THE CONSISTENCY OF THE AXIOMS OF ABSTRACTION AND EXTENSIONALITY IN A THREE-VALUED LOGIC

ROSS T. BRADY

The Abstraction Axiom I want to consider is the following one, which is based on the Łukasiewicz three-valued logic.

$$(*) (Sy)(Ax)(x \in y \leftrightarrow \phi(x, z_1, \ldots, z_n))$$

where ϕ is either a propositional constant or constructed from atomic wffs $u \in v$ by using \sim , &, A. The connectives and quantifiers of the logic can be represented as follows:

	p&q			~p	$ \begin{array}{c} p \lor q \\ 1 \frac{1}{2} 0 \end{array} $			$p \rightarrow q$			$p \leftrightarrow q$			$p \supset q$		
p/q	1	$\frac{1}{2}$	0		1	$\frac{1}{2}$	0	1	$\frac{1}{2}$	0	1	$\frac{1}{2}$	0	1	$\frac{1}{2}$	0
1	1	$\frac{1}{2}$	0	0 1 1	1	1	1	1	$\frac{1}{2}$	0	1	$\frac{1}{2}$	0	1	$\frac{1}{2}$	0
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	1	1	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	1	1
0	0	0	0	1	1	$\frac{1}{2}$	0	1	1	1	0	$\frac{1}{2}$	0	1	1	1

(Ax) fx has the minimum value of the values of fx. (Sx) fx has the maximum value of the values of fx.

Th. Skolem has produced models, in [1] and in [2] for an Abstraction Axiom the same as (*) except that ϕ may not be constructed using quantifiers A and S. He shows that the Axiom of Extensionality is also valid in his model in [2]. The procedure we use for constructing the model roughly follows the lines of P. C. Gilmore's paper (see [3]), where he constructed a model for his partial set theory PST'.

1. To construct the model, we need to extend the wffs used above to express (*) by adding some terms, some of which will be used as the domain of the model. We give the formation rules for terms and wffs as follows:

- 1. If x and y are set variables, then $x \in y$ is an atomic wff.
- 2. Any combination of wffs using \sim, \rightarrow, A are wffs.
- 3. A propositional constant (i.e., 1, $\frac{1}{2}$ or 0) is an atomic wff.

Received November 10, 1969

ROSS T. BRADY

- 4. A propositional constant or a wff constructed from atomic wffs using only \sim , &, A is a standard wff.
- 5. If P is a standard wff and x is a set variable, then $\{x : P\}$ is a term.
- 6. If $\{x : P\}$ and $\{x : Q\}$ are terms and y is a set variable, then $\{x : P\} \in y$, $y \in \{x : P\}, \{x : P\} \in \{x : Q\}$ are atomic wffs.

We will use a, b, c, \ldots for constant terms. We construct a model for (*) with domain the set D of all constant terms $\{x : P\}$, i.e., P either has no free variables at all or has x as its only free variable. Non-constant terms can be defined from these as follows: associate with any term $\{x : P (x, z_1, \ldots, z_k)\}$, for which z_1, \ldots, z_k are the only free variables of the term, the function which for constant terms a_1, \ldots, a_k of D takes as value the constant term $\{x : P (x, a_1, \ldots, a_k)\}$ of D.

Let any specification of values for all the constant atomic wffs of the form $x \in y$, where x and y range over the domain D, be called a structure on D. Let V[M](P) denote the value of the constant wff P given by the structure M on D. Also let V[M](1) = 1, V[M](0) = 0 and $V[M](\frac{1}{2}) = \frac{1}{2}$. Define $M_1 \leq M_2$ for two structures M_1 and M_2 on D if, for every constant atomic wff P, if $V[M_1](P) = 1$ then $V[M_2](P) = 1$ and if $V[M_1](P) = 0$ then $V[M_2](P) = 0$. Define the structure M_0 , such that, for all constant atomic wffs P, $V[M_0](P) = \frac{1}{2}$. Then $M_0 \leq M$, for any structure M on D. Here, ' \leq ' defines a partial ordering on the set of structures, since (i) $M \leq M$, (ii) if $M_1 \leq M_2$ and $M_2 \leq M_3$ then $M_1 \leq M_3$ and (iii) if $M_1 \leq M_2$ and $M_2 \leq M_1$ then $M_1 = M_2$ (i.e., M_1 and M_2 are the same structure). From now on, when mentioning values of wffs in a structure it is automatically assumed that the wffs are constant ones, i.e., they have no free variables.

