STRUCTURAL RULES OF INFERENCE

HUGUES LEBLANC

On many occasions the following three rules:
R: $\quad A \vdash A$ (Reflexivity),
E: If $A_{1}, A_{2}, \ldots, A_{n} \vdash B$, then $A_{1}, A_{2}, \ldots, A_{n}, C \vdash B$ (Expansion),
P: If $A_{1}, A_{2}, \ldots, A_{i-1}, A_{i}, A_{i+1}, A_{i+2}, \ldots, A_{n}, A_{n+1}, A_{n+2} \vdash B$, then $A_{1}, A_{2}, \ldots, A_{i-1}, A_{i+1}, A_{i}, A_{i+2}, \ldots, A_{n}, A_{n+1}, A_{n+2} \vdash B$, where $i \leq n+2$ (Permutation),
are appointed as structural rules of inference for the propositional calculus; ${ }^{1}$ on others, P and the following generalization of R :

GR: $\quad A_{1}, A_{2}, \ldots, A_{n}, A_{n+1} \vdash A_{i}$, where $i \leq n+1$ (Generalized Reflexivity),
are made to serve in that capacity. ${ }^{2}$ I examine here the impact of this switch from R and E to $G R$ upon the proving and deriving of rules of inference for the said calculus.

Let P be a (pure) propositional calculus with ' \sim ' and ' J ' as primitive connectives. Let ' A ', ' B ', and ' C ' range in the metalanguage $M P$ of P over the wffs of P. Let (meta)statements of MP of the form ' B is implied in P by (or deducible in P from) A_{1}, A_{2}, \ldots, and A_{n} ' be abbreviated to read ' $A_{1}, A_{2}, \ldots, A_{n} \vdash B^{\prime}$ and called turnstile statements or, for short, T statements. Let the following four rules serve as intelim rules for ' \sim ' and ' 5 ':

NI: If $A_{1}, A_{2}, \ldots, A_{n}, B \vdash C$ and $A_{1}, A_{2}, \ldots, A_{n}, B \vdash \sim C$, then $A_{1}, A_{2}, \ldots, A_{n} \vdash \sim B$,

NE: If $A_{1}, A_{2}, \ldots, A_{n} \vdash \sim \sim B$, then $A_{1}, A_{2}, \ldots, A_{n} \mid-B$,
HI: If $A_{1}, A_{2}, \ldots, A_{n}, B \vdash C$, then $A_{1}, A_{2}, \ldots, A_{n} \vdash B \supset C$,
HE: If $A_{1}, A_{2}, \ldots, A_{n} \vdash B$ and $A_{1}, A_{2}, \ldots, A_{n} \vdash B \supset C$, then A_{1}, A_{2}, $\ldots, A_{n} \vdash C$.

Let a finite column of T-statements qualify as a derivation in $M P$ from $p(p \geq 0) T$-statements T_{1}, T_{2}, \ldots, and T_{p} if every T-statement in the column is one of T_{1}, T_{2}, \ldots, and T_{p}, or is of the form GR, or follows from previous T-statements in the column by application of $P, N I, N E, H I$, or HE. Let a T-statement be said to be derivable in $M P$ from $p(p \geq 0) T$ statements T_{1}, T_{2}, \ldots, and T_{p} if it comes last in a derivation in MP from T_{1}, T_{2}, \ldots, and T_{p}. Let a finite column of T-statements qualify as a proof in $M P$ if it qualifies as a derivation in $M P$ from zero T-statements. Finally, let a T-statement be said to be provable in MP if it comes last in a proof in MP.

It is easily shown that:
Theorem 1: If a given T-statement $A_{1}, A_{2}, \ldots, A_{n} \vdash B$ is provable in MP, so is the corresponding T-statement $A_{1}, A_{2}, \ldots, A_{n}, C \vdash B$, where C is any wff of P.

