
Notre Dame Journal of Formal Logic 133
Volume III, Number 3, July 1962

PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC

S. SUMMERSBEE and A. WALTERS

From time to time automatic defices are suggested which will simulate
the operations which can be carried out on the truth-tables of formal logic.
Specifically, if a formula F(Xι. . . . X) constructed from the propositional
variables Xχ. . . . Xn and certain logical connectives, is set into the ma-
chine it will calculate the truth-value of F(Xχ. . . . Xn) from the truth-
values x1. . . . xn (x{ = T or F, 1 £ i Sn) of X1 Xπ Probably the best
known of such devices is that of W. S. Jevons [l] , while one of the most
recent is designed to deal with many-valued logic [2].

There is no intrinsic reason for choosing the symbols "T" and *F" to
represent the truth-values of a proposition, the symbols " 1" and "0" will
serve the same purpose. In such an event the truth-value of a formula
F(Xχ. . . . Xn), determined by the truth-values xχ. . . . xn of Xχ Xn,
can be written in the form

j=n
m = Σ a. 2'-1

i=i

where ai = 0 or fl. = L For example, the truth-table for Dpq is

TABLE I

p q vpq

1 1 1

1 0 1

0 1 1

0 0 0

and the final column of the table can be regarded as having either the value
1110 (= 14) or the value 0111 (= 7) depending on the convention adopted.
Alternatively, the values 0, 3, 5, 7 for 772 will give the truth-value of Dpq
for given values of p and q; for example 5 would be rewritten as 101 and
hence for p = 1 and q = 0, Dpq = 1.

Received September 17, 1961

134 S. SUMMERSBEE and A. WALTERS

Since many digital computers work in the binary scale of notation i.e.,
each integer is represented by

where ai = 1 or a^ = 0, it appears to be a simple step to interpret the opera-
tions of a digital computer as operations carried out in the propositional
calculus. In addition, there are in most digital computers built in functions
which correspond to the functions of the propositional calculus. For exam-
ple, a machine having a function "logical and" would form what is essen-
tially the truth-table entry for conjunction, given the truth-values of two
propositions. Needless-to-say when such functions are built into digital
computers their primary purpose is not that of compiling truth-table entries
for the propositional calculus. The function "logical and*, for example, is
widely used in digital programming as an "eraser*. Since this function will
be used below in this form we give a description of this method of use and
refer to it hereafter as "collate".

Suppose that we have under consideration a digital computer with
registers which hold up to thirty-two binary digits and of one number in
particular, say

100 01101110111 (ί)

the five digits on the right hand end are to be removed and operated on in
another part of the machine, then by having a number

000 00000011111 (ii)

in the machine (in a suitable place) and calling the operation "collate" the
result will be

000 00010111

i.e. the five digits at the right-hand end of (i) are preserved (the rest are
"erased")—they are in one-to-one correspondence with the five digits at the
right-hand end of (ii). Hence although a logical operation has been carried
out, its primary purpose has not been a "truth-value" computation. The
fact that such operations are now standard functions for digital computers
suggests that these machines might be programmed so that they function as
if they were logical machines. Further more, the possible uses of a logical
machine may be of some practical value. For example, in [2] Rose suggests
the application of a many-valued logical machine to the economic use of
factory scheduling; while the machine suggested by McCallum and Smith
might be adapted to the solution of problems in circuit simplification.

In order to give our investigation a concrete form we choose first of
all a digital computer with the following characteristics:

It has a "word-length" of thirty-two binary digits,
a single address system,
it has built in the logical function "conjunction" which when it is used as a

truth-function operator will be called "conjunction", otherwise "collate",

PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC 135

it has built in the logical function "disjunction", which when it i s used as

a truth-function operator will be called "disjunction*, otherwise "or",

it has a store of about one thousand words,

its operating speed i s about six micro-seconds cycle time,

it "reads" its information from a punched paper tape, and prints its answers

on a teleprinter, and can simultaneously punch paper tape.

(this describes approximately a machine built in the laboratory).

To give the investigation some direction we choose first of all the

problem of simplifying truth-functions as described by Quine.

In principle the machine can deal with an unlimited number of proposi-

tional variables, but as a practical matter some limit must be placed on the

number of variables operated on.

