S1° AND BROUWERIAN AXIOMS

IVO THOMAS

Using the notation of [1] we discuss the effect of adding one or more Brouwerian axioms $B_n : \mathbb{C}pL^nMp$ $(n \ge 1)$ to S1°. We call a set of one or more such axioms sufficient or insufficient according as its addition to S1° does or does not yield S5. The means of proof available in S1° will be everywhere pre-supposed.

Theorem 1. No set of axioms of the form B_{2k+1} $(k \ge 0)$ is sufficient.

Proof is by the matrix:

K	1234	Ν	М
* 1	1234	4	1
2	2244	3	3
3	3434	2	2
4	4444	1	4

which satisfies S1° and all B_{2k+1} but rejects $\mathbb{C}pMp$.

Theorem II. Any pair B_1 , B_{2k} $(k \ge 1)$ is sufficient.

From B_1 we have (1) $(\mathbb{C}L^2pp)$; from B_{2k} we have (2) $(\mathbb{C}LpL^{2(k+1)}p)$; k + 1 applications of syllogism to (1), (2) give $(\mathbb{C}Lpp)$ and so S1. But, as is known, $\{S1, B_{2k}\} = S5$.

Theorem III. For all m, n greater than 2, if m and n are co-prime, then B_{m-1} , B_{n-1} are sufficient.

If m and n are co-prime, there are positive integral r and s such that $rm = sn \pm 1$ and so $rm - 1 = sn - 1 \pm 1$. But B_{m-1} yields $\&LpL^{m+1}p$ if m > 2, and so, by replacement, B_{rm-1} for all r not less than unity. Similarly from B_{n-1} we can obtain all B_{sn-1} , and proceed as follows:

Received January 22, 1963

Case 1, rm - 1 = sn;

(1)
$$\mathbb{C}M^{rm-1}Lpp$$
 $[B_{rm-1}]$

 (2) $\mathbb{C}M^{sn}Lpp$
 $[(1), hyp.]$

 (3) $\mathbb{C}pM^{sn}p$
 $[B_{sn-1}]$

 (4) $\mathbb{C}LpM^{sn}Lp$
 $[(3) p/Lp]$

 (5) $\mathbb{C}Lpp$
 $[(4), (2)]$

Case 2, rm = sn - 1, proceeds similarly. Since B_{m-1} , B_{n-1} together yield (5), they are sufficient, as is clear from [1].

If m, n are greater than 2 but not co-prime, B_{m-1} , B_{n-1} are representable as B_{rp-1} , B_{sp-1} for some r, s, p, $(r, s \ge 1, p > 2)$, and so are derivable from B_{p-1} . If p-1 is odd, this axiom is insufficient by Theorem I. If p-1 is even and the axiom is insufficient, the antecedent of *Theorem III* is a necessary condition. But I know of no proof that B_n is insufficient for arbitrary even n.

REFERENCES

[1] B. Sobociński: On the generalized Brouwerian axioms. Notre Dame Journal of Formal Logic, v. III (1962), pp. 123-8.

Blackfriars Oxford, England