Lemma 1 Let M and M' be two structures on D such that $M \leq M'$. Then, for any standard wff P, if V[M](P) = 1 then V[M'](P) = 1 and if V[M](P) = 0 then V[M'](P) = 0.

Proof. By induction on the wff evaluation procedure. This means that we start at the values of the substitution instances of all the atomic wffs and build up the value of P from these values according to the connectives and quantifiers in the Łukasiewicz logic. If P is an atomic wff or a propositional constant, the lemma holds.

(i) Let $V[M](\sim Q) = 1$, then V[M](Q) = 0. By the induction hypothesis, V[M'](Q) = 0 and hence $V[M'](\sim Q) = 1$. Similarly, if $V[M](\sim Q) = 0$, then $V[M'](\sim Q) = 0$.

(ii) Let V[M](Q & R) = 1, then V[M](Q) = V[M](R) = 1. By induction hypothesis, V[M'](Q) = V[M'](R) = 1 and hence V[M'](Q & R) = 1. Similarly, if V[M](Q & R) = 0, then V[M'](Q & R) = 0.

(iii) Let V[M]((Ax)Q) = 1, then V[M](Q(x)) = 1 for all x. By induction hypothesis, V[M'](Q(x)) = 1 for all x and hence V[M']((Ax)Q) = 1. Similarly, if V[M]((Ax)Q) = 0, then V[M']((Ax)Q) = 0.

The model is the limit of a sequence of structures $M_0 \le M_1 \le M_2 \le \ldots \le M_\mu \le \ldots$, on *D*. M_0 is defined above, i.e., $V[M_0](P) = \frac{1}{2}$ for all

atomic wffs *P*. Assuming M_{μ} defined for some ordinal μ , $M_{\mu+1}$ is defined as follows. For all standard wffs *P*,

$$V[M_{\mu+1}](a \varepsilon \{x : P(x)\}) = V[M_{\mu}](P(a)).$$

For a limit ordinal μ , for all atomic wffs P, if $V[M_{\nu}](P) = 1$ for some $\nu < \mu$, then $V[M_{\mu}](P) = 1$; if $V[M_{\nu}](P) = 0$ for some $\nu < \mu$ then $V[M_{\mu}](P) = 0$; and if $V[M_{\nu}](P) = \frac{1}{2}$ for all $\nu < \mu$ then $V[M_{\mu}](P) = \frac{1}{2}$.

In the definition of M_{μ} for a limit ordinal μ , it was assumed that if $V[M_{\nu}](P) = 1$ (or 0) for some $\nu < \mu$, then $V[M_{\tau}](P) = 1$ (or 0) for all τ such that $\nu < \tau < \mu$. The construction of M_{μ} needs to be coupled with lemma 2 (below) so that when M_{μ} is formed the assumption above will be satisfied. That is, lemma 2 is proved for each structure M_{μ} as it is constructed.

I will give some examples in M_1 , M_2 and M_3 . Since standard wffs include the propositional constants 0 and 1, by definition of M_1 , $V[M_1](a\varepsilon\{x:1\}) = 1$ and $V[M_1](a\varepsilon\{x:0\}) = 0$. Let $\{x:1\}$ be called U and $\{x:0\}$ be called V. Hence $V[M_1](V \varepsilon U) = 1$ and $V[M_1](U \varepsilon U) = 1$. Using these two we can construct wffs taking values 1 or 0 in M_2 . For example,

$$V[M_2](\bigcup \varepsilon \{x : \lor \varepsilon x\}) = 1 = V[M_2](\lor \varepsilon \{x : \neg x \varepsilon x\})$$
$$V[M_2](\bigcup \varepsilon \{x : x \varepsilon x\}) = 1 = V[M_2](\lor \varepsilon \{x : \neg \cup \varepsilon x\})$$

Let $\{c\}$ be $\{x : (Ay)(\sim y \in x \lor y \in c \&. \sim y \in c \lor y \in x\}$. Then

$$V[M_2](\forall \varepsilon \{\forall\}) = 1 = V[M_2](\cup \varepsilon \{\cup\})$$
$$V[M_2](\cup \varepsilon \{\forall\}) = 0 = V[M_2](\forall \varepsilon \{\cup\})$$

