A REMARK CONCERNING THE THIRD THEOREM ABOUT THE EXISTENCE OF SUCCESSORS OF CARDINALS

BOLESŁAW SOBOCIŃSKI

The following three formulas about the existence of successors of cardinals:

- S₁ For every cardinal m there is a cardinal n such that (i) m < n, and (ii) the formula m < p < n does not hold for any cardinal p.
- **S**₂ For every cardinal m there is a cardinal n such that (i) m < n, and (ii) for every cardinal p the formula m < p implies $n \le p$.
- **S**₃ For every cardinal m there is a cardinal n such that (i) m < n, and (ii) for every cardinal p the formula p < n implies $p \le m$.

are discussed by Tarski in [2] who has shown there that S_1 can be proved without the help of the axiom of choice and that S_2 is equivalent to this axiom. Concerning S_3 it is remarked in [2], p. 32, that it is not yet known whether S_3 can be proved without the help of the axiom of choice, and, therefore, *a fortiori* it is not known whether S_3 is equivalent to the said axiom. The latter problem remains open, but according to the announcement given in [1], p. 73, note 2, the former one is solved in the negative by A. Lewi who has proved that S_3 does not follow from the axioms of the general set theory, even if the ordering principle is added to these axioms.¹ As far as I know this result of Mr. Lewi is not yet published.

In this note I show that each of the given below formulas, T_1 and T_2 , is such that the axiom of choice follows from it and S_3 . The formulas T_1 and T_2 are, as I conjecture, probably neither provable without the aid of the axiom of choice nor equivalent to this axiom.

In order to present the formulas T_1 and T_2 and the subsequent deductions in a more compact way I introduce here the following abbreviative definition:

D1 For any m and n, m < n if and only if m and n are cardinals, m < n, and for every cardinal \mathfrak{p} the formula $\mathfrak{p} < \mathfrak{n}$ implies $\mathfrak{p} \leq \mathfrak{m}$.

Using this definition we can present T_1 and T_2 as follows:

Received August 19, 1962

T₁ For any cardinal numbers m, n and p, if m < n and m < p, then $p \le n$.

and

T₂ For any cardinal numbers m, n, p and x, if m < n, m < p and n < x, then p < x.

Proof:

- (i) The axiom of choice implies T_1 . Since, obviously, for m being a finite cardinal T_1 holds banally, it is sufficient to prove this theorem for cardinal number m which is not finite. Hence, let us assume that
- (1) m is a cardinal number which is not finite

and the remaining conditions of T_1 , viz. that

(2) n and p are cardinal numbers

(3) m < n

and

(4) m < p

Then, by D1 and (4), we have

(5) for every cardinal x, if x < p, then $x \le m$

and, in virtue of the axiom of choice and (2), we can establish that

```
(6) either n < p or p \leq n
```

But, the first case of (6), viz. n < p, together with (2) and (5) implies

(7) $n \leq m$

which contradicts (3). Hence, the second case of (6), viz.

(8) $p \leq n$

holds. Thus, T_1 is proved with the help of the axiom of choice.

- (ii) Formula T_2 follows from T_1 . Let us assume the conditions of T_2 , viz. that
- (9) m, n, p and r are the cardinal numbers
- (10) m < n
- (11) m < p

and that

(12) n < r

Then, it follows from T_1 , (9), (10) and (11) that

and from D1 and (12) that

(14) n < r

Hence, (13) and (14) imply at once

(15) p < r

Thus our proof is completed. It has to be noted that, as the inspection of the proof given above shows without any difficulty, T_1 implies actually a stronger formula than T_2 , viz.

 T_2^* For any cardinal numbers m, n, p and x, if m < n, m < p and n < x, then p < x.

I do not know whether T_2 (or T_2^*) implies T_1 in its turn.

- (iii) The formulas S_3 and T_2 imply the axiom of choice. Let us assume that
- (16) m is an arbitrary cardinal number which is not finite

Hence, by (16),

(17) there is the least Hartogs' aleph 🕅 (m) in respect to m

and due to the well-known properties of Hartogs' alephs we know that the following formula

(18) m < m + 🛠 (m)

holds. Besides, obviously,

(19) $m + \aleph$ (m) is a cardinal number

and, since we have (16) and (17), the following statement

(20) the formula $m < f < m + \Re$ (m) does not hold for any cardinal f

can be established without the aid of the axiom of choice.² Now, in virtue of S_3 , (16) and (19), we know that

(21) there are cardinal numbers \mathfrak{p} and \mathfrak{r}

such that

(22) m < p

and

(23) $m + \Re (m) < r$

Hence, by **T**₂, (16), (19), (21), (18), (22) and (23),

(24) p < r

On the other hand, due to D1 and (23) we have

(25) for every cardinal t, if t < x, then $t \le m + \aleph$ (m)

which together with (21) and (24) implies at once:

(26) $p \leq m + \aleph (m)$

Since the first case of (26), viz. $p < m + \aleph$ (m), together with (22) and **D1** gives m (m) which is excluded by (20), the second case of (26), namely

(27) $p = m + \Re (m)$

holds. Hence, by (22) and (27),

(28) $m < m + \Re (m)$

which, in virtue of D1, gives

(29) for every cardinal $\{i, i \mid i \leq m + \aleph \}$ (m), then $i \leq m$

Now, obviously, we have

(30) \aleph (m) \leq m + \aleph (m)

without the aid of the axiom of choice. Since the first case of (30), viz. (m) < m + (m), together with (17) and (29) implies at once: $(m) \le m$ which due to the properties of Hartogs' alephs is impossible, the second case of (30), namely

(31) \aleph (m) = m + \aleph (m)

holds which gives at once:

(32) \Re (m) \geq m

i.e. that our arbitrary cardinal number m which is not finite is an aleph. Thus, we completed the proof that the axiom of choice follows from S_3 and T_2 .

(i \ddot{v}) Since, as it was shown in (ii), T_1 implies T_2 , the former formula and S_3 give also the axiom of choice.

NOTES

1. In this note the general set theory is understood as the set theory from which the axiom of choice and all its consequences otherwise unprovable have been removed. It is well-known that if we base a so defined set theory on an axiomatic system in which the notions of cardinal and ordinal numbers cannot be defined, we have to introduce these concepts into the system by means of special axioms.

It is known that the addition of the ordering principle, as a new

axiom, to the general set theory does not give the axiom of choice. C/., e.g., [1], p. 53.

2. Concerning Hartogs' alephs and their properties discussed in this note, cf., e.g., [2], pp. 28-30, lemmas 3, 4 and 5.

BIBLIOGRAPHY

- [1] A. Fraenkel and Y. Bar-Hillel: Foundations of set theory. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company. Amsterdam, 1958.
- [2] A. Tarski: Theorems on the existence of successors of cardinals, and the axiom of choice. Koninklijke Nederlandse Akademie van Wetenschappen. Proceedings of the Section of Sciences. Vol. LVII. Series A. Mathematical Sciences. 1954, Pp. 26-32.

University of Notre Dame Notre Dame, Indiana