Notre Dame Journal of Formal Logic Volume XIII, Number 2, April 1972 NDJFAM

THE MODAL STRUCTURE OF THE PRIOR-RESCHER FAMILY OF INFINITE PRODUCT SYSTEMS

GERALD J. MASSEY

1. Prior-Rescher Family of Product Systems.* Let S be an arbitrary sentential system of *m*-valued truth-functional logic, $m \ge 2$. Following the notational conventions of Rescher ([6], p. 99), we mean by $\Pi_k(S)$ the truthfunctional system that is the k-fold product of S with itself. That is, the truth values of $\Pi_k(S)$ are the k-tuples of the truth values of S, and the semantics of $\prod_{k}(S)$ is based on the semantics of S in the following way. Let \otimes be an *n*-ary connective. Then $\otimes(\langle \alpha_1^1, \ldots, \alpha_k^1 \rangle, \ldots, \langle \alpha_1^n, \ldots, \alpha_k^n \rangle)$ is $\langle \otimes (\alpha_1^1, \ldots, \alpha_1^n), \ldots, \otimes (\alpha_k^1, \ldots, \alpha_k^n) \rangle$. Rescher observes that there are two plausible ways to treat truth-value designation in $\Pi_k(S)$. One might regard a truth value $\langle \alpha_1, \ldots, \alpha_k \rangle$ as designated in $\prod_k(S)$ iff (a) each member of $\langle \alpha_1, \ldots, \alpha_k \rangle$ is designated in S, or iff (b) at least one member of $\langle \alpha_1, \ldots, \alpha_k \rangle$ is designated in S. Both alternatives lead to exactly the same theses for all the product systems discussed in this paper, so it is a matter of indifference which is chosen. For the sake of definiteness we adopt alternative (a). Again following Rescher's notation (*ibid.*), by $\Pi_{\aleph_0}(S)$ we mean the denumerable product of S with itself. That is, the truth values of $\Pi_{\aleph_0}(S)$ are the denumerable sequences $(\alpha_1, \alpha_2, \alpha_3, \ldots)$ of the truth values of S, and the semantics of $\Pi_{\aleph_0}(S)$ is based on that of S in the same way that the semantics of $\Pi_k(S)$ is based on the semantics of S.

In [6], p. 195, Rescher considers the family of systems $\Pi_k(S)^+$ and $\Pi_{\aleph_0}(S)^+$, which we call the *Prior-Rescher family of product systems*. In all these systems the underlying truth-functional logic S has a "truest" designated value t and a "falsest" nondesignated value f. One obtains $\Pi_k(S)^+$ by supplementing $\Pi_k(S)$ with the singulary operator \Box whose semantics is given as follows. The value of $\Box A$ is the k-tuple $\langle t, \ldots, t \rangle$ if the value of A is that same k-tuple; otherwise, the value of $\Box A$ is the k-tuple $\langle f, \ldots, f \rangle$. Similarly, one gets $\Pi_{\aleph_0}(S)^+$ by supplementing $\Pi_{\aleph_0}(S)$

^{*}Research supported by sabbatical leave from Michigan State University and by a 1969-70 Mellon Postdoctoral Fellowship at the University of Pittsburgh.

with \Box evaluated as follows. The value of $\Box A$ is (t, t, t, ...) if the value of A is that same infinite sequence; otherwise, the value of $\Box A$ is (f, f, f, ...). (Prior has also discussed other product systems supplemented with modality, such as the Diodorean systesm whose modal structure is discussed in Bull [1].)

2. Modal Structure of the Systems. $\Pi_{\aleph_0}(S)^+$. In [5], pp. 21 ff., Prior introduced the systems $\Pi_k(C)^+$ and $\Pi_{\aleph_0}(C)^+$, where C is classical twovalued logic, and asserted that the theses of $\Pi_{\aleph_0}(C)^+$ are exactly the theses of the modal system S5. Prior's result about $\Pi_{\aleph_0}(C)^+$ has prompted Rescher ([6], p. 195) to raise but to leave unanswered the question of what is the modal structure of a product system $\Pi_{\aleph_0}(S)^+$, when $S \neq C$. There appear to be two ways to answer Rescher's query. The first way is to present an "interesting" axiomatization of S-with-modality and then to prove that the theorems of this axiomatic system are precisely the theses of $\Pi_{\aleph_0}(S)^+$. The second way, the way we shall adopt, consists in presenting a plausible modal semantics for S-with-modality, proving that the valid wffs of this system are precisely the theses of $\Pi_{\aleph_0}(S)^+$, and showing how the two semantics are related. To anticipate, we will show that the theses of $\Pi_{\aleph_0}(S)^+$ are the valid wffs of a Kripkean S5 modal system S* having S as the underlying truth-functional logic.