Proof: Let

$$
\begin{aligned}
& A_{1_{1}}, A_{1_{2}}, \ldots, A_{1_{n_{1}}} \vdash B_{1}, \\
& A_{2_{1}}, A_{2_{2}}, \ldots, A_{2_{n}} \vdash B_{2}, \\
& \cdot \\
& \cdot \\
& A_{q_{1}}, A_{q_{2}}, \ldots, A_{q_{n}} \vdash B_{q},
\end{aligned}
$$

constitute the proof of $A_{1}, A_{2}, \ldots, A_{n} \mid B$ in $M P$. The result of inserting ', C ' to the left of ' F ' in each one of the T-statements in question either qualifies or can be so supplemented as to qualify as a proof of A_{1}, A_{2}, \ldots, $A_{n}, C \vdash B$ in $M P$. For suppose that $A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{n}} \vdash B_{j}$ is of the form $\mathbf{G R}$; then $A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{n_{j}}}, C \vdash B_{j}$ is likewise of the form GR. Or suppose that $A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{n_{j}}} \vdash B_{j}$ follows from $A_{b_{1}}, A_{h_{2}}, \ldots, A_{b_{n}} \vdash B_{b}$, where $b<j$, by application of \mathbf{P} or NE ; then $A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{n_{j}}}, C \vdash B_{j}$ likewise follows from $A_{b_{i}}, A_{b_{2}}, \ldots, A_{b_{n_{b}}}, C \vdash B_{b}$ by application of \mathbf{P} or NE. Or suppose that $A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{n_{j}}} \nmid-B_{j}$ follows from $A_{b_{1}}, A_{h_{2}}, \cdots$, $A_{b_{n_{h}}} \vdash B_{b}$ and $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{n_{i}}} \vdash B_{i}$, where $b<j$ and $i<j$, by application of HE ; then $A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{n}}, C \vdash B$ will likewise follow from $A_{h_{1}}$, $A_{b_{2}}, \ldots, A_{b_{n_{h}}}, C \vdash B_{b}$ and $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{n_{i}}}, C \vdash B_{i}$ by application of HE. Or suppose that $A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{n_{j}}} \vdash B_{j}-B_{j}$ being of the form $\sim A_{b_{n_{h}}}$ and $\sim A_{i_{n_{i}}}$ - follows from $A_{b_{1}}, A_{b_{2}}, \ldots, A_{b_{n_{b}}} \vdash B_{b}$ and $A_{i_{1}}, A_{i_{2}}, \ldots$,
$A_{i_{n_{i}}} \mid-B_{i}$, where $b<j$ and $i<j$, by application of NI ; then $A_{b_{1}}, A_{h_{2}}, \ldots$, $C, A_{b_{n_{b}}} \vdash B_{b}$ follows from $A_{b_{1}}, A_{b_{2}}, \ldots, A_{b_{n}}, C \vdash B_{b}$ by application of
$\mathbf{P}, A_{i_{1}}, A_{i_{2}}, \ldots, C, A_{i_{n_{i}}} \vdash B_{i}$ follows from $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{n_{i}}}, C \vdash B_{i}$ by application of \mathbf{P}, and $A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{n_{j}}}, C \vdash B_{j}$ follows from $A_{b_{1}}$, $A_{b_{2}}, \ldots, C, A_{b_{n_{h}}} \vdash B_{b}$ and $A_{i_{1}}, A_{i_{2}}, \ldots, C, A_{i_{n_{i}}} \vdash B_{i}$ by application of
NI. Or suppose that $A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{n}} \vdash B_{j}-B_{j}$ being of the form $A_{h_{n_{b}}}$
$\supset B$ - follows from $A_{b_{1}}, A_{h_{2}}, \ldots, A_{b_{n}} \vdash B_{b}$, where $b<j$, by application of
HI ; then $A_{h_{1}}, A_{h_{2}}, \ldots, C, A_{b_{n_{h}}} \vdash B_{b}$ follows from $A_{h_{1}}, A_{b_{2}}, \ldots, A_{b_{n_{b}}}$, $C \vdash B_{b}$ by application of \mathbf{P}, and $A_{j_{1}}, A_{j_{2}}, \ldots, A_{j_{n_{j}}}, C \vdash B_{j}$ follows from $A_{h_{1}}, A_{h_{2}}, \ldots, C, A_{b_{n_{b}}} \vdash B_{b}$ by application of $\mathbf{H I}$. Hence Theorem 1.

