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ON THE RECURSIVE UNSOLVABILITY OF THE PROVABILITY
OF THE DEDUCTION THEOREM IN PARTIAL

PROPOSITIONAL CALCULI

D. BOLLMAN and M. TAPIA

1. Introduction.* In a recent paper, Pogorzelski [2] proved the existence
of a "weakest" partial propositional (implicational) calculus. Such a
calculus is the weakest in the sense that its rules and axioms are among
the derived rules and theorems respectively of any partial propositional
calculus in which the deduction theorem holds. This result suggests the
following question: Is it possible to algorithmically determine of an
arbitrarily given partial propositional calculus whether or not the deduction
theorem holds ? In this paper we prove that the answer to this question is
negative.

To accomplish our goal, we consider a special subclass of partial
propositional calculi, namely those in which the rules of inference consist
of modus ponens and substitution. It is known that the decision problem for
the latter calculi is recursively unsolvable and we shall use Singletary's
construction of such calculi in [3]. The proof that the problem of deter-
mining whether or not the deduction theorem holds for such a calculus
arbitrarily given will parallel Yntema's proof of the recursive unsolvability
of the completeness problem for a more restricted class of partial
propositional calculi in [4]. Finally, using a well-known result of Boone [1],
it will be an easy matter to show that for every recursively enumerable
degree of unsolvability D, there exists a class of partial propositional
calculi such that the problem of determining whether or not the deduction
theorem holds for any member of the class is of degree D.

2. Preliminaries. For the purposes of this paper, we shall define a
generalized partial propositional calculus to be a formal system whose

*This paper is part of a thesis written under the direction of Professor D.
Bollman and submitted to the University of Puerto Rico at Mayaguez in July, 1970
in partial fulfillment of the requirements for the degree of Master of Science.
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symbols consist of (, ), and ^ , and an infinite set of propositional variables

Pi) Qii ri> p2> Q2, r2> The well-formed formulas are taken to be (1) any

propositional variable and (2) any expression of the form (A D B) where A

and B are any well-formed formulas. The set of axioms is simply any set

of well-formed formulas and the rules of inference are any set of ordered

tuples of well-formed formulas.

We define a partial implicational calculus to be a generalized partial

propositional calculus in which the axioms are tautologies and the rules of

inference are modus ponens and substitution. Clearly, the class of partial

implicational calculi is a subclass of the class of generalized partial

propositional calculi. Hence proving that there exists a partial implica-

tional calculus such that the problem of determining whether or not the

deduction theorem holds and that there exists such a calculus for every

recursively enumerable degree of unsolvability automatically gives the

corresponding results for generalized partial propositional calculi.

As previously mentioned, we shall use Singletary's construction of a

partial implicational calculus with recursively unsolvable decision problem.

We begin by outlining this construction and supplying the necessary

definitions.

A semi-Thue system T consists of a finite alphabet Z(Γ) and a finite

set of pairs of words on Z(Γ), called the defining relations of Γ. We shall

denote that (U, U) is a defining relation by writing U ψ U. If U and V are

words of Z(Γ) then U \γV means that there exists a finite sequence of

assertions U1 ^ F 1 ? U2 hj.V2, . . . , ϋn \^Vn, where Un is U, Vn is V and for

i = 1, 2, . . . , n, one of the following holds:

1. There exists a word Y on Z(Γ) and some j, 1 ^ j < ί such that U{ is UjY

and Vi is VjY.

2. There exists a word Y on Z(Γ) and some j, 1 ^ j < i such that Z7, is YUj

and Vi is YVj.

3. Vi is Ui.

4. Ui is U and V{ is JJ where U ψ V is a defining relation of T.

5. There exist j and k where 1 ^j <i and 1 ^ k < ί such that Ui is Uj, F;

is Uk, and Vi is Vk

A semi-Thue system T is called standard if Z(Γ) = {l, b} and no word

in any defining relation of T is empty. For any nonempty word on {l, b} we

define W* as follows:

1 * = P2 => (P2 => P2)
δ * = P2 => (P2 ^ (P2 ^ P2))

(Xl)*=X*vl*

where X is any nonempty word on {1, b] and where (A v B) is an abbreviation

of the well-formed formula ( ( A D B) Z> B). For any nonempty word W on

{1, b}, let f(W) denote W* vh, where /z is (/>2 z> (/?2 3 (/>2 z> (/>2 D />2)))).

