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A CHARACTERIZATION OF $™ BY MEANS OF
TOPOLOGICAL GEOMETRIES

MICHAEL C. GEMIGNANI

In a recent paper in this Journal [1], the author characterized R™ as a
topological space using the concept of a topological geometry. The purpose
of the present paper is to present a similar characterization for the
m -sphere S, The terminology and propositions referred to by number are
those of [1].

Theorem 1: Let X and G form an m~avvangement, m = 2, and suppose X is
second countable. Then if S= {xo, 0oy x,,,} is a linearly independent subset
of X and T=1{po, . . . , pm} is any maximal linearly independent subset of R™
with the usual Euclidean geometry G, then theve is a homeomovphism d
which maps C(S) onto C(T) and FiC(S) onto F'C(T), i=0, ..., m, such that
d(Gesy) = Geery -

U
Proof: Set d(x;)=p;, ¢ =0,. .., m. LetS;=i<jx;x; By 3.27,d|S can be
extended to di: S;— K'C(T), the 1-skeleton of C(T) such that d;is a homeo-

S —_ U L
morphism onto which carries X7 onto B;p;. Set Sz= i< j < CU#uH)
Define da:S2— K>C(T),the 2-skeleton of C(T) as follows: If C({xi,xi,xk})
C Sz, d2 = d1 on BAC({x,,x;,%:}). Choose ze Int C({x;,%;,%,}). Then fi(x;,z)

d, (w)

z!

4] d, (y) 143

xj ﬁxk
f1("ir 2)
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N X%z = {v}, fi(x;,2) N xxp = {w}, and pidi(w) N p;d; (y) contains a single
point z’, Set 2! =d2(z).

Set S; =i <j gk <qCUisiska)  Detine ds:Ss—K*C(T), the 3-skeleton of
C(T), as follows: If C({xi,xj,xk,%,}) C Ss, let ds = d2 on Bd c{xi,xj, %0, %4)).
Choose zeInt C({xi,%;,%k,%g}). fi(x;,2) intersects FiC{x;,xj, %0, %}) in a
single point vy f2({x;,x:,9}) N 2 ({xi,x2,9}) =9%;, and f,-(xq,z)ﬂF"C({x,',x,-,
Xk, %qf) = {w}. Then f, ({xj,xq,w}) N faxi,xj, ¥ Nfa {xi, 22, v}) ={z}. Define
{ds@)} = f2 i, pa, d2@)) N pi, b7 da(9)DF2{ b, b, d2(p)}).  This process
can be continued until we obtain dn = d: C(S)— C(T).

By the manner in which they were defined, each d;, i =1,..., m,is
1-1, onto, has the property that d,-(GSl.) = Gkic(r)and is a homeomorphism.
The proof of this latter fact is quite analogous to several of the proofs in
chapter V of [1].

Definition 1: Let X have geometry G. By a triangulation of X (with vespect
to G) we mean a collection K of simplices {CV}, veN, of X such that
i) LP{C,, =X; ii) if C, and C, are arbitrary elements of K, then C, NC/J is a

simplex ; and iii) if C,, CreK, then C, S C, implies C, =C}.

Definition 2: A space X with geometry G of length m-1 is called a spherical
m-arvangement if:

1) Each 0-flat consists of precisely two points. If x and y are distinct
points of the same 0-flat, we say they ave antipodal.

2) G is semi-projective.

3) Every linearly independent subset of X has a convex hull,

4) If W is any convex subspace of X, then W with geometry Gy is a
(6(W)+1)-arrangement.

5) If f is a k-flat contained in a k+1-flat g, the f disconnects g into
two convex components.

Unless specifying otherwise, all further statements will refer to a
space X with geometry G such that X and G form a spherical m-arrange-
ment, m = 1.

Lemma 1: X is connected.

Proof: Suppose X = AUB, ANB = ¢, A, B non-empty open subsets of X.
Either A or B (or both) contains infinitely many points; assume card A= 8.
Choose xeB and yeA-f,(x). Then xy exists by definition 2, 3), is connected
and contains both x and y, hence x and y are in the same component of X,
a contradiction.