Since the word-length of the machine i s thirty-two, it i s natural to

choose either thirty-two to be the maximum number of variables, or five to

be the maximum number of variables (since 2^ = 32). First consider the

former case, and suppose the variables to be pι9 p2, p3 p32, then if a

truth-table were being drawn up for these variables it would appear as

TABLE II

P, P* P> Psi P>2

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

1 1 1 1 1

When the table i s complete columns can be added in the usual way to

give the truth-values of functions of up to thirty-two variables. For exam-

ple, a column could be added giving the truth-values of the conjunction

Kpjy
The machine, as stated above, is equipped to form the truth-values of

the conjunction of two propositional variables, (or to collate two binary

numbers) but in so doing it operates on the entire length of the register

holding the truth-values. Hence under the scheme corresponding to Table

I, 232 registers would be required to hold the whole of the table. This far

exceeds the capacity of the machine, but this difficulty can be avoided by

using a single register to hold one line of the table at a time. For example,

the first line of the table corresponds to an empty register, the second line

to binary one, the third line to binary two, and so on; the last line corre-

sponds to binary (2 s 2 — 1). Suppose that we wish to find the truth-value of

a conjunction of two of the variables say pχ and p2, and we consider a line

of the table—which will be in the register of the machine at one time—for

example

136 S. SUMMERSBEE and A. WALTERS

TABLE III

1 1 0 0 0

To find the truth-value of the conjunction of p± and p2 the entries in
the truth-table under px and p% are compared, and in the example given above
Kptp2 would have the value 1. However, the machine can only collate dif-
ferent registers and consequently it is not possible to form the value of the
conjunction of p1 and p2 directly. First, the value under pλ is removed from
the row of the table and put elsewhere (in another register). Second, the
value under p2 is removed from the row of the table and put elsewhere. The
value of the conjunction of pχ and p2 for their particular values entered in
the line of the table under consideration, is then found by collating the two
registers chosen to hold the values of p1 and p2. Although this appears to
be a long-winded procedure, it is systematic and it is not difficult to pro-
gramme the machine to carry out the operations. The steps, once pro-
grammed, can be carried out for each line of the table, and the results pre-
served in another register i.e. the first digit in the register corresponds to
the first entry in the column of the table for Kpxp2. The second digit corre-
sponds to the entry for the second line of the table, and so on.

The operation can be broken down into two groups: first those which
generate the line of the table under consideration, and second, those which
operate on certain entries in the line to give the value of the function which
the column of the table represents. In the event of the maximum possible
number of variables being used i.e. 32, part of the total calculation will be
taken up generating successive lines of the table.

It was mentioned above that the cycle time of the machine under con-
sideration was six micro-seconds, and allowing time for addition to take
place serially the total time to generate one line of the table would be of
the order of eighty micro-seconds, but the total time to generate every line
of the table would be of the order of forty days. For this reason we attack
the problem in another way.

Because there are thirty-two digits to each machine word we limit the
number of variables (in the first instant) to five, since 2 = 32. And rear-
range the truth-table.

TABLE IV

p
t
 10101010101010101010101010101010

p
2
 11001100110011001100110011001100

p
3
 11110000111100001111000011110000

p
4
 11111111000000001111111100000000

p
5
 11111111111111110000000000000000

PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC 137

In this arrangement each register represents one column of the truth-

table hence to operate on five variables we need five registers. If there

were a greater number of variables then some other arrangement would be

needed since a single register is not long enough to hold the required num-

ber of entries. If two registers were placed (figuratively) end to end their

doubled capacity would allow six propositional variables to be operated

upon, and so on. If the number of variables were increased to thirty-two,

there would have to be 232 rows in the truth-table, and consequently about

1 3 x 10* registers. No doubt ingenious programming could reduce this

number, but at a corresponding increase in the time taken to complete a

programme.

We shall say no more here about the size of machine required to handle

any but few propositional variables, nor the time taken to complete a pro-

gramme. Instead we now treat in more detail Quine's method for simplifying

truth-functions, and confine ourselves to functions of five variables or less.

Quine's method for finding the simplest equivalent of any function of

propositional variables falls fairly naturally into three fairly self-contained

parts:

(a) given some function Q{p1* . . . pn) of the propositional variables

pχ. . . .p , form its perfect disjunctive normal form, [5]

(b) from the perfect disjunctive normal form derive a list of the "prime

implicants" of Q(p1. . . . pn),

\c) from (a) and (b) used simultaneously derive the simplest equivalent

oίQ(Pι pn).