For any standard semi-Thue system T with defining relations U{ —» Z7,-,

z = 1, 2, . . . , m, let P(T) be the partial implicational calculus whose

axioms are as follows:
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(1) ( ( ( ί i V ί J v r J v Λ j D ((/ΊvteivrJJvΛ)
(2) ((/>! v (^ v r j ) v h) Ώ (((p, v qx) v r j v Λ)
(3) ((/>! v ft) z> (qi v h)) D (((/>! v rx) v Λ) 3 ((ft v r j v ft))
(4) ((/>! v ft) 3 (Ql v ft)) D (((r, v.ft) v ft) 3 ((r, v ft) v ft))
(5) (pxvh) D ^ v Λ )
(6) f{Ui)^f{Ui), i= 1, 2, . . . , m
(7) ((fc v fc) D (^ v ft)) 3 (((^ v Λ) D (r, v Λ)) D ((/>x v ft) D (r, v ft)))

Singletary proves that for any nonempty words Wλ and W2 on {1, 6},
Wγ yj,w2 if and only if *-/(wy D /(^ 2 ) in P(Γ). Thus, since there exists a
standard semi-Thue system with recursively unsolvable decision problem,
it follows that there exists a partial implicational calculus with recursively
unsolvable decision problem.

A well-formed formula A of P(Γ) is semi-regular if A is 1* or δ* or is
of the form Aλv A2 where Ax and A2 are semi-regular. A well-formed
formula A of P(Γ) is regular if and only if it is of the form Bvh, where B
is semi-regular.

For any well-formed formula B of P(Γ) whose only propositional
variable is p2 and for any well-formed formula A of P(Γ), let B(A) denote
the result of replacing each occurrence of P2 in B by A. A well-formed
formula 5 of P(Γ) is S-regular if and only if there is a regular well-formed
formula C such that B is C(A) for some well-formed formula A.

A well-formed formula B of P(T) is S-valίd if and only if 5 is of the
form Bλ ^ £ 2 but not of the form Aγv A2 and either (1) there are regular
well-formed formulas Cγ and C2 and a well-formed formula A such that 5 X

is Ci(A), £ 2 is C2(A), and d => C2 in P(Γ), or (2) B1 is not S-regular, £ 2 is
not S-regular and if Bγ is S-valid then B2 is S-valid.

3. Recursive unsolυability.

Lemma 1 (Singletary). Every theorem of P(Γ) has one of the following
forms, where H is a substitution instance ofh.

Form a. ((AlVH) => (A2 v H))
Form b. ((A^H) => (A2vtf)) ~D ((A3VH) D (A4vtf))
Form c. ((AxvH) => (A2vtf)) 3 (((A2vi/) 3 (A3vff)) 3 ((AlVtf) D (A3v//)))

Lemma 2 (Singletary). AZZ theorems of P(Γ) αr£ S-valid.

Lemma 3. If Vlt V2 and A are well-formed formulas ofP(T) such that Vλ

and V2 are regular then \-Vi(A) => V2(A) in P(T) if and only if \-VΊ D V2 in

P(T).

Proof. If \-Vλ 3 V2 in P(Γ) then also i-F^A) D F2(A) by substitution. Con-
versely if f-Fi(A) 3 72(A) then by Lemma 2, FX(A) 3 F2(A) is S-valid and
hence ί-l̂ i z> F 2 in P(Γ) by the definition of S-validity.

For any partial propositional calculus P, and any theorem A of P, we
shall say that A depends on an axiom J5 of P if and only if B is a step of
every proof of A.

The classical proof of the deduction theorem for the complete
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propositional calculus L is a result of the fact that ft 3 (qλ 3 ft) and
(Pi D (<2Ί D *Ί)) D ((Pi D #i) D (Pi D ri)) are theorems of L. Hence it is also
true that the deduction theorem holds for any partial implicational calculus
in which they are theorems. Conversely, if P is a partial implicational
calculus in which the deduction theorem holds we have pl9 qλ\-pi which
implies that i-ft 3 (qλ 3 ft). Furthermore, ft 3 (qλ^ r j , ft D ql7 p1h-q1 and
Pi D {Qi D ri), Pi ^ Qi, Pi^-Qi^ n which imply ft D (ft z> r j , ft 3 ql9 pλhrλ

and so μ(ft => (<& 3 rx)) 3 ((ft D qλ) 3 (ft ^ r j ) . We use this fact to prove:

Lemma 4. Let Wλ and W2 be any two regular well-formed formulas of P(Γ)
and let R[Γ] (WΊ, W2) be obtained from P(T) by adding two axioms

(8) (Wi^W2)o (ftD ( f t Dfc))
(9) ( ^ D W2) D ((ft D ( f t z> n ) ) D ((ft => ft) D (ft D n))).

Γfrerc ί̂ β deduction theorem holds in R[Γ] (T^^ ^2) if and only if \-W1 =) ΐ^2

in P(T).

