Notre Dame Journal of Formal Logic Volume XIII, Number 1, January 1972 NDJFAM

AN ABBREVIATION OF CROISOT'S AXIOM-SYSTEM FOR DISTRIBUTIVE LATTICES WITH *I*

BOLESŁAW SOBOCIŃSKI

In [2] there have been established the axiom-systems which satisfy certain formal requirements defined in that paper for distributive lattices with the constant elements. Unfortunately, only when [2] was already composed and in the final proofs, and, therefore, could not be changed, I unexpectedly obtained a rather interesting result which makes the deductions presented in [2] obsolete, although they are entirely correct. Namely, I have proved that in the sets of postulates given in the assumptions of Theorem 2, cf. [2], section 3, axiom A17 is redundant.

1 It is obvious, that if an algebraic system

$$\mathbf{G} = \langle A, \cap, \cup, I \rangle$$

with two binary operations \cap and \cup , and with a constant element $I \epsilon A$, is a distributive lattice with I, then the following formulas

S1 $[a]: a \in A . \supset . I = a \cup I$ [i.e. AI in [2], section 2]S2 $[a]: a \in A . \supset . a = a \cap I$ [i.e. A2 in [2], section 2]S3 $[abc]: a, b, c \in A . \supset . a \cap ((b \cap b) \cup c) = (c \cap a) \cup (b \cap a)$ [i.e. A4 in [2], section 2]

are provable in the field of $\boldsymbol{\mathfrak{S}}$. I shall prove here the converse of this statement. Namely:

If the system \mathfrak{S} satisfies the formulas S1, S2 and S3, then it is a distributive lattice with I.

Proof: Let us assume S1, S2 and S3. Then:

Received September 20, 1971

BOLESŁAW SOBOCIŃSKI

S 8	$[ab]: a, b \in A. \supset . a = (b \cap a) \cup (I \cap a)$ [S2, S7, S2, S3; as A9 in [2], section 2]
S9 PR	$[a]: a \in A . \supset . (a \cap a) = (a \cap a) \cup a$ $[a]: a \in A . \supset .$
	$ (a \cap a) = I \cap ((a \cap a) \cup (a \cap a)) = ((a \cap a) \cap I) \cup (a \cap I) = (a \cap a) \cup a $ $ [S6; S3; S2] $
S10 PR	$[a]: a \in A : \supset . I \cap (a \cap a) = a \cup a$ $[a]: a \in A : \supset .$
<i>S11</i>	$[a]: a \in A : \neg = I \cap ((a \cap a) \cup a) = (a \cap I) \cup (a \cap I) = a \cup a \qquad [S9; S3; S2]$ $[a]: a \in A : \neg = (a \cup a) \cup (a \cup a) = a \cap a$
PR	$[a]: a \epsilon A . \supset .$
S12	$[a]: a \in A \ . \supseteq . \ a \cup a = (I \cap a) \cap (I \cap a)$
PR	$[a]: a \in A . \supseteq .$ $a \cup a = ((I \cap a) \cup (I \cap a)) \cup ((I \cap a) \cup (I \cap a)) = (I \cap a) \cap (I \cap a)$
S13	$[a]: a \in A : \supset a \cap (a \cap a) = (a \cap a) \cup (a \cap a)$
PR	$ [a]: a \in A . \supset . a \cap (a \cap a) = a \cap ((a \cap a) \cup a) = (a \cap a) \cup (a \cap a) $ [S9; S3]
S14 PR	$[a]: a \in A . \supset . a \cap a = ((a \cap a) \cup (a \cap a)) \cup (a \cup a)$ $[a]: a \in A . \supset .$
	$a \cap a = (a \cap (a \cap a)) \cup (I \cap (a \cap a)) = ((a \cap a) \cup (a \cap a)) \cup (a \cup a)$ [S8; S13; S10]
S15 PR	$[a]: a \in A . \supseteq . a \cup a = a \cap a$ $[a]: a \in A . \supseteq .$
	$a \cup a = (I \cap a) \cap (I \cap a) $ $= (((I \cap a) \cap (I \cap a)) \cup ((I \cap a) \cap (I \cap a))) \cup (((I \cap a) \cup (I \cap a)) [S14]$
S16	$= ((a \cup a) \cup (a \cup a)) \cup a = (a \cap a) \cup a = a \cap a \qquad [S12; S4; S11; S9]$ [a]: $a \in A$. $\supset a = a \cap a$
PR	$[a]: a \in A : \supseteq :$ $[a]: a \in A : \supseteq :$ $a = I \cap (a \cup a) = I \cap (a \cap a) = a \cup a = a \cap a$ [S6; S15; S10; S15]
S17	$[abc]: a, b, c \in A . \supseteq . a \cap (b \cup c) = (c \cap a) \cup (b \cap c) $ $[S3; S16]$
Since the formulas S1 S2 and S2 imply S16 and S17 and since as	

Since the formulas S1, S2 and S3 imply S16 and S17, and since, as Croisot has shown, cf. [1], p. 27, and [2], section 1, the set of the formulas S16, S1, S2 and S17 constitutes an axiom-system for distributive lattice with I, we have $\{S1; S2; S3\} \rightleftharpoons \{S16, S1; S2; S17\}$. Therefore, the proof is complete. It should be noticed that in the axiomatization presented above the postulate S3 can be substituted by

$$S3^* \quad [abc]: a, b, c \in A : \supseteq . a \cap (b \cup (c \cap c)) = (c \cap a) \cup (b \cap a)$$

Deductions entirely analogous to those given above show without any difficulty that $\{S1; S2; S3^*\} \rightleftharpoons \{S16; S1; S3; S17\}$. The matrices $\mathfrak{M1}$, $\mathfrak{M2}$, $\mathfrak{M3}$ and $\mathfrak{M4}$ given in [2], section 4, cf. also [1], pp. 26-27, prove that the axioms S1, S2 and S3 are mutually independent, and that in this set of postulates S3 cannot be replaced by S17.

140

2 The fact that Croisot's axiom-system $\{S16; S1; S2; S17\}$ is inferentially equivalent to the shorter axiomatization $\{S1; S2; S3\}$ alters the theorems and the proofs given in [2], as follows:

(1) From the assumptions of Theorem 2 axiom A17 should be removed, and the proof of this Theorem should be replaced by the deductions given above in section 1.

(2) From the assumptions of Theorem 3 axiom C3 should be dropped.

(3) The proof of Theorem 1 can be replaced by a simple remark that this Theorem 1 is an immediate consequence of a new version of Theorem 2 and of the self-evident fact that an addition of the formula A3, cf. [2], section 2, as a new postulate to the axioms S1, S2 and S3 constitutes an axiom-system for distributive lattices with O and I.

REFERENCES

- [1] Croisot, R., "Axiomatique des lattices distributives," Canadian Journal of Mathematics, vol. III (1951), pp. 24-27.
- [2] Sobociński, B., "Certain sets of postulates for distributive lattices with the constant elements," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 119-123.

University of Notre Dame Notre Dame, Indiana