A NOTE TO MY PAPER:
 ON CHARACTERIZATIONS OF THE FIRST-ORDER FUNCTIONAL CALCULUS

JULIUSZ REICHBACH

In [1] I have presented two characterizations of theses of the firstorder functional calculus; the first characterization may be modified in the following way: ${ }^{1}$
D.0. $Q(k) . \equiv \cdot Q$ is a non-empty set of tables of the rank k.
D.1. $Q / T, i_{1}, \ldots, i_{m} \equiv\left(\exists T_{1}\right)\left(\exists j_{1}\right) \cdots\left(\exists j_{m}\right)\left\{\left(T_{1} \in Q\right) \wedge\left(\left[T_{1} \mid j_{1}, \ldots\right.\right.\right.$, $\left.\left.\left.i_{m}\right]=\left[T \mid i_{1}, \ldots, i_{m}\right]\right)\right\}$.
$Q / T, i_{1}, \ldots, i_{m}$ asserts that $\left[T \mid i_{1}, \ldots, i_{m}\right]$ is a submodel of some $T_{1} \in Q$ in the meaning of homomorphism.
D.2. $T, Q / T_{1}, i_{1}, \ldots, i_{m} ; i^{\ldots} \equiv\left(\left[T \mid i_{1}, \ldots, i_{m}\right]=\left[T_{1} \mid i_{1}, \ldots, i_{m}\right]\right) \wedge$ $Q / T_{1},{ }_{1}, \ldots, i_{m}, i$.
D.3. $Q\{r, k\} \ldots \equiv(r \leq k) \wedge Q(k) \wedge\left(i_{1}\right) \ldots\left(i_{m+1}\right)(T)\left\{(m<r) \wedge\left(i_{1}, \ldots\right.\right.$, i_{m+1} are different numbers $\left.\leq k\right) \wedge Q / T, i_{1}, \ldots, i_{m} \wedge Q / T, i_{m+1} \rightarrow$ $\left(\exists T_{1}\right)\left(T, Q / T_{1}, i_{1}, \cdots i_{m} ; i_{m+1} \wedge\left(j_{1}\right) \ldots\left(j_{m-1}\right)\left\{\left(j_{1}, \ldots, j_{s}\right.\right.\right.$ is a subsequence of $\left.i_{1}, \ldots, i_{m}\right) \wedge Q / T, j_{1}, \ldots, j_{s}, i_{m+1} \rightarrow\left(\left[T_{1} \mid j_{1}, \ldots\right.\right.$, $\left.\left.\left.\left.\left.j_{s}, i_{m+1}\right]=\left[T \mid j_{1}, \ldots, j_{s}, i_{m+1}\right]\right)\right\}\right\}\right\}$.

The meaning of D.2. and D.3. is clear, see D.1.
For an arbitrary T of the rank k, for an arbitrary Q such that $Q(k)$ and for an arbitrary formula E whose indices of free variables occurring in it are $\leq k$, we introduce the inductive definition of the functional V :
(1d) $V\left\{T, Q, f_{j}^{m}\left(x_{r_{1}}, \ldots, x_{r_{m}}\right)\right\}=1 . \equiv . F_{j}^{m}\left(r_{1}, \ldots, r_{m}\right)$,
(2d) $V\left\{T, Q, F^{\prime}\right\}=1 . \equiv \cdots V\{T, Q, F\}=1 . \equiv . V\{T, Q, F\}=0$,
(3d) $V\{T, Q, F+G\}=1 . \equiv . V\{T, Q, F\}=1 \vee V\{T, Q, G\}=1$,
(4d) $V\{T, Q, \Pi a F\}=1 \ldots .(i)\left(T_{1}\right)\left\{(i \leq k) \wedge T, Q / T_{1}, i_{1}, \ldots,{ }_{w(F)}\right.$; $\left.i \rightarrow V\left\{T_{1}, Q, F\left(x_{i} / a\right)\right\}=1\right\}$.
D.4. $E \in P(Q) \cdot \equiv \cdot(T)\left\{(H)\left\{(H \in A\{E\}) \rightarrow Q / T, i_{1}, \ldots, i_{w(H)}\right\} \rightarrow V\{T\right.$, $Q, E\}=1\}$.
D. 5. $E \in P|r, k| \equiv .(Q)\{Q\{r, k\} \rightarrow(E \in P(Q))\}$.
D.6. $E \in P$. $\equiv . E \in P\{n(E), \Sigma(E)\}$.

The meaning of the above definitions is analogous to the given in [1]. Analogously to the proof given in [1] we may also prove that P is the class of all theses: the whole proof is given in [2].

The theorem remains true, if in $D .3$. we assume $k=r, m+1=r$, but then in the definitions (1d) - (4d), D.4.-6. the table T has not the rank of elements of Q, but has the rank $n(E)$ and elements of Q have the rank $\Sigma(E)$, see [3]. Ones give an interesting connection between the considered calculus and \underline{N}_{0} propositional calculus, see [4].

NOTE

1. We use the notation given in [1].

BIBLIOGRAPHY

[1] J. Reichbach: On characterizations of the first-order functional calculus, Notre Dame Journal of Formal Logic, Vol. II, 1, (1961), pp. 1-15.
[2] J. Reichbach: On characterizations of theses of the first-order functional calculus, sent to Indagationes Mathematicae.
[3] J. Reichbach: On characterizations and undecidability of the firstorder functional calculus, sent to Fundamenta Mathematicae.
[4] J. Reichbach: On the connection of the first-order functional calculus with \aleph_{0} propositional calculus. To appear in v. III (1962) of Notre Dame Journal of Formal Logic.

Tel Aviv, Israel