Proof. If I-WJL ^ PΓ2 in P(Γ) then h^Ί D ΐ^2 in R[Γ] (W ,̂ P72) and so (-^ D
(ft 3 ft) and h fo => (^ D r j ) 3 {{pλ D ^) D (pχ D r j ) in R[Γ] ( ^ , W2) and
so the deduction theorem holds.

Conversely, suppose the deduction theorem holds in R[Γ] (Wl9 W2).
Then v-pι D (^ D ί j in R[Γ] (Wl9 W2). Now ft z> (qλ D ft) is not a theorem
of P(Γ) since it does not have Form α, 6, or c. Hence it depends on either
(8) or (9). Furthermore, p1 3 (qx D p j is not a substitution instance of any
axiom of R[Γ] (W ,̂ PF2) and so every proof of it contains at least one
application of modus ponens.

Now consider any proof in R[Γ] (Wl9 W2) of pγ ^ (qx 3 pλ). At least one
application of modus ponens must be used in conjunction with (8) or (9) for
otherwise px ^ (q1 =) ft) would not depend on (8) or (9). Consider the first
such application. Then there is a well-formed formula which follows, by
virtue of modus ponens, form two well-formed formulas of the form
(B 3 C) =) D and E9 where D is a substitution instance of ft ^ (^ ^ ft) or of
(Pi D (ft D n)) D ((Pi ̂  Qi) D (Pi D n)), ^ is W\ and C is P72 or B is W^A)
and C is W2(A) for some well-formed formula A, and £ is a substitution
instance of axioms of R[T] (Wl9 W2) or is a theorem of P(Γ).

Now D cannot be of the form F vG since if P ^ (Q ^ P) were of the
form (F^ G) ^> G then P would coincide with F^> G and Q ̂  P would
coincide with G, which is impossible. Also, (P 3 (Q D ft)) 3 ((P D Q) >̂
(P 3 β)) cannot be of the form (F^ G) ^ G since if it were, Q^R and
(P ^ Q) 3 (P D β) would both coincide with G, which is impossible.

Since D cannot be of the form FvG, D cannot be regular. Hence
(B^> C) ^> D cannot be the antecedent of axioms (8) or (9). Furthermore,
(B 3 C) ^ D cannot be the antecedent of any theorem of P(Γ) of Forms b or
c, since otherwise D would be of the form A2 v H.

Finally, (B => C) D D is not of the form Aj^vH, i.e. of the form
(Ax 3 H) D #, where # is a substitution instance of ft, since if it were,Z)
would be C and hence D would be S-regular, a contradiction. Hence
(B ^> C) ^ D is not an antecedent of any theorem of P(T) of Form α.



128 D. BOLLMAN and M. TAPIA

Thus, E is an antecedent of (B D C) => C. That is, £ is of the form
J^i(A) D ^(A) or t^ ID VK2 However, E is a substitution instance of one of
the axioms of R[T] (Wl9 W2) or is a theorem of P(T). But since no substitu-
tion instance of pλ ^ (q1 ^ pλ) or (/̂  D ( ^ z> r j ) D ((/>! D g j => (/?! => rx)) is
S-regular, £ is not a substitution instance of either axiom (8) or (9). Hence
\-E in P(Γ). Thus H ^ D W2 in P(Γ) if E is Wi D W2 and *-Wx(A) => W2(A) in
P(Γ) if £ is W^A) => W2(A). Hence by Lemma 3, we have in either case,
h ^ D ίy2 in P(Γ).

Taking Γ to be a standard semi-Thue system with recursively
unsolvable decision problem yields:

Theorem 1: The problem of determining whether or not the deduction
theorem holds for an arbitrarily given partial implicational calculus {and
hence for an arbitrarily given generalized partial propositional calculus) is
recursively unsolvable.

Boone has shown that for any recursively enumerable degree of
unsolvability D, there exists a standard semi-Thue system, T(D), such that
the word problem for T(D) has degree D. Now for any standard semi-Thue
system Ί{D) of degree D, let C(D) be the class of all partial implicational
calculi of the form R[T(D)] (/(TFi), f(W2)) where Wx and W2 are nonempty
words on {l, b}. Then R[T(D)] defines a one-one mapping from the set of
pairs of nonempty words on {l, b} onto C(D) such that W1\-W2 in T(D) if and
only if the deduction theorem holds for R[T(D)] (/(WΊ), f(W2)). Hence we
have:

Theorem 2: For every recursively enumerable degree of unsolvability D
there exists a class of partial implicational calculi C(D) (and hence a
class of generalized partial propositional calculi C(D)) such that the
problem of determining whether or not the deduction theorem holds for an
arbitrary member of C{D) has degree D.
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