Notre Dame Journal of Formal Logic Volume XII, Number 3, July 1971
NDJFAM

EXAMINATION OF THE AXIOMATIC FOUNDATIONS OF A THEORY OF CHANGE. IV

LAURENT LAROUCHE

Third Part*

§4. Consistency of the axiomatic system. In order to establish the consistency of our axiom system, it is important to make first the following remarks:

1. The predicate calculus which we have chosen, is consistent. (The proof is given in [13] pp. 93-95.)
2. An expression σ (respectively a set E of expressions) is said to be "satisfiable" if there exists some non-empty domain ω of individuals such that σ (respectively E) is satisfiable in ω.
3. If a predicate calculus is consistent, so is every satisfiable set of expressions.
4. It is then sufficient here to show that there exists a non-empty domain ω of individuals such that the set of our axioms is satisfiable in ω.

The model shall consist of:
I. a) a domain S of individuals for momentaneous subjects. Let R be the following subset of the set of rational numbers:

$$
R=\{n \mid n \text { is a rational number and } 0 \leq n \leq 2\} .
$$

Let then

$$
S=\left\{a_{i}, b_{i}, c_{i}\right\}
$$

where $i \in R$ and $\neq a_{i}, a_{j}, \neq b_{i}, b_{j}, \neq c_{i}, c_{j}$, for $i, j \in R$ and $i \neq j$, and

[^0]$\neq a_{i}, b_{j}, c_{k}$, for $i, j, k \in R$, that is, the momentaneous subjects are distinct from one another. We shall interpret our notions in such a way that the domain S will consist of three distinct classes of genidentical momentaneous subjects.
b) a domain Z of individuals for properties:
$$
Z=\{\alpha, \beta\}, \text { where } \alpha \neq \beta
$$
II. an interpretation of our notions as follows:
$a_{i} \sim a_{i}, b_{i} \sim b_{i}, c_{i} \sim c_{i}$, for each $i \in R$
$a_{i} \sim b_{i}, a_{i} \sim c_{i}, b_{i} \sim c_{i}, b_{i} \sim a_{i}, c_{i} \sim a_{i}, c_{i} \sim b_{i}$, for each $i \in R$
$\left.\left.\left.\left.\left.\sim \neg a_{i} \sim a_{j},\right\urcorner a_{i} \sim b_{j},\right\urcorner a_{i} \sim c_{j},\right\urcorner b_{j} \sim a_{i},\right\urcorner b_{j} \sim c_{i},\right\urcorner c_{j} \sim a_{i}$,
$\left.\left.\urcorner c_{i} \sim b_{j},\right\urcorner b_{i} \sim b_{j},\right\urcorner c_{i} \sim c_{j}$, for each $i, j \in R$ and $i \neq j$
$a_{i}<a_{j}, b_{i}<b_{j}, c_{i}<c_{j}$, for each $i, j \in R$ and " $i<j$ "
$\left.\left.\left.\left.\left.<\urcorner a_{i}<b_{j},\right\urcorner a_{i}<c_{j},\right\urcorner b_{i}<c_{j},\right\urcorner b_{i}<a_{j},\right\urcorner c_{i}<b_{j},\right\urcorner c_{i}<a_{j}$, for each $i, j \in R$
$\left.\left.\urcorner a_{i}<a_{j},\right\urcorner b_{i}<b_{j},\right\urcorner c_{i}<c_{j}$, for each $i, j \in R$ and " $j \leq i$ "
$a_{i} \leq a_{j}, b_{i} \leq b_{j}, c_{i} \leq c_{j}$, for each $i, j \in R$ and " $i \leq j$ "
$\left.\left.\leq\urcorner a_{i} \leq a_{j},\right\urcorner b_{i} \leq b_{j},\right\urcorner c_{i} \leq c_{j}$, for each $i, j \in R$ and " $j<i$ "
$\left.\left.\left.\left.\left.\urcorner a_{i} \leq b_{j},\right\urcorner a_{i} \leq c_{j},\right\urcorner b_{i} \leq c_{j},\right\urcorner b_{i} \leq a_{j},\right\urcorner c_{i} \leq b_{j},\right\urcorner c_{i} \leq a_{j}$, for each $i, j \in R$