Lemma 2: If {x,y} is linearly independent, then Xy C f1(x,y).

Proof: %y N fi(x,y) is a convex set (2.3) which contains x and y, hence
%y N fi(x,y) 2 %y, therefore xy N fi(x,y)=xy.

Lemma 3: A subset W of X is convex iff i) W contains no antipodal points,
and ii) {x,y} € W implies xy < W.

Proof: The intersection of W with any 0-flat is connected if W is convex,
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or if i) holds. Suppose f is any I-flat and ii) holds. Then if {x,y} S fn W,
xy € fNW (lemma 2), hence x and ¥ are in the same component of fNW,
therefore f NW is connected. If W is convex, then by definition 2, 4),
xy SW. This suffices by 2.1.2.

Lemma 4: G is a topological geometry.

Proof: It {W)}, xeA, is a family of convex sets and {x,y} S W) for each 2,
then xy € W) for each ), hence since QWA € W, for each A, by lemma 3
N W) is convex,

If fis an m-1-flat, then f is closed since X-f is open. Suppose we
have shown that all flats of dimension greater than % are closed and
suppose f is a k-flat, 0 = k =m-1. Let g be any k + 1-flat which contains £,
Since g-f is open in g, f is closed in g, a closed set, hence f is closed.
¢ is always closed.

Lemma 5: If m=1 and X is second countable, thenX is homeomovphic to S

Proof: Let f= {xo,xl} be an arbitrary 0-flat in X and A and B be the open
convex components of
w X-f. Since A is closed in
A X-f, but not in X (or
lemma 1 would be con-
tradicted), we may sup-
pose x,e CLA., Suppose
%, ¢ClA, Let g={w,z}#f
be some 0-flat in X and
A’ and B' be the open
convex components into
which g disconnects X;
we may suppose x,€A’.
Now x,;e¢ Cl1B, for if
%, ¢ C1B, then {x,} is both
open and closed in X,
contradicting lemma 1.
But then BCBU{x:}
C C1B, therefore BU{x,}
is connected, hence is
convex., Thus, using lemma 4, we see that A’ splits into components
A'n(BU{x,}) and A'n A, hence A’ could not be convex., We have thus shown
that ClA = A U {xg«,}; 2 similar argument shows CLB = B U{xq,x,}. A
simple argument shows that ClA and ClB are both irreducibly connected
between x, and x,. Applying theorem 11.17 of Wilder [2], chapter I, we see
that X is homeomorphic to §*.

xo ¢ B/ Al 9x3

B

z

Fig. 2.

Lemma 6: If fis a k-flat, then f with the subspace topology and geometry
Gy forms a sphevical k-avrangement.

Proof: The only part of definition 2 which is not clearly applicable is 3).
We must show that if S = {x,, . . . , ;} is a linearly independent subset of f,
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then C(S)S f: If ¢ = 1, then the lemma follows from lemma 2 since
f,(x0,%1) € f. Suppose lemma 6 is true for -1 = 1. Then C(S-{xo})gf.
But then by definition 2, 4) and lemma 2, U Xx=C©S)C f.

XEC(S'-{X()D

Theorem 2+ If X is second countable, then X is homeomovphic to S™.

Proof: Lemma 5 proves this theorem for m =1. Assume theorem 2 has
been proved for all spherical k-arrangements, I =k =m~1, and suppose
X and G form a spherical m-arrangement, Let S={xo, .e.,%n; be a
maximal linearly independent subset of X and {yo, . . ., ¥nf be the set of
points such that y; is antipodal to x;,7=0, ..., m. Set S; =S—{xi}. Each
f,-,(S;) disconnects X into convex open components A; and B;; we say sup-
pose that x;eA4; for each i. We first prove

Lemma 7. f,_,(Si) = FrA; = Fr B;.

