 68 micro-seconds.
To calculate EPQ takes a mean time of 280 micro-seconds.

From TABLE II it is clear that in order to calculate all the values of
APQ, nine applications of the programme for calculating APQ are necessary
and the total time taken will be (9 x 54 μs) plus the time required for the
master programme arranging the count etc. In general if there are n vari-
ables in an expression, each of which can take m values, there will be mn

rows in the ''truth-table" for the expression (and mmtι possible column
entries in the "truth-table"). Suppose that we consider an expression of
three variables APΛQR in a three valued logic. To calculate the value of a
single row in the "truth-table" of JίPAQR, two applications of the A routine
are necessary. If there are n variables in an expression it will require
(n - 1) applications of the routines for calculating the values of A, Έ, C, ~E
and n applications of the routine for calculating the value of N. As an ex-
ample, suppose that instead of two variables in Table II there were three
variables, there would be (33 = 27) rows in the table. Each row in the table
would require ( 3 - 1 = 2) applications of the A routine, and the total number
of applications of A would be (2 x 27) i.e. the time taken to calculate the
entries in a column of the table for APAQR would be 2 x 27 x 54 μs plus the
time taken for the master programme.

The problem which has been chosen for discussion is that of compiling
a timetable for a College department. To serve as an example and to keep
the problem as close to reality as possible, the facts quoted to illustrate the
general argument refer to an actual College Mathematics Department.
There are actually forty-three classes of students to be covered, and thir-
teen lecturers available for teaching. Some classes can only be taught by
certain lecturers. For example, a class taking Applied Mathematics (Aero-
dynamics) would only be taught by those lecturers whose special fields in-
clude this subject. The classes can meet on any of the first five days of the
week (Monday to Friday), the first lecture starting at 8:45 a.m. and the last
at 5:30 p.m., but not all lectures are of the same duration.

Each lecture period must be identified and one way of doing this would
be to re-time the lecture periods so that each lecture will consist of multi-
ples of the shortest lecture period. For example, if the shortest lecture
period were half-an-hour, then this is counted as a unit period and a two-
hour lecture would count as four periods. In this way a day would comprise
fifteen periods, and there would be seventy-five periods in a working week.
However, by keeping lecture periods of unequal length the number of periods
in a day is reduced to nine. The starting times will be 8:45; 9:45; 11:00;
11:30 a.m., 2:00; 3:00; 3:30; 4:00; 5:30 p.m. and each period in the week will
be identified with a number. There are five days on which lectures can be
given, and since 9 x 5 = 45, we shall be concerned with a forty-five valued
logic. In general if λ are the lecture periods and μ the lecturing days then
a timetable will be compiled by means of a λμ-valued logic. Let each lec-
turer be denoted by " i ; " (I < j ^ 13) and each class by "c/' {1 < i ^ 43).



PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC. Π 301

Some lectures are repeated during a week and it is assumed that the
timetable is exactly the same for each week of the term. Since there are
λ lecture periods in each day and μ days of the week, any particular lecture
period k will be numbered 1 < k ̂  λμ. The first lecture on each successive
day beginning with Monday is numbered 1, 2, 3, 4, 5; the second lecture
period on each successive day 6, 7, 8, 9, 10 etc., or, if i is the i-th lecture
on the j-th day and n the lecture number n = (ί - 1) μ +j.

Each lecturer J7 may take any particular class more than once, or may
not take a particular class at all. Suppose that i7 lectures to cz at least
once then let the number of lectures given to cz by I7 be f(i,j). Instead of
propositional variables "P" "Q" etc., we use "Pi9jyk" where "Pi9j9k" de-
notes the proposition 'class i has lecturer j for the &-th time', with
1 ^ ί ^ 43; 1 < j ^ 13; 1 < k ̂  f{i,j). And if 1, takes Ct for the &-th time
during the period whose number is υ then Pz , ; ,& will take the value v.