Some examples in M_3 are the following:

$$V[M_3](\{\lor\} \varepsilon\{x : \lor \varepsilon x\}) = 1 = V[M_3](\{\bigcup\} \varepsilon\{x : \bigcup \varepsilon x\})$$
$$V[M_3](\{x : \lor \varepsilon x\} \varepsilon\{x : \bigcup \varepsilon x\}) = 1 = V[M_3](\{\lor\} \varepsilon\{x : \neg x \varepsilon x\})$$

Lemma 2 $M_{\nu} \leq M_{\mu}$, for all $\nu \leq \mu$.

Proof. By transfinite induction on μ . The induction hypothesis: $M_{\nu} \leq M_{\tau}$ for all $\nu \leq \tau$, for all $\tau \leq \mu$.

(i) $\mu = 0$: $M_0 \leq M_0$.

(ii) μ is a successor ordinal: Let $V[M_{\nu}](a \varepsilon \{x : P\}) = 1$. There is a $\eta < \nu$ such that $V[M_{\eta}](P(a)) = 1$ by the method of construction of the structures. Since $\eta \leq \mu - 1$, $M_{\eta} \leq M_{\mu-1}$ by the induction hypothesis. Hence $V[M_{\mu-1}](P(a)) = 1$. By the construction of M_{μ} , $V[M_{\mu}](a \varepsilon \{x : P\}) = 1$. Similarly, if $V[M_{\nu}](a \varepsilon \{x : P\}) = 0$, then $V[M_{\mu}](a \varepsilon \{x : P\}) = 0$.

(iii) μ is a limit ordinal: Let $\nu < \mu$. Let $V[M_{\nu}](a \in \{x : P\}) = 1$ (=0). Then $V[M_{\mu}](a \in \{x : P\}) = 1$ (=0) by definition of M_{μ} . Let $\nu = \mu$. Then $M_{\nu} \leq M_{\mu}$.

Lemma 3 There is an ordinal λ of the second number class such that $M_{\lambda} = M_{\lambda+1}$.

Proof. The increasing chain of structures $M_0 \leq M_1 \leq \ldots \leq M_{\mu} \leq \ldots$ can be regarded as two increasing chains of subsets of the denumerable set of all atomic wffs of the form $a \geq b$. One chain is of those atomic wffs taking the

value 1 and the other is of those taking the value 0. If $M_{\nu} = M_{\nu+1}$, then $M_{\nu} = M_{\mu}$ for all ordinals $\mu, \nu \leq \mu$, since, by the method of construction, there is no way of changing the values of any atomic wffs. There is a denumerable set of ordinals μ such that $M_{\mu} \neq M_{\mu+1}$. But the set of all ordinals of the second number class is non-denumerable and hence for some λ in this class, $M_{\lambda} = M_{\lambda+1}$.

Theorem 1 $v \in \{x : P\} \leftrightarrow P(v)$ is valid in M_{λ} , for all standard wffs P.

Proof. Let $V[M_{\lambda}](a \in \{x : P\}) = 1$. Let ν be the least ordinal such that $V[M_{\nu}](a \in \{x : P\}) = 1$. ν is a successor ordinal. Hence $V[M_{\nu-1}](P(a)) = 1$. Since $\nu - 1 \leq \lambda$, $M_{\nu-1} \leq M_{\lambda}$, by lemma 2. Hence $V[M_{\lambda}](P(a)) = 1$ since P is standard, by lemma 1. Similarly, if $V[M_{\lambda}](a \in \{x : P\}) = 0$, then we have that $V[M_{\lambda}](P(a)) = 0$. Let $V[M_{\lambda}](P(a)) = 1$, then $V[M_{\lambda+1}](a \in \{x : P\}) = 1$. Since $M_{\lambda} = M_{\lambda+1}$, $V[M_{\lambda}](a \in \{x : P\}) = 1$. Similarly, if $V[M_{\lambda}](P(a)) = 0$, then $V[M_{\lambda}](a \in \{x : P\}) = 0$.

Theorem 2 The Abstraction Axiom (*) is valid in M_{λ} .