It is easily shown also that:
Theorem 2: If a given T-statement $A_{1}, A_{2}, \ldots, A_{n}, C \vdash B$ is provable in $M P$, then it is derivable in MP from the corresponding T-statement A_{1}, $A_{2}, \ldots, A_{n} \vdash B$.

Proof: The column of T-statements made up of $A_{1}, A_{2}, \ldots, A_{n} \vdash B$, followed by the proof of $A_{1}, A_{2}, \ldots, A_{n}, C \vdash B$ qualifies by definition as as a derivation in MP from $A_{1}, A_{2}, \ldots, A_{n} \vdash B$. Hence Theorem 2.

Theorem 2 is trivial enough. I include it, though, to throw into relief Theorem 3, according to which a given T-statement $A_{1}, A_{2}, \ldots, A_{n}, C \vdash B$ is not derivable in MP from the corresponding T-statement $A_{1}, A_{2}, \ldots, A_{n}$ $\vdash B$ unless $A_{1}, A_{2}, \ldots, A_{n}, C \vdash B$ is, as required in Theorem 2, provable in $M P$.

Theorem 3: If a given T-statement $A_{1}, A_{2}, \ldots, A_{n}, C \vdash B$ is not provable in MP, then it is not derivable in MP from the corresponding T-statement $A_{1}, A_{2}, \cdots, A_{n} \vdash B$.

Proof:
Part one: Consider (1) any column, call it C_{1}, of T-statements which qualifies as a derivation in $M P$ from $p(p \geq 0) T$-statements T_{1}, T_{2}, \ldots, and T_{p}, and (2) the column, call it C_{2}, which results from C_{1} when all the T-statements in C_{1} exhibiting fewer wffs of P than the last T-statement in C_{1}, have been deleted from $C_{1} . \quad C_{2}$ qualifies by definition as a derivation in $M P$. from those T-statements among T_{1}, T_{2}, \ldots, and T_{p}, call them T_{p}^{\prime}, T_{2}^{\prime}, \ldots, and T_{m}^{\prime}, where $m \leq p$, which figure in C_{2}. For suppose that a given T-statement from C_{1} which figures in C_{2} happened to be one of T_{1}, T_{2}, \ldots, and T_{p}; that statement will now be one of $T_{1}^{\prime}, T_{2}^{\prime}, \ldots$, and T_{m}^{\prime}. Or suppose that a given T-statement from C_{1} which figures in C_{2} happened to be of the form GR; that statement will still be of the form GR. Or suppose that a given T-statement from C_{1} which figures in C_{2} happened to follow from one
or two previous T-statements in C_{1} by application of $\mathrm{P}, \mathrm{NI}, \mathrm{NE}, \mathrm{HI}$, or HE ; the one or two T-statements from which that statement followed are bound to figure in $\mathrm{C}_{2}{ }^{3}$ and the statement will still follow from them by application of $P, N I, N E, H I$, or HE.
Part two: Suppose $A_{1}, A_{2}, \ldots, A_{n}, C \vdash B$ were derivable in $M P$ from A_{1}, $A_{2}, \ldots, A_{n} \vdash B$. By virtue of part one, the derivation in $M P$ from A_{1}, $A_{2}, \ldots, A_{n} \vdash B$ that closed with $A_{1}, A_{2}, \ldots, A_{n}, C \vdash B$ could be trimmed into a proof in $M P$ closing with $A_{1}, A_{2}, \ldots, A_{n}, C \vdash B$, and hence A_{1}, $A_{2}, \ldots, A_{n}, C \vdash B$ would be provable in MP. Hence Theorem 3.