Let us take a few examples:
Lecturer i 4 takes class cx for the first period on Monday hence k = 1

and Λ,4,i takes the value i .
Lecturer 14 takes class cλ for the third time during the twenty-second

period, hence k = 3 and Px 4 3 takes the value 22.
In the example the greatest number of times which any one lecturer

meets the same class is five. This is lecturer I 4 and class c1# Lecturer
I 4 meets class cx on five occasions, and all other lecturers meet their
classes on less than five occasions. The number of times that a particular
lecturer will meet a particular class will not in general be known until the
timetable has been compiled. However an upper limit may be placed on k,
thereby making this one of the conditions which an acceptable timetable
must satisfy. For the timetable quoted the greatest value k takes is 5, and
this may betaken as satisfying the condition that "no lecturer may meet any
class for more than five periods during any one week." Propositions are
denoted by (ζPi ; k" and since the maximum values of z, j and k are 43, 13
and 5 respectively there will be 43 x 13 x 5 = 2795 independent propositions.

Let us consider some of these propositions in more detail. They may
each take one of 45 values, and we may imagine a table showing these prop-
ositions in rows followed by a function of two of them e.g.,

TABLE V

i\l,l Pa,b,ό Px,y,z f(Pa,b,c Px,y,z)

vγ v2 Va VA



302 S. SUMMERSBEE and A. WALTERS

If Pa b c and Px y z both have the same value, say v, then it means that
lecturer 1& meets class ca in the same period that lecturer ly meets class
cx. Hence if lecturer 1 \ is not to teach two classes simultaneously the
timetable must satisfy the condition that NEPa,b9c Pχ9y9z for a φ x and y = b.

Suppose that lecturer lm cannot lecture to classes cUi - - cnχ (because

the lectures given to these classes are of a specialist nature outside the
field of lecturer lm ) then each proposition Pn.l9 m,k'9 Pn29m9k'> Pn3ym,k
PnX9 m^k represents a condition for the timetable which is not acceptable i.e.
the timetable must satisfy the condition NA Pni9m.,k Pn29m9k PnX9m,k.
These are now two conditions which the timetable must satisfy. We can
abbreviate these to 1^ and Π2. By setting out systematically conditions such
as Πi and Π2 which an acceptable timetable must satisfy, a set of such con-
ditions

Πx Πw

can be laid down. The conjunction of Uί Iίn would represent a final
column in a truth-table the computation of whose values would represent the
compiling of a timetable. We call the conjunction of Γ^ Un "condi-
tion I".

We mentioned the case where a particular lecturer is only available
for teaching during certain periods. Suppose this lecturer to be la and that
he is not available for periods x, y and z. This means that propositions of
the form P{ a k must not take values x, y and z in an acceptable timetable.
And hence that certain rows in the truth-table can be deleted. For example,
suppose that TABLE VI represents the final computation for a truth-table.

TABLE VI

^1,1,1 - - - - PifOί9k - - - - P43,13,5 " ~ - - / C P l , l , l - - - -)

1 1 .

! k \ \

i t : :

\ z \ \

Where the column f(Pt ^ ) represents possible timetables ful-
filling all the required conditions. The entries with values x, y, z under
"P{ a k" represent an undesirable feature of the timetable if lecturer la is
not available during periods x9 y, z. The number of rows in the truth-table
can correspondingly be reduced.



PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC. Π 303

Quite often it is the case with a departmental timetable that certain
periods for particular classes are reserved for periods of instruction in
other departments. For example, laboratory periods may be confined to
afternoons, and consequently any class which has a laboratory period in-
cluded in its course of instruction would not be available for mathematics
lectures during the afternoon i.e. for the classes P z > / ^/s taking values
greater than 21 are not acceptable conditions for a timetable. Once again
the rows of the table where these values occur in the column referring to
those particular classes can be deleted.

There are now two sets of conditions which a satisfactory timetable
must fulfil. The first set concerns the periods of the week during which
classes and teachers are available. This we have called "condition I". The
second concerns the allocation of teachers to classes, such as those out-
lined in the immediately preceding paragraphs. This we call "condition Π"
It will be seen that condition II reduces the number of rows in the truth-
table, while condition I represents a computation from entries in the rows
of the table. The final column of the table would give the arrangement of all
possible timetables satisfying conditions I and II. Not all of these time-
tables would be equally acceptable. The degree of "acceptability" may be
indicated by the value which a proposition (or function of propositions) takes
e.g., P = 1 may be interpreted as "P is acceptable." Hence if the "degree
of acceptability" is fixed in advance, say P = β (l ^ β ^ 10) then when the
first acceptable value is found in the final column of the truth-table the
computation may be stopped.