As stated above we treat this problem with the variables of Q limited

to 1 < n < 5. And suppose that we wish to find the disjunctive normal

form of the function DKKpιp2p3KpiNpΛy there are here four variables: P1P2P3P4

The machine can be programmed to generate the truth-table simply by setting

the number 4 into it i .e. in four consecutive registers 1, 2, 3 and 4, the

patterns

TABLE V

p1 1010101010101010

p2 1100110011001100

p3 1111000011110000

p A 1111111100000000

are generated. By setting the function DKKp1p2p3Kp3Np4 into the machine

the values for this function can be computed. For example, first the collate

(machine) function is used between registers 1 and 2 to form Kp1p2, this in

turn is collated with register 3 to form KKpλp2p3; the "logical or" is then

used between KKp1p2p3 and Kp3NpA to give the final entry to the table.

There are here perhaps two points worth noting:

(a) when any digital computer is used for numerical work, the problem

to be solved is treated in two parts, first an appropriate numerical method

138 S. SUMMERSBEE and A. WALTERS

must be found to provide a solution to the problem and second, this method
must be programmed for the machine to accept it. We are faced with a simi-
lar situation when applying the machine to the functions of logic viz., will
the machine accept the functions as they are, or must they be changed to
some standard form? A machine which is only equipped, for example with
operations corresponding to disjunction and conjunction would have to have
all problems transformed into some variation of these functions before pro-
gramming could begin. For example, the function CNKpίp2Kp3KNp3pA would
have to be transformed to DKKp1p1piKp3NpA before being programmed. We
assume from now on that this has been done and consequently each function
treated will consist of disjunctions of conjunctions.

(b) When the final values of the function have been calculated, each
entry in the table may be checked to see if it is a *2*, if it is then the ma-
chine can be made to print, say, the word "TRUE" against the function. If
each entry is a *0w the machine can print "FALSE* against the function.
Hence any given function Qip^pjf^p^s) of five, or less, propositional
variables can be tested by the machine for universal validity (tautology) or
universal invalidity. Further more, by making the machine select those en-
tries in the function column of the table, which have the value β 2 " , an as-
signment of truth-values to pί9 pv p3> pA, ps can be printed out for which
Q(PiPtp3p4ps) takes the value 2. The machine then corresponds to that sug-
gested by McCallum and Smith in [3].

Let us suppose that the machine has made the necessary calculations
and has filled an extra register S with the values of DKKp1p2p3Kp3Np4 i.e.
the registers correspond with

TABLE VI

p
x
 1010101010101010

p
2
 1100110011001100

p
3
 1111000011110000

ρA nun lioooooooo

DKKp1pip3Kp3Np4 1100010001000100

The machine may now examine each digit in register five, in turn. If
the digit examined is a "0" the machine does nothing but passes on to the
next digit.

When the machine finds a * ln - as it will do for the 1st, 2nd, 6th, 10th
and 14th places in the table above - it then prints the corresponding varia-
bles if these are "Is*, but preafixes the variable by an N if there is a 0 in
the column, or rather in the same digit place in the registers 2, 2, 3 and 4-
For example, the machine would find a "I" in the first digit place of register
five, it then examines the first digit places of registers one, two, three and
four in turn. Each of these digit places contains a "2* and hence the ma-
chine would print "PxPiPsP* It then examines the second digit place of
register five and again finds a *2W so it examines the second digit places
of registers one, two, three and four. In register one there is a "0* in the

PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC 139

second digit place, the digits in the other registers being " I s " , the machine
therefore prints vip1P2P3Np4

n, and so on. When each digit place of the fifth
register has been examined what the machine has printed out is each clause
of the disjunctive normal form oίDKKp^^p^Kp^Np^. Hence given Q(pίp2pipAps)
the machine will print out the disjunctive normal form of Q(p1p2p3PAPs)-

However, we are not particularly interested at this stage in finding the
disjunctive normal form of any function of Q{p1P2P3pAp5) of propositional
variables. Instead of printing taking place the machine is made to preserve
only that part of the table which corresponds to a * ln in the entry for
DKKpipJy^p^Np^ i.e. table VI is abbreviated to

TABLE VII

p1 10000

P2 urn
p3 11010

PA moo
DKKpiP2p3Kp3NpA 11111

It will be recalled from above that each row of entries in the table rep-
resents a binary number in a register. For convenience the table may be
transposed so that rows become columns and columns rows, viz., there will
be four digits only in each of four new registers—and we note that at this
stage there cannot be more than five digits in these registers—in the first
register there will be the digits in the first places of each of the four regis-
ters (the first entry for pA is now in the fourth place of the first register, the
entry for p3 in the third place of that register etc.)