Proof: f m=1, then the lemma has already been proved during the proof
of lemma 5. Suppose lemma 7 is true for m-1=1. Let wef,_,(S;) and let
g be any m - I-flat distinct from f,;(S;) which contains w. Then since
f,-1(S;)Ng disconnects f,_,(S;), each neighborhood U of w intersects both
components, hence w is both in Fr A; and Fr B;, hence f,_,(S;) SFrA; and
f,-.(S:) CFrB;. However, since X-f,_,(S;) = A;UB; and A; and B; are both
open, the inclusions also go the .other way and f m_l(Si) = FrA; = Fr B;.

Lemma 9: [ C14; = (9.

i=0

Proof: n Cl4; n A;uf,(S9) = U {Yo Yl Yi=f,5(Si)or Y'=A‘}

i=0

Since G is sem1-pr03ect1ve nf,,, ,(S;) = ¢. Suppose {x,y} € ﬂClA with
i=0

x and y antipodal, We may suppose that xeA; NA; N f,,(S;,) n r\fm-l(S,'p)
and yeAp, N... N A NF,ey (S, )N. . N F,oi(Sy,). Since all the 4;,i=0,...,m,
are convex, no A; which c0ntains x can also contain y. Therefore in the
sets above containing x and y all f,.,(S;), 7=0,.. .., Iare represented, and
since ¥ is contained in every m-I-flat which contains x, it follows that {x, y}

E_n f,,,-l(S,'), a contradiction to the fact that this intersection must be empty,

_OSuppose {x, y}cﬁ Cl4;. I(x,y)ﬂnA, is convex (lemma 4 and 2.3), hence
1s connected, therefore (f,(x,9) nnA )U{x,y}CCHf (x,y)ﬂﬂA ) =f,(x,9)N
n'ClAl is connected. Since x andlyocannot be ant1podal x y)ﬂnA Juix, v}

i=0
1s convex and therefore contains xy, hence xy Cn ClA;. By lemma 3 then

i=0
nClAz is convex, therefore C(S) Cn ClA;.
i=0
A straightforward argument and the induction hypothesis of theorem 2

show that C(S;) =\ U{¥on. . . N Yu Y= £,-1(S)) or ¥;=4;, j#i; Vi= fua(Si)},
i=0, ..., m, and for z;ék C(S:nSy) = u{r,N. nY,,,lY = fp 1(s)orY, =4;,
j#i,k; ¥y =1,,(S:) and Y =f,_, Sk
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m
%o Suppose ze(n Cl4;) -
i=o M
C(So). Then if ze nAi,
f1(8D) i=0

f(x0,2) must intersect
C(So) in an interior point
w; for if not, then it must
intersect some f,-,(S;),
j#0, in a point other than
Xg Xo Or %o, which would
imply mfl(xo,z) C fn-1(5)),

or z¢ nAi. In this case
i=0

then zexow. If zeY,N. . .

NY,where Y; = f,_,(S;),

then there is weC(S;iNSy)

such that zexow. Thus by

m=2 definition 2, 4) and 3.6,
m

Fig. 3.
€ c©) = [ Cl4;.

i=0

A similar argument can be used to show that if DUE=10, . . ., m} and
DNE=¢, then r)) c14;N) N, ci1B; = cxitie U bitjen).

1€, 2€]

It is easy to see tliat this procedure gives a triangulation of X, and if
applied to §”, it will also give a triangulation of $” (with respect to the
usual ‘‘spherical’’ geometry on §”). It should be noted that considering
§" ={(wy, . . ., Wy JER™ |} + . .. + w),, = 1}, then the i-flats of S” are
the intersections of S™ with the i+I-dimensional vector subspaces of R”*’;
the geometry on S” thus obtained is semi-projective because the lattice of
vector subspaces of R”'! is modular. The triangulation of $” contains
exactly as many m-simplices related in precisely the same manner as in X.
Using theorem 1, we can find a homeomorphism between X and $” by
defining the homeomorphism one simplex at a time. Using the techniques
of theorem 1 we can insure the necessary matching on the boundaries of the
simplices in the triangulation.
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