Proof. By Theorem 1, for any standard wff P, $v \in \{x : P\} \leftrightarrow P(v)$ is valid in M_{λ} . Hence, $(Sy)(Ax)(x \in y \leftrightarrow P(x, z_1, \ldots, z_n))$ is valid in M_{λ} , for all wffs P which are propositional constants or constructed from atomic wffs of the form $x \in y$ by using only \sim , &, A.

2. The next task is to prove that the Axiom of Extensionality is valid in M_{λ} .

Let P be a standard wff such that $V[M_{\lambda}](P) = 1$ or 0. Let $\nu(P)$ be the least ordinal such that $V[M_{\nu(P)}](P) = 1$ or 0. Form the set of all substitution instances of all the atomic wffs of P which take the value 1 or 0 in $M_{\nu(P)}$. Call this *the dependent set of* P, D(P).

Lemma 4 Let P(a) be a standard wff such that $V[M_{\lambda}](P(a)) = 1$ or 0. If, for each $Q(a) \in D(P(a))$, $V[M_{\lambda}](Q(b)) = V[M_{\lambda}](Q(a))$, then $V[M_{\lambda}](P(b)) = V[M_{\lambda}](P(a))$.

Proof. By induction on the wff evaluation procedure. Let P(a) be an atomic wff such that $V[M_{\lambda}](P(a)) = 1$ or 0. Then $D(P(a)) = \{P(a)\}$. Hence $V[M_{\lambda}](P(b)) = V[M_{\lambda}](P(a))$.

(i) Let P(a) be $\sim R(a)$. Since $D(\sim R(a)) = D(R(a))$, for each $Q(a) \in D(R(a))$, $V[M_{\lambda}](Q(b)) = V[M_{\lambda}](Q(a))$. By the induction hypothesis, $V[M_{\lambda}](R(b)) = V[M_{\lambda}](R(a))$. Hence $V[M_{\lambda}](P(b)) = V[M_{\lambda}](P(a))$.

(ii) Let P(a) be R(a) & S(a) and $V[M_{\lambda}](R(a) \& S(a)) = 1$. Then $V[M_{\lambda}](R(a)) = 1$ and $V[M_{\lambda}](S(a)) = 1$. Since $v(R(a)) \leq v(R(a) \& S(a))$, $D(R(a)) \subseteq D(R(a) \& S(a))$. Hence, for each $Q(a) \in D(R(a))$, $V[M_{\lambda}](Q(b)) = V[M_{\lambda}](Q(a))$. By the induction hypothesis, $V[M_{\lambda}](R(b)) = V[M_{\lambda}](R(a))$. Similarly, $V[M_{\lambda}](S(b)) = V[M_{\lambda}](S(a))$. Hence $V[M_{\lambda}](P(b)) = V[M_{\lambda}](P(a))$.

(iii) Let P(a) be R(a) & S(a) and $V[M_{\lambda}](R(a) \& S(a)) = 0$. Then, as above, $V[M_{\lambda}](P(b)) = V[M_{\lambda}](P(a))$.

(iv) Let P(a) be (Az) R(a, z) and $V[M_{\lambda}]((Az) R(a, z)) = 1$. Then $V[M_{\lambda}](R(a, z)) = 1$, for all z. Since $v(R(a, z)) \leq v((Az) R(a, z))$ for all z, then $D(R(a, z)) \subseteq D((Az) R(a, z))$ for all z. Hence, for each $Q(a) \in D(R(a, z))$, $V[M_{\lambda}](Q(b)) = V[M_{\lambda}](Q(a))$. By the induction hypothesis, $V[M_{\lambda}](R(b, z)) = V[M_{\lambda}](R(a, z))$. Since this holds for all z, $V[M_{\lambda}](P(b)) = V[M_{\lambda}](P(a))$.

(v) Let P(a) be (Az) R(a, z) and $V[M_{\lambda}]((Az) R(a, z)) = 0$. Then, as above, $V[M_{\lambda}](P(b)) = V[M_{\lambda}](P(a))$.

Let P be an atomic wff (not 1 or 0) such that $V[M_{\lambda}](P) = 1$ or 0. Define the corresponding standard wff of P, C(P), as follows: Let P have the form $a \varepsilon \{x : Q(x)\}$. Then C(P) is Q(a).

