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THE MODAL STRUCTURE OF THE PRIOR-RESCHER
FAMILY OF INFINITE PRODUCT SYSTEMS

GERALD J. MASSEY

1. Prior-Rescher Family of Product Systems.* Let S be an arbitrary
sentential system of m-valued truth-functional logic, m = 2. Following the
notational conventions of Rescher ([6], p. 99), we mean by II,(S) the truth-
functional system that is the 2-fold product of S with itself. That is, the
truth values of II,(S) are the k-tuples of the truth values of S, and the
semantics of II,(S) is based on the semantics of S in the following way. Let
® be an m-ary connective. Then ®(aj, ..., ), ..., " ..., dy) is
@@, ...,ad), ...,k ...,ad)). Rescher observes that there are two
plausible ways to treat truth-value designation in II;(S). One might regard
a truth value (a, ..., o) as designated in II,(S) iff (a) each member of
{ay, ...,0 is designated in S, or iff (b) at least one member of
{a;, . . ., & is designated in S. Both alternatives lead to exactly the same
theses for all the product systems discussed in this paper, so it is a matter
of indifference which is chosen. For the sake of definiteness we adopt
alternative (a). Again following Rescher’s notation (ibid.), by on(S) we
mean the denumerable product of S with itself. That is, the truth values of
on(s) are the denumerable sequences (a,, @, &3, . . .) of the truth values of
S, and the semantics of Ilg O(S) is based on that of S in the same way that the
semantics of II,(S) is based on the semantics of S.

In [6], p. 195, Rescher considers the family of systems II,(S)* and
H&O(S)"', which we call the Priov-Rescher family of product systems. In all
these systems the underlying truth-functional logic S has a ‘‘truest’
designated value t and a ‘‘falsest’’ nondesignated value f. One obtains
II(S)* Dby supplementing II(S) with the singulary operator O whose
semantics is given as follows. The value of OA is the k-tuple (t, ..., t) if
the value of A is that same k-tuple; otherwise, the value of OA is the
k-tuple (f,...,f). Similarly, one gets on(5)+ by supplementing Ily(S)
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with O evaluated as follows. The value of OAis (t, t, t, . . .) if the value of
A is that same infinite sequence; otherwise, the value of DA is (f, f, f, . . .).
(Prior has also discussed other product systems supplemented with
modality, such as the Diodorean systesm whose modal structure is
discussed in Bull [1].)

2. Modal Structuve of the Systems. Iz (S)*. In [5], pp. 21 ff., Prior
introduced the systems II(C)* and Ily,(C)*, where C is classical two-
valued logic, and asserted that the theses of HNO(C)+ are exactly the theses
of the modal system S5. Prior’s result about IIy,(C)* has prompted
Rescher ([6], p. 195) to raise but to leave unanswered the question of what
is the modal structure of a product system HRO(S)“L, when S # C. There
appear to be two ways to answer Rescher’s query. The first way is to
present an ‘‘interesting’ axiomatization of S-with-modality and then to
prove that the theorems of this axiomatic system are precisely the theses
of Iy, (S)*. The second way, the way we shall adopt, consists in presenting
a plausible modal semantics for S-with-modality, proving that the valid
wifs of this system are precisely the theses of HNO(S)+’ and showing how the
two semantics are related. To anticipate, we will show that the theses of
II&O(S)+ are the valid wffs of a Kripkean S5 modal system S* having S as the
underlying truth-functional logic.

It behooves us now to say what we mean by a Kripkean S5 modal
system S* based on a truth-functional system S. In addition to the
connectives of S, S* contains the singulary operator (0. The semantics of
S* appeals to so-called S5 model structures (G, K, R), where K is a
nonempty set (the set of possible worlds), GeK, and R is an equivalence
relation on K (the relation of accessibility). An interpretation on (G, K, R)
of a wff is simply a function that assigns to each sentential variable of the
wif some truth value or other at each possible world (member of X). The
basic semantical notion is the value of a wff at a wovld undey an interpreta-
tion of it on a wmodel structuve. For truth-functional connectives the
semantical clauses of the inductive definition of the aforementioned notion
are given in the usual way ([2], pp. 84 ff.). The basic Kripkean theme
admits of some variation in the clause governing O when the underlying
truth-functional logic S is many-valued. Two natural alternatives present
themselves. The first is to let the value of a wff A at a world W under an
interpretation T on (G, K, R) be t (the ‘‘truest’’ value) if the value of A
under T on {G, K, R) is t at every world accessible to W, and otherwise be
f (the ““falsest’’ value). The second is to let the value of A at W under T on
(G, K, R) be the ‘‘least true’’ of the values that A has under T on (G, K, R)
at worlds accessible to W, provided the value of A under T on (G, K, R) is
designated at each of these worlds, and otherwise be f. Because the first
alternative corresponds to the Prior-Rescher semantical rule for O in
product systems, we adopt it here. Henceforth, then, by S* we shall mean
the Kripkean S5 modal system that results when O is added to the truth-
functional system S, the semantics of OO being given by the first alternative
just discussed. Notice that the second alternative is somewhat less
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economical than the first, presupposing not only a ‘‘truest’’ value and a
“falsest’® value but also a well-ordering of the designated values with
respect to truthlikeness. The product-system counterpart to the second

alternative is the following rule. For the value (a;, . .., &) of A, the value
of OA is the Fk-tuple (o, ..., a" provided that all the members of
{a;, . .., are designated and that o' is the least designated of them:;
otherwise, the value of OA is the k-tuple {(f,...,f). Denumerable

sequences of truth values are treated analogously.