G $\quad \mathbf{G} a_{i} a_{j}, \mathbf{G} b_{i} b_{j}, \mathbf{G} c_{i} c_{j}$, for each $i, j \in R$
$\left.\left.\left.\left.\left.{ }_{\urcorner} \mathbf{G} a_{i} b_{j},\right\urcorner \mathbf{G} a_{i} c_{j},\right\urcorner \mathbf{G} b_{i} c_{j},\right\urcorner \mathbf{G} b_{i} a_{j},\right\urcorner \mathbf{G} c_{i} a_{j},\right\urcorner \mathbf{G} c_{i} b_{j}$, for each $i, j \in R$
M $\mathrm{M} a_{i} b_{2} \alpha$, for each $i \in R$ and $i \neq 2$
\urcorner in each other case, i.e., $\urcorner \mathrm{M} a_{i} c_{i} \alpha$ for each $i \in R$, and so on
$\urcorner \mathrm{A} a_{i} \alpha$, for each $i \in R$
$\urcorner \mathrm{A} b_{i} \alpha$, for each $i \in R$ and $i \neq 2$
A $\mathbf{A} b_{2} \alpha$
A $c_{i} \alpha$, for each $i \in R$
$\mathrm{A} a_{i} \beta, \mathbf{A} b_{i} \beta, \mathbf{A} c_{i} \beta$, for each $i \in R$
F $\quad \mathcal{F} a_{i} \alpha$, for each $i \in R$
$\mathbf{F} b_{i} \alpha, \mathbf{F} c_{i} \alpha, \mathbf{F} a_{i} \beta, \mathbf{F} b_{i} \beta, \mathbf{F} c_{i} \beta$, for each $i \in R$
$\urcorner \mathrm{P} a_{i} \alpha$ for each $i \in R$
P $\mathrm{P} b_{i} \alpha$, for each $i \in R$ and $i \neq 2$
$\neg \mathbf{P} b_{2} \alpha, \neg \mathbf{P} c_{i} \alpha, \neg \mathbf{P} a_{i} \beta, \neg \mathbf{P} b_{i} \beta, \neg \mathbf{P} c_{i} \beta$, for each $i \in R$
$\mathrm{V} b_{i} b_{2} \alpha$, for each $i \in R$ and $i \neq 2$
\urcorner in each other case, i.e., $\urcorner \vee a_{i} a_{j} \alpha$, $\urcorner \vee a_{i} a_{j} \beta$, for each $i, j \in R$, and so on
$\mathrm{B} a_{i} a_{j} \alpha$, $\urcorner \mathrm{B} a_{j} a_{i} \alpha$, for each $i, j \in R$, where $j<i$
$\mathrm{B} a_{i} a_{i} \alpha$, for each $i \in R$
$\mathrm{B} b_{i} a_{j} \alpha, \neg \mathrm{~B} a_{j} b_{i} \alpha$, for each $i, j \in R$
B $\mathrm{B} c_{i} a_{j} \alpha, 7 \mathrm{~B} a_{j} c_{i} \alpha$, for each $i, j \in R$
$\mathrm{B} b_{i} b_{j} \alpha$, $7 \mathrm{~B} b_{j} b_{i} \alpha$, for each $i, j \in R$, where $i<j$
$\mathrm{B} b_{i} b_{i} \alpha$, for each $i \in R$
$\mathrm{B} b_{i} c_{j} \alpha, 7 \mathrm{~B} c_{j} b_{i} \alpha$, for each $i, j \in R$ where $i \neq 2$
$\mathrm{B} c_{i} c_{j} \alpha$, for each $i, j \in R$

```
\(\mathrm{B} a_{i} a_{j} \beta, \mathrm{~B} b_{i} b_{j} \beta, \mathrm{~B} c_{i} c_{j} \beta, \mathrm{~B} a_{i} b_{j} \beta, \mathrm{~B} a_{i} c_{j} \beta, \mathrm{~B} b_{i} c_{j} \beta, \mathrm{~B} b_{i} a_{j} \beta\), \(\mathrm{B} c_{i} a_{j} \beta, \mathrm{~B} c_{i} b_{j} \beta\), for each \(i, j \in R\)
\(\mathrm{W} a_{i} a_{j} \alpha\), for each \(i, j \in R\), where \(j<i\)
\(\mathrm{W} b_{i} a_{j} \alpha, \mathbf{W} c_{i} a_{j} \alpha\), for each \(i, j \in R\)
\(\mathrm{W} b_{i} b_{j} \alpha\), for each \(i, j \in R\), where \(i<j\)
\(\mathrm{W} b_{i} c_{j} \alpha\), for each \(i, j \in R\), where \(i \neq 2\)
\(\urcorner\) in each other case, that is, \(7 \mathrm{~W} a_{i} a_{j} \alpha\) for each \(i, j \in R\),
where \(i \leq j\), and so on
\(\backslash a_{i} a_{i} \alpha, \mid b_{i} b_{i} \alpha\), for each \(i \in R\)
I \(c_{i} c_{j} \alpha\) for each \(i, j \in R\)
\(\mathbf{l} b_{2} c_{j} \alpha, \mathbf{I} c_{j} b_{2} \alpha\), for each \(j \in R\)
I \(\left|a_{i} a_{j} \beta, \mathrm{I} b_{i} b_{j} \beta, \mathrm{I} c_{i} c_{j} \beta,\left|a_{i} b_{j} \beta,\right| a_{i} c_{j} \beta, \mathrm{I} b_{i} c_{j} \beta, \mathrm{I} b_{i} a_{j} \beta, \mathrm{I} c_{i} a_{j} \beta, \mathrm{I} c_{i} b_{j} \beta\right.\), for each \(i, j \in R\)
ㄱ in each other case, that is, 기 \(a_{i} a_{j} \alpha\), for each \(i, j \in R\),
where \(i \neq j\), and so on
```