Each pair of rows in the new table, or each corresponding pair of regis-
ters, is compared and if they differ only in a single corresponding place,
that entry with a "1* in it is deleted. For example, from Table VII it may
be seen that columns one and two differ only in the first place, the entry is
then treated as column two with column one deleted. The process is re-
peated until all that is left is entries which differ in more than one place
(these entries correspond to Quine's "prime implicates").

These resulting entries are compared in turn with the entries corre-
sponding to those of table VII and the common part printed as variables; for
example, if the common part were 0 and 1 in the first and second places
nNpxp2" would be printed. When a printing takes place a 1 is recorded in a
register to serve as a counter. If a one is recorded, it is recorded in the
register in the digit place corresponding to the column of the table. As
each "prime implicant" is compared with the table when a common part is
found, before printing takes place the count register is examined, if it al-
ready contains a "1" in that place, the machine does not print the common
part but moves on to the next part. This process is repeated until the count
register is full. The printed results then give a * simplest" equivalent to
the function supplied to the machine in the first place. It may be noticed
however, that the machine does not print all the simplest equivalents but
only the first one it finds.

140 S. SUMMERSBEE and A. WALTERS

As mentioned above Rose has shown how a many-valued logical machine
may be used for the solution of certain practical problems. The question
naturally arises as to whether a digital machine may not be used to solve
the same problems. We can see very simply what would be involved in at-
tempting to solve all but the simplest variations of such problems on a
digital computer, from the following considerations. Above we have dis-
cussed a two-valued logic and have found that except for extremely high
speed machines the number of variables must be limited to about five al-
though in principle a digital machine could be programmed to solve problems
with any number of variables in a two-valued logic. In [2] Rose cites an
example of a 4-valued logic with a table for disjunction.

TABLE VIII

DXY 1 2 3 4 Y

1 1 1 1 1

2 1 2 2 2

3 1 2 3 3

4 1 2 3 4

X

It is clear that by representing the variables X and Y by two digits,
the above table would appear as

TABLE IX

DXY 00 01 10 11 Y

00 00 00 00 00

01 00 01 01 01

10 00 01 10 10

11 00 01 10 11

X

and could be stored in the machine in this form. Hence given values of X
and Y the machine would select the appropriate value of DXY from the
stored table.

A sub-routine for the machine could be written for each of the functions
of the 772-valued calculus treated, and the machine simply makes use of the
appropriate sub-routine instead of supplying values directly from built-in
functions. Once again the question arises as to the number of variables
which can be reasonably allowed if the machine is to complete its calcula-
tions in "real" time. In the problems cited by Rose a practical case would
demand a logic of about twenty-five values and about seven variables.* The

*What would be a ^practical" case depends largely on personal interpretation. We
have, in calculating the mentioned values, allowed for five lectures per day five
days per week, and each lecturer to teach for twenty hours per week.

PROGRAMMING THE FUNCTIONS OF FORMAL LOGIC 141

machine time required for solving such problems is many times greater than
that required for solving corresponding problems in a two-valued logic.
Similar considerations apply to the solution of problems in modal logic.
[6]

REFERENCES

[l] W. S. Jevons: On the Mechanical Performance of Logical Inference,
1870.

[2] A. Rose: Many-valued Logical Machines, Proc. of Camb. Phil, Soc,
Volume 54, pp. 307-321, 1958.

[3] D. M. McCallum and J. B. Smith: Mechanised Reasoning, Electronic
Engineering, April 1951.

[4] W. V. Quine: The Problem of Simplifying Truth Functions. American
Mathematical Monthly. Vol. 59, No. 8, 1952.

[5] D. Hilbert and W. Ackerman: Grundzϊige der Theoretischen Logic,
Springer, Berlin 1931.

[6] G. H. Von Wright: An Essay in Modal Logic, N-Holland Publishing Co.,
Amsterdam. 1951.

The Computing Laboratory,
Letchworth College of Technology,
Letchworth, Hertfordshire, Gt. Britain