It behooves us now to say what we mean by a Kripkean S5 modal system S^* based on a truth-functional system S. In addition to the connectives of S, S* contains the singulary operator \Box . The semantics of S* appeals to so-called S5 model structures $\langle G, K, R \rangle$, where K is a nonempty set (the set of possible worlds), $G \in K$, and R is an equivalence relation on K (the relation of accessibility). An *interpretation on* $\langle G, K, R \rangle$ of a wff is simply a function that assigns to each sentential variable of the wff some truth value or other at each possible world (member of K). The basic semantical notion is the value of a wff at a world under an interpretation of it on a model structure. For truth-functional connectives the semantical clauses of the inductive definition of the aforementioned notion are given in the usual way ([2], pp. 84 ff.). The basic Kripkean theme admits of some variation in the clause governing \Box when the underlying truth-functional logic S is many-valued. Two natural alternatives present themselves. The first is to let the value of a wff A at a world W under an interpretation Σ on $\langle G, K, R \rangle$ be t (the "truest" value) if the value of A under Σ on $\langle G, K, R \rangle$ is t at every world accessible to W, and otherwise be f (the "falsest" value). The second is to let the value of A at W under Σ on $\langle G, K, R \rangle$ be the "least true" of the values that A has under Σ on $\langle G, K, R \rangle$ at worlds accessible to W, provided the value of A under Σ on $\langle G, K, R \rangle$ is designated at each of these worlds, and otherwise be f. Because the first alternative corresponds to the Prior-Rescher semantical rule for \Box in product systems, we adopt it here. Henceforth, then, by S^* we shall mean the Kripkean S5 modal system that results when \Box is added to the truthfunctional system S, the semantics of \Box being given by the first alternative just discussed. Notice that the second alternative is somewhat less

economical than the first, presupposing not only a "truest" value and a "falsest" value but also a well-ordering of the designated values with respect to truthlikeness. The product-system counterpart to the second alternative is the following rule. For the value $\langle \alpha_1, \ldots, \alpha_k \rangle$ of A, the value of $\Box A$ is the k-tuple $\langle \alpha', \ldots, \alpha' \rangle$ provided that all the members of $\langle \alpha_1, \ldots, \alpha_k \rangle$ are designated and that α' is the least designated of them; otherwise, the value of $\Box A$ is the k-tuple $\langle f, \ldots, f \rangle$. Denumerable sequences of truth values are treated analogously.

3. Formal Results. When R is an equivalence relation, as in S5 model structures $\langle G, K, R \rangle$, the model structures become semantically superfluous. Rather than deal with interpretations on model structures as above, one may simply regard an S5 interpretation of A as an ordered pair $\langle G, K \rangle$, where K is a set of truth-value assignments to the sentential variables of Awith $G \in K$. That is, one may treat the truth-value assignments of K as mutually accessible possible worlds. In a truth-tabular representation (see [3], pp. 593-595, and [4]), $\langle G, K \rangle$ corresponds to the value-assignment portion of a partial or full truth table for A in the following way. K is the set of value-assignment rows of the table, and G is a given one of these rows. Truth-functional connectives are handled in the usual truth-tabular way, and \Box is treated thus: The value of $\Box A$ on a row of the table is t if the value of A is t on each row of the table; otherwise, the value of $\Box A$ on the given row is f. The equivalence of the Kripkean semantics to this truthtabular representation may be put as follows. A wff A is valid in S^* iff the value of A is designated on every row of every finite truth table for A. Let n be the number of distinct sentential variables in A. It is readily verified that A is valid in S^* iff the value of A is designated on every row of every truth table for A that contains m^n or fewer rows, where m is the number of truth values in the system S. This gives us a decision procedure for validity for an arbitrary system S^* .

Theorem 1. For any positive integer k, if A is not a thesis of $\Pi_k(S)^+$, then A is not a thesis (valid wff) of S*.

Theorem 1 is an immediate corollary of the following lemma.

Lemma. Let b_1, \ldots, b_n be a complete list of the distinct variables of A. Then A has in $\Pi_k(S)^+$ the value $\langle \beta_1, \ldots, \beta_k \rangle$ under the value assignment of $\langle \alpha_1^1, \ldots, \alpha_k^1 \rangle, \ldots, \langle \alpha_1^n, \ldots, \alpha_k^n \rangle$ to b_1, \ldots, b_n respectively iff in the truth-tabular representation of S^* we have

$$\begin{array}{c|c} b_1 \dots b_n & A \\ \hline \alpha_1^1 \dots \alpha_1^n & \beta_1 \\ \vdots & \vdots & \vdots \\ \hline \alpha_k^1 & \alpha_k^n & \beta_k \end{array}$$

The lemma can be proved by a straightforward induction on the number of occurrences of connectives in A. The lemma shows that the product semantics of $\Pi_k(S)^+$ is merely a variant representation of the S5 truth

tables containing exactly k rows. Thus the following theorem is also a corollary of the foregoing lemma.