In order to see that the given model is truly a model for our axiomatic system, one has only to verify that the set of our axioms is satisfiable with regard to the non-empty domains S and Z under the given interpretation of our primitive and defined notions.

Let us illustrate this by an example. Suppose we choose the axiom 6.7. Our given interpretation states that the subject to which belong the momentaneous subjects b_{i}, for each $i \epsilon R$, has undergone a change with regard to the determination α during the time interval determined by b_{0} and b_{2}, and this change came to an end at the point in time belonging to b_{2}. We must then check that the right part of the implication sign is satisfiable. It is easy to see that this is the case. Under our interpretation, we have:

1) $\mathrm{M} a_{i} b_{2} \alpha$ for each $i \in R$ and $i \neq 2$;
2) $a_{i} \sim b_{i}$, for each $i \in R$;
3) $b_{i} \leq b_{j}$, for each $i, j \in R$ and ' $i \leq j$ '";
4) $b_{i}<b_{j}$, for each $i, j \in R$ and ' $i<j$ ".

REFERENCES

References [1]-[8], [9]-[12], and [13] are given at the ends of the first, second, and third parts of this paper respectively. See Notre Dame Journal of Formal Logic, vol. IX (1968), pp. 371-384, vol. X (1969), pp. 277-284, and vol. X (1969), pp. 385-409. They are now supplemented by:
[III] Larouche, L., "Examination of the axiomatic foundations of a theory of change. III,'" in Notre Dame Journal of Formal Logic, vol. X (1969), pp. 385-409.

[^0]: *The first, second, and third parts of this paper appeared in Notre Dame Journal of Formal Logic, vol. IX (1968), pp. 371-384, vol. X (1969), pp. 277-284, and vol. X (1969), pp. 385-409, respectively. They will be referred to throughout the remaining parts as [I], [II], and [III]. See additional References given at the end of this part.