3. Formal Results. When R is an equivalence relation, as in S5 model
structures (G, K, R), the model structures become semantically super-
fluous. Rather than deal with interpretations on model structures as above,
one may simply regard an S5 interpretation of A as an ordered pair (G,K),
where K is a set of truth-value assignments to the sentential variables of A
with Ge K. That is, one may treat the truth-value assignments of K as
mutually accessible possible worlds. In a truth-tabular representation (see
[3], pp. 593-595, and [4]), (G, K) corresponds to the value-assignment
portion of a partial or full truth table for A in the following way. K is the
set of value-assignment rows of the table, and G is a given one of these
rows. Truth-functional connectives are handled in the usual truth-tabular
way, and O is treated thus: The value of (JA on a row of the table is t if the
value of A is t on each row of the table; otherwise, the value of JA on the
given row is f. The equivalence of the Kripkean semantics to this truth-
tabular representation may be put as follows. A wff A is valid in S* iff the
value of A is designated on every row of every finite truth table for A. Let
#n be the number of distinct sentential variables in A. It is readily verified
that A is valid in S* iff the value of A is designated on every row of every
truth table for A that contains m” or fewer rows, where m is the number of
truth values in the system S. This gives us a decision procedure for
validity for an arbitrary system S*.

Theorem 1. For any positive integev k, if A is not a thesis of ,(S)*, then
A is not a thesis (valid wif) of S*.

Theorem 1 is an immediate corollary of the following lemma.

Lemma. Let by, ..., b, be a complete list of the distinct vaviables of A.
Then A has in IL(S)* the value (B, . . ., Byyunder the value assignment of
@i, ..., 0, ..., ..., a)tob, ..., b,vespectively iff in the tvuth-
tabular representation of S* we have

by...b, | A

ai...a” | B

. e

o ag | Be

The lemma can be proved by a straightforward induction on the number of
occurrences of connectives in A. The lemma shows that the product
semantics of II,(S)T is merely a variant representation of the S5 truth



222 GERALD J. MASSEY

tables containing exactly 2 rows. Thus the following theorem is also a
corollary of the foregoing lemma.

Theorem 2. If A is not a thesis of S*, then for some positive integer k, A
is not a thesis of Iy(S)™.

From Theorems 1 and 2 we have immediately:

Theorem 3. A is a thesis of S* iff, for every posilive integev k, A is a
thesis of M (S)*.

Next we show:

Theorem 4. Fov any positive integer k, if A is not a thesis of ,(S)*, then
A is not a thesis of Ty ().

To establish Theorem 4, one can prove by mathematical induction on the
number of occurrences of connectives in A that if A has in II,(S)* the value
(Bi, ..., By, for the value assignment of {ay, . . ., %), ..., ..., a)
to the variables b,,...,b, of A, then the value of A in on(3)+ is the
infinite sequence (81, . . ., B, Biy - - + 5 Bk, . . .) for the value assignment of
the infinite sequences (ai, ..., Q% Qi, ..., Q- . 2)y ..., (@], ..., af
al, .. ,0f,...)toby, ..., b, respectively.

At this juncture Prior’s result that H&O(C)"' and C* (i.e. S5) have the
same theses can be derived from theorems 1, 2, 4 and verification of the
fact that the axioms and rules of S5 are validated by the semantics of
HNO(C)‘*. This result is a special case of Theorem 6 below.

Theorem 5. If A is not a thesis of H&O(S)‘*, then for some positive integer
k, A is not a thesis of II,(S)*.

To prove Theorem 5, let b,, ..., b, be a complete list of the distinct
variables of A, and let (B, B,, Bs, . . .) be the value of A in IIyy(S)* for the
value assignment of (ai, a}, a3, ...),..., (@}, af, a2 ...)to by, ..., b,
respectively, and let (i, ..., yoq), - -« »{yd .« ., ¥y be a possibly
redundant list of the distinct (n+1)-tuples in the infinite list {aj, . . . ,a?, By,
(a3, . ..,al By, .... Then one can show by mathematical induction on
the number of occurrences of connectives in A that the value of A in IT;(S)*
i (Vma1y + - » yoro for the value assigrment of (y1, ..., Y1), «vvy (Yiy vy )
to by, . .., b, respectively.

The next theorem, which follows immediately from Theorems 1, 2, 4
and 5, constitutes our answer to Rescher’s query about the modal structure
of Iy (S)™.

Theorem 6. S* and HRO(S)‘F have exactly the same theses.
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