Notre Dame Journal of Formal Logic Volume XIII, Number 1, January 1972 NDJFAM

AN ABBREVIATION OF CROISOT'S AXIOM-SYSTEM FOR DISTRIBUTIVE LATTICES WITH I

BOLESłAW SOBOCIŃSKI

In [2] there have been established the axiom-systems which satisfy certain formal requirements defined in that paper for distributive lattices with the constant elements. Unfortunately, only when [2] was already composed and in the final proofs, and, therefore, could not be changed, I unexpectedly obtained a rather interesting result which makes the deductions presented in [2] obsolete, although they are entirely correct. Namely, I have proved that in the sets of postulates given in the assumptions of Theorem 2, cf. [2], section 3, axiom A17 is redundant.

1 It is obvious, that if an algebraic system

$$
\mathfrak{S}=\langle A, \cap, \cup, I\rangle
$$

with two binary operations \cap and \cup, and with a constant element $I \epsilon A$, is a distributive lattice with I, then the following formulas

$S 1$	$[a]: a \epsilon A . \supset . I=a \cup I$	[i.e. $A 1$ in [2], section 2]
$S 2$	$[a]: a \epsilon A . \supset . a=a \cap I$	[i.e. $A 2$ in [2], section 2]
$S 3$	$[a b c]: a, b, c \in A . \supset . a \cap((b \cap b) \cup c)=(c \cap a) \cup(b \cap a)$	
		[i.e. $A 4$ in [2], section 2]

are provable in the field of \mathfrak{G}. I shall prove here the converse of this statement. Namely:

If the system $\mathfrak{\Im}$ satisfies the formulas S1, S2 and S3, then it is a distributive lattice with I.

Proof: Let us assume S1, S2 and S3. Then:
S4 $[a b]: a, b \in A . \supset . a=(I \cap a) \cup(b \cap a)$
[S2, S1, S3; as A5 in [2], section 2]
S5
$[a b c]: a, b, c \in A . \supset .(b \cap c) \cup(a \cap c)=c \cap((b \cup a) \cup(b \cup a))$
[S3, S4, S3, S2; as A6 in [2], section 2]
S6 $\quad[a]: a \in A . J . I \cap(a \cup a)=a \quad[S 4, S 5, S 2, S 4$; as $A 7$ in [2], section 2]
S7 [a]:aєA.J. $I \cup a=I \quad$ [S2, S3, S1; as A8 in [2], section 2]

S8 $\quad[a b]: a, b \in A . \supset . a=(b \cap a) \cup(I \cap a)$
[S2, S7, S2, S3; as A9 in [2], section 2]
S9 $\quad[a]: a \in A . \supset .(a \cap a)=(a \cap a) \cup a$
PR [a]: $a \in A . \supset$.
$(a \cap a)=I \cap((a \cap a) \cup(a \cap a))=((a \cap a) \cap I) \cup(a \cap I)=(a \cap a) \cup a$
[S6; S3; S2]
S10 $[a]: a \in A . \supset . I \cap(a \cap a)=a \cup a$
PR $[a]: a \epsilon A . \supset$.
$I \cap(a \cap a)=I \cap((a \cap a) \cup a)=(a \cap I) \cup(a \cap I)=a \cup a \quad[S 9 ; S 3 ; S 2]$
S11 $[a]: a \in A . \supset .(a \cup a) \cup(a \cup a)=a \cap a$
PR [a]: $a \in A . \supset$.
$(a \cup a) \cup(a \cup a)=(I \cap(a \cap a)) \cup(I \cap(a \cap a))=a \cap a$
[S10; S4]
S12 $[a]: a \in A . \supset . a \cup a=(I \cap a) \cap(I \cap a)$
PR $[a]: a \in A . \supset$.
$a \cup a=((I \cap a) \cup(I \cap a)) \cup((I \cap a) \cup(I \cap a))=(I \cap a) \cap(I \cap a)$
[S4; S11]
S13 [a]: $a \in A . \supset . a \cap(a \cap a)=(a \cap a) \cup(a \cap a)$
PR $[a]: a \in A . \supset$.
$a \cap(a \cap a)=a \cap((a \cap a) \cup a)=(a \cap a) \cup(a \cap a)$
[S9; S3]
S14 $[a]: a \in A . \supset . a \cap a=((a \cap a) \cup(a \cap a)) \cup(a \cup a)$
PR $[a]: a \in A . J$.
$a \cap a=(a \cap(a \cap a)) \cup(I \cap(a \cap a))=((a \cap a) \cup(a \cap a)) \cup(a \cup a)$
[S8; S13; S10]
S15 [a]: $a \in A . \supset . a \cup a=a \cap a$
$\operatorname{PR} \quad[a]: a \in A . \supset$.

$$
\begin{align*}
a \cup a & =(I \cap a) \cap(I \cap a) \tag{S12}\\
& =(((I \cap a) \cap(I \cap a)) \cup((I \cap a) \cap(I \cap a))) \cup((I \cap a) \cup(I \cap a)) \text { [S12] } \\
& =((a \cup a) \cup(a \cup a)) \cup a=(a \cap a) \cup a=a \cap a \quad[S 12 ; S 4 ; S 11 ; S 9]
\end{align*}
$$

S16 $[a]: a \in A . \supset a=a \cap a$
PR $[a]: a \in A . \supset$.
$a=I \cap(a \cup a)=I \cap(a \cap a)=a \cup a=a \cap a \quad[S 6 ; S 15 ; S 10 ; S 15]$

Since the formulas S1, S2 and S3 imply S16 and S17, and since, as Croisot has shown, $c f$. [1], p. 27, and [2], section 1, the set of the formulas S16, S1, S2 and S17 constitutes an axiom-system for distributive lattice with I, we have $\{S 1 ; S 2 ; S 3\} \rightleftarrows\{S 16, S 1 ; S 2 ; S 17\}$. Therefore, the proof is complete. It should be noticed that in the axiomatization presented above the postulate $S 3$ can be substituted by
S3* $\quad[a b c]: a, b, c \in A: \supset . a \cap(b \cup(c \cap c))=(c \cap a) \cup(b \cap a)$
Deductions entirely analogous to those given above show without any
 and 44 given in [2], section 4, cf. also [1], pp. 26-27, prove that the axioms $S 1, S 2$ and $S 3$ are mutually independent, and that in this set of postulates S3 cannot be replaced by $S 17$.

2 The fact that Croisot's axiom-system $\{S 16 ; S 1 ; S 2 ; S 17\}$ is inferentially equivalent to the shorter axiomatization $\{S 1 ; S 2 ; S 3\}$ alters the theorems and the proofs given in [2], as follows:
(1) From the assumptions of Theorem 2 axiom $A 17$ should be removed, and the proof of this Theorem should be replaced by the deductions given above in section 1.
(2) From the assumptions of Theorem 3 axiom C3 should be dropped.
(3) The proof of Theorem 1 can be replaced by a simple remark that this Theorem 1 is an immediate consequence of a new version of Theorem 2 and of the self-evident fact that an addition of the formula $A 3, c f$. [2], section 2, as a new postulate to the axioms S1, S2 and S3 constitutes an axiom-system for distributive lattices with O and I.

REFERENCES

[1] Croisot, R., "Axiomatique des lattices distributives," Canadian Journal of Mathematics, vol. III (1951), pp. 24-27.
[2] Sobociński, B., "Certain sets of postulates for distributive lattices with the constant elements," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 119-123.

University of Notre Dame
Notre Dame, Indiana