Let P be a standard wff such that $V[M_{\lambda}](P) = 1$ or 0. Let P have dependent set, D(P). We define a general dependent set of P, GD(P), as follows:

(i) The dependent set D(P) of P is a GD(P).

(ii) If $V[M_{\lambda}](R) = 1$ or 0 and R is an atomic wff (not 1 or 0), then D(C(R)) is a GD(R).

(iii) Let $S \subseteq GD(P)$, then $(GD(P) \cap \overline{S}) \cup \bigcup_{Q \in S} GD(Q)$ is a GD(P).

This assumes $V[M_{\lambda}](Q) = 1$ or 0, for all $Q \in S$. Note that lemma 5 (below) should be coupled with the definition of a general dependent set so that the assumption can be made before the construction of the general dependent sets GD(Q).

Lemma 5 Let P be a standard wff such that $V[M_{\lambda}](P) = 1$ or 0. If $Q \in GD(P)$, then, $V[M_{\lambda}](Q) = 1$ or 0.

Proof. By induction on the stages of construction of GD(P) for all standard wffs such that $V[M_{\lambda}](P) = 1$ or 0.

(i) By definition of D(P), if $Q \in D(P)$ then $V[M_{\lambda}](Q) = 1$ or 0.

(ii) If $Q \in D(C(R))$, where R is an atomic wff (not 1 or 0) and $V[M_{\lambda}](R) = 1$ or 0, then $V[M_{\lambda}](Q) = 1$ or 0.

(iii) Let $S \subseteq GD(P)$ and $T\varepsilon (GD(P) \cap \overline{S}) \cup \bigcup_{Q \in S} GD(Q)$. If $T\varepsilon GD(Q)$, for some $Q\varepsilon S$, then by the induction hypothesis for GD(Q), $V[M_{\lambda}](T) = 1$ or 0. If $T\varepsilon GD(P) \cap \overline{S}$, then, by the induction hypothesis for GD(P), $V[M_{\lambda}](T) = 1$ or 0.

Lemma 6 Let P be an atomic wff such that $V[M_{\lambda}](P) = 1 \text{ or } 0$. If GD(P) is not D(P) then, for each $Q \in GD(P)$, $V[M_{\nu(P-1)}](Q) = 1 \text{ or } 0$.

Proof. By transfinite induction on the ordinals $\nu(P)$. The induction hypothesis is that the lemma holds for all atomic wffs Q such that $\nu(Q) < \nu(P)$.

(i) $\nu(P) = 0$: P is 1 or 0. The only GD(P) is of the form D(P). Hence the lemma holds vacuously.

(ii) $\nu(P)$ is a successor ordinal: Use induction on the stages of construction of GD(P).

(ia) D(P) is not used as a general dependent set in this lemma.

(iia) If $V[M_{\lambda}](R) = 1$ or 0, R is an atomic wff (not 1 or 0) and if $Q \in D(C(R))$, then $V[M_{\nu(R-1)}](Q) = 1$ or 0. In the process of construction of general dependent sets of P, R is either P itself or is a member of a GD (P). If R is P itself, then $V[M_{\nu(P-1)}](Q) = 1$ or 0. If R is a member of a GD (P), then, by the induction hypothesis, $V[M_{\nu(P-1)}](R) = 1$ or 0 or

 $V[M_{\nu(P)}](R) = 1 \text{ or } 0$, the latter being the case when R is a member of GD(P). Hence $\nu(R) \leq \nu(P)$ and if $Q \in D(C(R))$ then $V[M_{\nu(P-1)}](Q) = 1 \text{ or } 0$.

(iii) Let $S \subseteq GD(P)$. By the induction hypothesis for GD(P), $V[M_{\nu(P-1)}](Q) = 1$ or 0, for all $Q \in S$. By the induction hypothesis for the ordinals, the lemma holds for any GD(Q) except for D(Q). Let $T \in (GD(P) \cap \overline{S}) \cup \bigcup_{Q \in S} GD(Q)$. If $T \in GD(Q)(GD(Q) \neq D(Q))$, for some $Q \in S$, then $V[M_{\nu(P-1)}](T) = 1$ or 0. If $T \in GD(Q)$, where GD(Q) is D(Q), for some $Q \in S$, then, since D(Q) is $\{Q\}, T \in GD(P)$. By the induction hypothesis for GD(P), the lemma holds. If $T \in GD(P) \cap \overline{S}$, then, again, the lemma holds.

