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AN APPLICATION OF MATHEMATICAL LOGIC TO THE
INTEGER LINEAR PROGRAMMING PROBLEM

R. D. LEE

The general integer linear programming problem, namely optimising a
linear function subject to non-negative integer solutions of a set of
simultaneous linear inequalities, was until 1958 one of the major unsolved
problems in the theory of linear programming. Yet, as I shall show in this
paper, a technique for solving this problem was available in 1929 in the
paper by M. Presburger [l] which provided a decision procedure for a
certain fragment of recursive arithmetic. Of course it must be said that
the subject of linear programming did not exist in 1929 and so Presburger's
algorithm was in this context a solution to a non-existent problem. I shall
describe briefly Presburger's result and then show that the existence of an
algorithm for solving the integer linear programming problem is an
obvious consequence of it. I make no claims for the algorithm as a
practical means of computation when compared with the solution due to
R. E. Gomory in 1958 [2], or any subsequent one. It is however a simple
method of showing that the problem is soluble and predates Gomory's
solution by almost 30 years.

Presburger provided a decision procedure (i.e. a procedure for
deciding whether statements were true or false) for the formal system of
arithmetic referred to as system D in Hubert and Bernays Vol. I [3],
System D refers to the 1st order theory with the one predicate, equality,
one constant, 0, and two functions, S (the successor function) and the
addition function. By applying the function S to the constant 0 we have all
the natural numbers in the system, and applying the addition function to the
variables and constants we obtain as the terms of the system, linear forms
in any number of variables with positive coefficients and constants. The
atomic formulae of the system are the expressions s =t where s, t are
terms, and hence the atomic formulae are just linear equations with the
variables on their positive side.

Thus the system contains the propositional connectives for "not"
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"and" and " o r " , and the usual two quantifiers (Ex) for "there exists x"
and (x) for "for all x" > SO the formulae which Presburger's procedure
enables one to decide the truth or falsity of are, conjunctions and disjunc-
tions of linear equations and inequalities involving the two quantifiers for
"there exists" and "for all . . .", e.g.:

(Ex) (y) (((2x = y + 3) A (2X + 2y = 11)) v (Ez) (2x + 3y = z))

The procedure consists in successively replacing given formulae by
equivalent formulae containing one less variable, until such time as no
variables remain and we are left with a set of relations between constants,
the truth or falsity of which can easily be decided.

The integer linear programming problem is to optimise a linear form

CιX1 + C2X2 + CnXn (1)

subject to non-negative integer solutions of a set of simultaneous in-
equalities

011*1 + 012*2 + « l Λ ~ &1

021*1 + 022*2 + + 02«*« ~ &2

(2)

0 ^ 1 * 1 + 0 » 2 2 * w + . . . ClmnXn ~ Om

where aij , hi are integers, positive negative or zero.
For purposes of this part we shall assume that the inequalities have

been made into equations by the use of slack variables and further that each
variable and the constants have been transferred to that side on which their
coefficients (or the constants) are positive. Thus we shall replace (2) by
equations

A j U i . . . . # , ) = Bx(xλ . . . . χ t )

'. '. ( 3 )

Am(xι . . . */) = Bm(x1 . . . . x t )

where A, , J5, , z = 1 . . . m are linear, possibly nonhomogeneous forms in
#i . . . . * / , t ^ n.

If we wish to optimise the linear form (1) let

cιxι + c2x2 + . . . . + cnxn = z (4)

and then the optimum value of z subject to (3) will be the optimum of (1)
subject to (3). We then put (4) in the form

^-/1\*1*2 *«> Z) ~ ^2\*1*2 *«> Z)

where CγC2 are also linear forms with xγx2 . . . xn, z on their positive
sides. The expression
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(Ez) (Exn) ( E ^ . J . . . ( E Λ J ( ( Λ (.Ai(xy . . . x,))
i-\ .. .m

= £ * ( # ! . . . Xt)) Λ Ci(AT! . . . XnZ) = C 2 ( ^ . . #„)) (5)

is then a sentence in Hubert and Bernays System D and hence we can use
Presberger's procedure to eliminate all the variables until only z and
constants remain.

At this point I shall explain briefly Presburger's algorithm, or rather
an algorithm derived from it. The first step is to change equations into
inequalities thus

A ^ B and A ^ B instead of A = B

Let us suppose that the equations in (5) are put in the form

ailx1>ti ie\21

so that aiλ ^ 0 for all i, l n , l21 are index sets, U is a function of x2 . . . . xm9

z, for all i.
Let ax = L.C.M. {aix \ ie l n v 121}. Expression (5) is then equivalent to

(a.x, ^tl ieln

(Ez) (Exn) . . . (Ex,) 1 α ^ ^ t\ ie l{x (6)
(xi• ̂  0 for i = 2, 3, . . . n .

where \f

21 enlarged to include xx ^ 0, or rather a1xι ^ 0 and t\ = —L, ίz . If

y = βΛ? (6) is equivalent to

( 3 > ^ J t e l u ,
(Ez) (Exw) . . . (E*a) (Ey) O ^ tf *€ I21 , (7)

(#/ ^ 0, i = 2, . . . n.

This in turn is equivalent to

ί
tj + r ^ t\ , ie In ,

t'+r^tl ie\zι

ίy + r Ξ 0 mod αi

Xi[^ 0 i = 2 . . . n .
So we have a disjunction of sentences each disjunct being a conjunction of
inequalities and a congruence, and each disjunct containing one variable
less than the original expression (6), i.e. we have eliminated xx (for
proof of this result see [4]). Using the rule

(Ex) (Ai v A 2 v . . . vA,) = (Ex) Aι v (Ex) Az v . . . v (Ex) At

we may consider each disjunct separately. Each disjunct may then be put
in the form

tf2#2 ^ t'i ie i12

< α ^ ^ t\ ie l22

tt^Xi = t0 mod aλ

and subsequently in the form
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' y - t'i ie l 1 2

y ^ t'i ίe\'22

< y = t0 mod aι

y = 0 mod α 2

Xi - 0 for i = 3 . . . n

By use of the Chinese Remainder Theorem (see [4]) y = t0 mod ax and

y = 0 mod α2 have a simultaneous solution if and only if t0 = 0 mod(α1? a2)

and if there is a solution y ΞΞ&£0 mod[α1,α2] where k is determined by ax

and α^ 1

We now have a conjunction of inequalities and one congruence. The

algorithm is repeated until we are left with a large number of disjuncts

each of which is of the form

z = q mod m A (a < z) Λ (Z < b) (8)

Each disjunct may also contain one congruence and some inequalities
involving only integers and not z, and it is easily seen, whether these are
true or false. If any one is false the entire disjunct is false and may be
ignored. If they are all true one may then concentrate on that part of the
disjunct in the form of (6). Each of the conjunctions of the form of (8)
determine a set of values (possibly empty) for which (5) is true, and the
union of these sets is the set of values of z which makes (5) true. Hence we
can optimise z, and thus the linear form (1), by choosing the optimum value
in this set. In case all the disjunctions (8) are inconsistent, the original
equations (2) are inconsistent.

This paper, like many others, is not solely the results of my own
efforts; I am very grateful for the considerable help of George Rousseau
and Professor R. L. Goodstein of Leicester University.
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l (0i>#2) = g.c.d. of aι and a2\ [ai,a2] = L.C.M. of a\ and a2.