The fate of E, once $G R$ is made to do duty for R and E, should now be clear. E will be forthcoming, in the presence of $P, N I, N E, H I$, and $H E$, under the provability form of Theorem 1 ; it will be forthcoming under the derivability form of Theorems 2 and 3 when and only when $A_{1}, A_{2}, \ldots, A_{n}$, $C \vdash B$ is already provable in MP and hence is trivially derivable in MP from $A_{1}, A_{2}, \ldots, A_{n} \vdash B$. This anomaly is reminiscent of the one recently brought out by Hiz and others in connection with Modus Ponens in axiomatic presentations of $P .{ }^{4}$

The first theorem, one's only excuse for switching from R and E to $G R$, would still hold if NE and HE were modified to read, as often happens:

NE': $A_{1}, A_{2}, \ldots, A_{n}, \sim \sim B \vdash B$,
HE': $\quad A_{1}, A_{2}, \ldots, A_{n}, B, B \supset C \vdash C .{ }^{5}$
I suspect, however, that Theorem 1 would no longer hold if NE and HE were weakened to read, as often happens:
NE': $\sim \sim A \vdash A$,
HE": $A, A \supset B \vdash B$,
and GR, P, and the following rule.
S: If $A_{1}, A_{2}, \ldots, A_{n}, B \vdash C$ and $A_{1}, A_{2}, \ldots, A_{n} \vdash B$, then A_{1}, $A_{2}, \cdots, A_{n} \vdash C$ (Simplification),
were appointed to serve as structural rules of inference for $P{ }^{6}$ I also suspect that Theorem 1 would no longer hold if GR, P, NI, NE, HI, HE, and the following two intelim rules for ' V ':
$\forall \mathrm{I}: \quad$ If $A_{1}, A_{2}, \ldots, A_{n} \vdash B$, then $A_{1}, A_{2} \ldots, A_{n} \vdash(\forall W) B$, where the individual variable W is not free in anyone of A_{1}, A_{2}, \ldots, and A_{n},
$\forall \mathrm{E}:$ If $A_{1}, A_{2}, \ldots, A_{n} \vdash(\forall W) B$, then $A_{1}, A_{2}, \ldots, A_{n} \vdash B^{\prime}$, where B^{\prime} is like B except for containing free occurrences of an individual variable W^{\prime} at all the places where B contains free occurrences of W,
were appointed as rules of inference for a (pure) quantificational calculus with ' \sim ' and ' V ' as primitive connectives and ' V ' as primitive quantifier letter. ${ }^{7}$

NOTES

1. See, for example, A. Church, Introduction to Mathematical Logic, pp. 214215, where a further structural rule, (III), is easily shown to be redundant in the presence of $R, E, P, H I$, and HE. The three rules R, E, and P would seem to stem from G. Gentzen, who in his "Untersuchungen über das Logische Schliessen," Mathematische Zeitschrift, 1934, pp. 176-210 and 405-431, lays down similar structural rules for his so-called calculi LK.
2. See, for example, S. Jaśkowski, "On the Rules of Supposition in Formal Logic," Studia Logica, 1934. See also K. R. Popper, "New Foundations for Logic," Mind, 1947, pp. 193-235.
3. Note for proof that the one or two T-statements from which a given T statement exhibiting $r(r \geq 1)$ wffs of P follows by $\mathrm{P}, \mathrm{NI}, \mathrm{NE}, \mathrm{HI}$, or HE are bound to exhibit r or $r+1$ wffs of P and hence to figure in C_{2} if the said T-statement does.
4. See H. Hiż, "Extendible Sentential Calculus," The Journal of Symbolic Logic, 1959, pp. 193-202. See also H. Leblanc, "The Algebra of Logic and the Theory of Deduction," The Journal of Philosophy, 1961, pp. 553558.
5. See, for example, S. Jaskowski, loc. cit.
6. See, for example, E. W. Beth and H. Leblanc, "A Note on the Intuitionist and the Classical Propositional Calculus," Logique et Analyse, 1960, pp. 174-176.
7. My thanks go to Professor Nuel D. Belnap, Jr., with whom I discussed the results of this paper. I owe him, among other things, the distinction drawn in the text between the provability and the derivability version of E.

Bryn Mawr College

Bryn Mawr, Pennsylvania