We may now make use of the actual timetable compiled (by hand) and
use it to form an estimate of the time required to carry out an actual com-
putation. Of course, the time which a machine actually takes to compile a
timetable could only be found either by having the machine carry out the
computation. Or by sorting out each step in the computation and then, by
summing the times taken by the machine to carry out every operation, to
estimate the machine time. It may be that in a particular case the machine
will find an acceptable timetable in the first line of the truth-table. This
is unlikely, and it is equally unlikely that the whole of the truth-table must
be worked through before an acceptable timetable is found. But at least the
time taken to compute every line in the table must be provided for, and by
considering the time required to compute all the rows in the table, a con-
servative time estimate may be made for the whole calculation.

In the timetable taken as an example there are forty-three classes,
thirteen lecturers and each lecturer may teach a particular class on as
many as five occasions (but no more). This gives a maximum of 2795 in-
dependent propositions i.e. 2795 columns in the truth-table. However, cal-
culation by hand from the actual allocation of teachers to classes shows that
in fact this number is reduced to 179. Furthermore, since each teacher is
limited in the number of class-contact hours to (on average) eighteen hours,
and each hour corresponds (on average) with a single teaching period, each
teacher will be free for 27 periods of the teaching week. Hence, at most
there will be 27 x 13 = 351 rows which can be deleted from the truth-table.



304 S. SUMMERSBEE and A. WALTERS

Since there are 179 propositions each of which can take one of forty-five
values, there will be in all 45179 rows in the truth-table,

i.e. approx. 10288

less the deleted rows i.e.,
> 10286 rows

Let us suppose that there are no more than three conditions to be sat-
isfied by the truth-table, and each one takes no more than 50 μs (i.e. the
minimum time to compute A P Q). Because there are 179 columns in the
table there will be 178 applications of the sub-routine concerned i.e. to
calculate the value of one column (corresponding to one of the conditions) of
the table would take 178 x 50 μs or approximately 9 x 10~3 seconds. As
there are three conditions to be satisfied (assuming that they are independ-
ent) the time taken to calculate an entry in the final column of the truth-
table would be greater than

3 x 9 x 10""3 = 27 x 10"3 seconds.

There are more than 10286 rows in the table and hence the time taken to
calculate a value for every row would be greater than

27 x 10"3 x 10286 seconds
or^Q=10277 years.

It will be appreciated that it is an extreme case where every row of the
truth-table would have to be calculated before an acceptable solution was
found. Never-the-less the time estimate omits any allowance for organizing
the machine programme (quite often this can exceed the actual time taken to
perform a computation). The length of time to carry out a computation de-
pends on (a) the number of propositions and (b) the value of the logic (e.g.,a
two-valued logic would give a 2179-rowed table as compared with the 45179-
rowed table under consideration.

As in our previous paper we conclude that if more than a few proposi-
tional variables are involved the evaluation, of the desired valued of a prop-
ositional function, by means of a truth-table algarithm is too slow. Various
methods have been suggested to shorten the time taken by the computation
but even so they are restricted to fewer variables than are often desired in
practice. We hope to discuss these in a further paper.

REFERENCES

[l] A. Rose, Many-valued Logical Machines. Proc. of Camb. Phil. Soc.
Vol. 54 pp. 307-321 1958.

[2] J. S. Appleby, D. V. Blake and E. A. Newman, Techniques for Producing
School Timetables. The Computer Journal, Vol. Ill No. 4.

[3] J. B. Rosser and A. R. Turquette, Many-Valued Logics. North-Holland
Publishing Co. 1952.



PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC. II 305

[4] The following appeared in "The Computer Journal", vol. 5 No. 3 after
this paper had been written.

"Considerable interest was shown in the paper "The Construction of
Class-Teacher Time Tables" presented by Professor Gottieb at the
recent I.F.I.P. Congress in Munich. The regular discussion was fol-
lowed by a special meeting at which some 40 persons were present. It
became evident that work on this subject is in progress at many institu-
tions. A list of groups interested in timetable construction was drawn
up and copies are available from the Assistant Secretary of the British
Computer Society at (Finsbury Court, Finsbury Pavement, London
E.C.2.) Professor Gottieb has undertaken to circulate any short sum-
maries of progress which are submitted to him, to the organizations
listed."

The Computing Laboratory,
Letchworth College of Technology,
Letchworth, Hertfordshire, Gt. Britain.