Theorem 2. If A is not a thesis of S*, then for some positive integer k, A is not a thesis of $\Pi_k(S)^+$.

From Theorems 1 and 2 we have immediately:

Theorem 3. A is a thesis of S* iff, for every positive integer k, A is a thesis of $\Pi_k(S)^+$.

Next we show:

Theorem 4. For any positive integer k, if A is not a thesis of $\Pi_k(S)^+$, then A is not a thesis of $\Pi_{\aleph_n}(S)^+$.

To establish Theorem 4, one can prove by mathematical induction on the number of occurrences of connectives in A that if A has in $\Pi_k(S)^+$ the value $\langle \beta_1, \ldots, \beta_k \rangle$, for the value assignment of $\langle \alpha_1^1, \ldots, \alpha_k^1 \rangle, \ldots, \langle \alpha_1^n, \ldots, \alpha_k^n \rangle$ to the variables b_1, \ldots, b_n of A, then the value of A in $\Pi_{\aleph_0}(S)^+$ is the infinite sequence $(\beta_1, \ldots, \beta_k, \beta_1, \ldots, \beta_k, \ldots)$ for the value assignment of the infinite sequences $(\alpha_1^1, \ldots, \alpha_k^1, \alpha_1^1, \ldots, \alpha_k^1, \ldots), \ldots, (\alpha_1^n, \ldots, \alpha_k^n, \alpha_1^n, \ldots, \alpha_k^n, \alpha_1^n, \ldots, \alpha_k^n, \alpha_1^n, \ldots, \alpha_k^n, \ldots)$

At this juncture Prior's result that $\Pi_{\aleph_0}(C)^+$ and C^* (i.e. S5) have the same theses can be derived from theorems 1, 2, 4 and verification of the fact that the axioms and rules of S5 are validated by the semantics of $\Pi_{\aleph_0}(C)^+$. This result is a special case of Theorem 6 below.

Theorem 5. If A is not a thesis of $\Pi_{\aleph_0}(S)^+$, then for some positive integer k, A is not a thesis of $\Pi_k(S)^+$.

To prove Theorem 5, let b_1, \ldots, b_n be a complete list of the distinct variables of A, and let $(\beta_1, \beta_2, \beta_3, \ldots)$ be the value of A in $\Pi_{\aleph 0}(S)^+$ for the value assignment of $(\alpha_1^1, \alpha_2^1, \alpha_3^1, \ldots), \ldots, (\alpha_1^n, \alpha_2^n, \alpha_3^n, \ldots)$ to b_1, \ldots, b_n respectively, and let $\langle \gamma_1^1, \ldots, \gamma_{n+1}^1 \rangle, \ldots, \langle \gamma_1^s, \ldots, \gamma_{n+1}^s \rangle$ be a possibly redundant list of the distinct (n+1)-tuples in the infinite list $\langle \alpha_1^1, \ldots, \alpha_1^n, \beta_1 \rangle$, $\langle \alpha_2^1, \ldots, \alpha_2^n, \beta_2 \rangle, \ldots$. Then one can show by mathematical induction on the number of occurrences of connectives in A that the value of A in $\Pi_s(S)^+$ is $\langle \gamma_{n+1}^1, \ldots, \gamma_{n+1}^s \rangle$ for the value assignment of $\langle \gamma_1^1, \ldots, \gamma_1^s \rangle, \ldots, \langle \gamma_n^1, \ldots, \gamma_n^s \rangle$ to b_1, \ldots, b_n respectively.

The next theorem, which follows immediately from Theorems 1, 2, 4 and 5, constitutes our answer to Rescher's query about the modal structure of $\Pi_{\aleph_0}(S)^+$.

Theorem 6. S* and $\Pi_{\aleph_0}(S)^+$ have exactly the same theses.

REFERENCES

 Bull, R. A., "An Algebraic Study of Diodorean Modal Systems," The Journal of Symbolic Logic, vol. 30 (1965), pp. 58-64.

- Kripke, S., "Semantical Considerations on Modal Logic," Acta Philosophica Fennica, vol. 16 (1963), pp. 83-94.
- [3] Massey, G. J., "The Theory of Truth Tabular Connectives, Both Truth Functional and Modal," *The Journal of Symbolic Logic*, vol. 31 (1966), pp. 593-608.
- [4] Massey, G. J., "Sheffer Functions for Many-Valued S5 Modal Logics," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 15 (1969), pp. 101-104.
- [5] Prior, A. N., Time and Modality, Clarendon Press, Oxford (1957).
- [6] Rescher, N., Many-valued Logic, McGraw Hill Book Co., New York (1969).

University of Pittsburgh Pittsburgh, Pennsylvania