Lemma 7 Let P(a) be a standard wff such that $V[M_{\lambda}](P(a)) = 1$ or 0. Consider any general dependent set D' of P(a), such that, in the process of construction, (ii) is not applied to any atomic uff of form $c \in a$. If, for all $Q(a) \in D'$, $V[M_{\lambda}](Q(b)) = V[M_{\lambda}](Q(a))$, then $V[M_{\lambda}](P(b)) = V[M_{\lambda}](P(a))$.

Proof. By induction on the stages of construction of general dependent sets of all standard wffs P(a) such that $V[M_{\lambda}](P(a)) = 1$ or 0, and such that (ii) is not applied to any atomic wff of form $c \in a$.

(i) Let D' = D(P(a)). Then, by lemma 4, the lemma holds.

(ii) Let D' = D(C(P(a))), where P(a) is an atomic wff. We need only consider P(a) in the form $a \in \{x : Q\}$. Hence C(P(a)) is Q(a). $V[M_{\lambda}](Q(a)) = 1$ or 0. By the lemma condition, if $R(a) \in D(C(P(a)))$ then $V[M_{\lambda}](R(b)) = V[M_{\lambda}](R(a))$. Hence, by lemma 4, $V[M_{\lambda}](Q(b)) = V[M_{\lambda}](Q(a))$. Therefore, $V[M_{\lambda}](b \in \{x : Q\}) = V[M_{\lambda}](a \in \{x : Q\})$. Hence $V[M_{\lambda}](P(b)) = V[M_{\lambda}](P(a))$.

(iii) Let $S \subseteq D'$ and for each $Q(a) \in S$, let the lemma hold for D' and the GD (Q(a)). By the condition of the lemma, for all $T(a) \in (D' \cap \overline{S}) \cup$

 $\bigcup_{Q(a)\in S} \operatorname{GD}(Q(a)), V[M_{\lambda}](T(b)) = V[M_{\lambda}](T(a)). \text{ Since } \operatorname{GD}(Q(a)) \subseteq (D' \cap \overline{S}) \cup$

 $\bigcup_{Q(a)\in S} GD(Q(a)), \text{ for all } Q(a) \in S, \text{ by induction hypothesis, } V[M_{\lambda}](Q(b)) = V[M_{\lambda}](Q(a)), \text{ for all } Q(a) \in S. \text{ Also, for all } T(a) \in D' \cap \overline{S}, V[M_{\lambda}](T(b)) = V[M_{\lambda}](T(a)). \text{ Hence, if } U(a) \in D', V[M_{\lambda}](U(b)) = V[M_{\lambda}](U(a)). \text{ By induction hypothesis for } D', V[M_{\lambda}](P(b)) = V[M_{\lambda}]P(a).$

Lemma 8 If $V[M_{\lambda}](a \varepsilon c) = 1$ or 0 then $a \varepsilon c$ has a general dependent set without any wffs of the form $a \varepsilon b$ for any b, except a. The general dependent sets so constructed are such that (ii) is not applied to any atomic wffs of form $a' \varepsilon a$.

Proof. Let the wff $a \varepsilon c$ be W. The proof is by transfinite induction on $\nu(W)$. The induction hypothesis is that the lemma holds for all wffs $a \varepsilon d$ (call it X) such that $\nu(X) < \nu(W)$.

(i) $\nu(W) = 1$: Let $V[M_1](a \varepsilon c) = 1$ or 0. Let *a* and *c* be different. Then $V[M_0](C(a \varepsilon c))$ is 1 or 0. Hence $D(C(a \varepsilon c)) = \{1\}$ or $\{0\}$. This satisfies the lemma. If *a* is *c*, then $D(a \varepsilon c) = \{a \varepsilon c\}$ satisfies the lemma.

(ii) $\nu(W)$ is a successor ordinal >1: Let $V[M_{\nu(W)}](a \varepsilon c) = 1$ or 0. If *a* is *c*, then $D(a \varepsilon c) = \{a \varepsilon c\}$ satisfies the lemma. If *a* and *c* are different, $V[M_{\nu(W-1)}](Z(a)) = 1$ or 0, where Z(a) is C(W). Hence, D(Z(a)) is a general dependent set of W and has a subset S of all atomic wffs of the form $a \varepsilon b$, where b is not a. For all Q, if $Q \varepsilon S$, then $V[M_{\nu(W-1)}](Q) = 1$ or 0. Hence, by induction hypothesis, all these wffs $Q \varepsilon S$ have general dependent sets GD(Q)without wffs of the above form. Form the set $(D(Z(a)) \cap \overline{S}) \cup \bigcup_{Q \in S} GD(Q)$, which has no atomic wffs of the above form. This is a general dependent set of W which satisfies the lemma.

Lemma 9 If $a \varepsilon c \leftrightarrow a \varepsilon d$ has value 1 in M_{λ} , for all a, then $c \varepsilon c \leftrightarrow d \varepsilon d$ has the value 1 in M_{λ} .

Proof. Call c c c, W. Let $V[M_{\lambda}](W) = 1$ or 0. By lemma 8, W has a general dependent set D' without atomic wffs of certain forms and constructed in a certain way. For the sake of lemma 8 the right hand c of c c c is regarded as different from the left hand c. So (ii) is applied in forming a general dependent set of c c c, but apart from this one instance all the usual conditions apply. By lemma 6, all members of D' have the value 1 or 0 in $M_{\nu(W-1)}$, since, by lemma 8, D' can be constructed so that it is not D(W). Hence W is not a member of D'. Hence D' has atomic wffs containing c, only of the form a c c or not at all. By condition of the lemma, if Q(c) c D' then $V[M_{\lambda}](Q(d)) = V[M_{\lambda}](Q(c))$. By lemma 7, $V[M_{\lambda}](d c c) = V[M_{\lambda}](c c c)$. Since (ii) was applied to c c c in forming the general dependent set D', the substitution of d for c occurs only in the left hand c of c c c. By the condition of the lemma, $V[M_{\lambda}](d c d) = V[M_{\lambda}](d c d) = V[M_{\lambda}](d c d) = V[M_{\lambda}](d c d)$. Kee the form a c c c c. By the condition of the lemma, $V[M_{\lambda}](d c d) = V[M_{\lambda}](d c c)$ and hence $V[M_{\lambda}](d c d) = V[M_{\lambda}](d c d) = V[M_{\lambda}](d c c)$. Similarly by letting d c d be W and substituting c for d, $V[M_{\lambda}](c c c) = V[M_{\lambda}](d c d)$. Hence the lemma is proved.

Theorem 3 The Axiom of Extensionality is valid in M_{λ} .

Proof. The Axiom of Extensionality is the following:

$$(Av)(v \in x \leftrightarrow v \in y) \supset (Az)(x \in z \leftrightarrow y \in z)$$

We will prove: if $v \varepsilon c \leftrightarrow v \varepsilon d$ is valid in M_{λ} , then $c \varepsilon z \leftrightarrow d \varepsilon z$ is valid in M_{λ} . Let $V[M_{\lambda}](c \varepsilon c') = 1$ or 0. By lemma 8, $c \varepsilon c'$ has a general dependent set D' without any wffs of the form $c \varepsilon b$, for any b except c. Hence the only occurrences of c in D' are of the forms $a \varepsilon c$ (a is not c) and $c \varepsilon c$. Because of the condition of the theorem and because of lemma 9, if $Q(c) \varepsilon D'$, then $V[M_{\lambda}](Q(d)) = V[M_{\lambda}](Q(c))$. By lemma 7, $V[M_{\lambda}](d \varepsilon c') = V[M_{\lambda}](c \varepsilon c')$. Hence $c \varepsilon z \leftrightarrow d \varepsilon z$ is valid in M_{λ} and the theorem is shown.

REFERENCES

- Skolem, Th., "A set theory based on a certain three-valued logic," Mathematica Scandinavia, vol. 8 (1960), pp. 127-136.
- [2] Skolem, Th., "Studies on the axiom of comprehension," Notre Dame Journal of Formal Logic, vol. 4 (1963), pp. 162-170.
- [3] Gilmore, P. C., "The consistency of partial set theory without extensionality," *IBM Research Report*, RC 1973, Dec. 21, 1967.

University of St. Andrews St. Andrews, Scotland