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TWO NOTES ON VECTOR SPACES WITH RECURSIVE OPERATIONS

J. C. E. DEKKER

In [1] the author studied an R,-dimensional vector space Ur over a
countable field F;it consists of an infinite recursive set € of numbers (i.e.,
non-negative integers), an operation + from €r X & into € and an operation
- from F X €p into €. If the field F is identified with a recursive set, both
+ and - are partial recursive functions. Let 8 be a subset of €. We call 8
a repére, if it is linearly independent; 8 is an a-repére, if it is included in
a r.e. repére. A subspace V of Up is an a-space, if it has at least one a-
basis, i.e., at least one basis which is also an a-repére. We write c for the
cardinality of the continuum. It can be shown [1, pp. 367, 385, 386 and 2, §2]
that among the ¢ subspaces of Up there are ¢ which are a-spaces and c
which are not. The present paper* contains improvements of two results
obtained in [1]. Henceforth the notations and terminology of [1] will be used.

1. HAMILTON’S THEOREM. Every two a-bases of an isolic a-space
are recursively equivalent. This result [1, p. 375, Corollary 2] was
strengthened by A. G. Hamilton [2] to:

every two a-bases of any a-space ave vecursively equivalent.

This means that dim,V can be defined for any a-space V. The following
proof is shorter than Hamilton’s; it is a modification of the proof of T1 in
[1).

Proof. Let B and y be a-bases of the a-space V, say fC E, Yy CY,
where 8 and y are r.e. repéres. If V is finite-dimensional we are done,
hence we suppose that dim V =R, thus 8,8,y and y are infinite sets. We
have V = L(B) = L(y), V = L(B), V = L(y). Note that L(g) need not equal L().
There is no loss of generality in assuming that 8 C L(y). For suppose this
were not the case; take B, = B N L(%); then B C Bo, Where B, is a r.e. repére
included in L(y). Assume therefore that 8 C L(y). Put y* =3 N L(B), then

BcBC LB, ycy*c v v c L@,

*Research supported by NSF grant GP-20134,

Received August 4, 1970



330 J. C. E. DEKKER

where B, y* and y are infinite r.e. repéres. Let c»be a one-to-one recur-
sive function ranging over y*. Define the sequences {B.}, {8} and the func-
tion b,* as in [1]; statements (i'), (ii’), (iii") again hold for all n, and can be
proved in the same way'. Let p(x) be the function with domain 9* which
maps ¢, onto b,*, for neg; put g* =pb,*. Again, p(x) is a partial recursive
one-to-one function; it maps the r.e. set y* onto the r.e. subset g* of the
r.e. set 8 in such a way that

c, ey <>plc,) B, for nee.

The last relation implies that p(y) = * N B, hence ply) C B. Keeping in mind
that v* C L(B) = L(y), one realizes that the set p(y*), i.e., f* need not equal
B. We claim, however, that p(y) = B. For suppose p(y) G B, say bep -p(y).
Clearly,
B-p(y) =B-(B*NpB)=p-p*Cp-p*

hence beE - B*; thus beE - (bo*, ..., b*),for nec. If b were equal to co, then
‘“1-b”’ would be the expression of ¢, as a linear_combination of elements in
B, hence bo* = b = c,. Similarly we see (using 8. instead of g) that b = c,,,
implies b,’fﬂ = b = ¢,y;. Our hypothesis b¢p* therefore implies b # c,, for
nee, hence b¢(co,...,c,), for nec. On the other hand, be B C V= L(y) =
L(y*); let  be the largest number % such that b, when expressed as a linear
combination of elements in y*, has a non-zero coordinate w.r.t. ¢,. We now
have b e€L(co,...,c), beB - (bo*, ..., 0*) and b¢(co,...,cy). This implies
the false statement that the set

Br=[B-0o* ..., 0] U(coy...,cx)
is not a repére. Hence p(y) ¢ B must be false. Thusp(y) = fand y ~ 8.

2. R.E.SPACES. A space, i.e., a subspace of U, is calledr.e., if it
is r.e. when considered as a set, i.e., (every space being non-empty), if it
is the range of a recursive function. According to [1, P3]a space is r.e. if
and only if it has a r.e. basis. This suggests that among r.e. spaces those
with a recursive basis might be of special interest. The following result
shows that this is not the case: every 7.e. space has a recursive basis.
Before proving this proposition we shall introduce some notations and
terminology and discuss three lemmas.

If f is a function from ¢ into €&, its value at # will be denoted by ‘‘f(x)”’
or ‘f,”’. If a is a non-empty finite set, we write max a for its maximum.
Let 0 Cef, geo, pecp. Theno_, stands for o-(g), and 0_4,» for o_4 U(p).

DEFINITION. The repéres 8, and B, are equivalent [written: B, eq ],
if L(B1) = LB,).

DEFINITION. Let o Cer, g€0, pe€p, where o is a repére. Then the
element q of 0 may be replaced by p, if 0_4,, is a basis of L(0).

1We note the following misprints. In line 14 from the foot of p. 373, replace
“” by “V? and in line 8 from the foot of p. 374, replace “8’ by ‘“B’’.
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Assume 0 C &g, g€, pegp, where ois a repére. If p =g, we have 0_4,, =
o, hence g may be replaced by itself. Now assume that ¢ may be replaced
by p, while p # g; then we have p ¢o, for otherwise 0.4,» Would equal the
proper subset 0, of 0 and not be a basis of L(o).

LEMMA L1. Leto Ceg, q€0, p €€g, wheve ois a vepéve. Then the ele-
ment q of o may be veplaced by p if and only if (1) p € L(0), and (2) when ex-
pressed as a linear combination of elements in o, p has a non-zevo
coordinate with vespect to q.

LEMMA L2. For every number n theve exists an effective procedure
which when applied {o any giveg\z finite vepere B of cardim}lz’ty =n yields a
unique finite vepére B such that Beq B and all elements of Bare = n.

LEMMA L3. Let V be a finite-dimensional space over a finite field F.
Then dim V = n implies max V=mn.

Proofs of the Lemmas. L1 holds by elementary linear algebra. To
establish L3 we assume card F=¢, =1, dim V= n Then card V=¢"=
2" = p+1, hence V cannot be a subset of (0,...,z-1) and max V = n. Note
that L3 also follows from L2. For, since by hypothesis, V has a finite basis
of cardinality =#», it also has a finite basis all of whose elements are = #;
again, max V =#n. It remains to prove L2. Let a finite repére 8 of cardi-
nality =»n be given. I all elements of 8 are = (in particular, if Bis
empty or n=0), we take B B. From now on we assume that » =1 and that
B contains at least one number <n. Let 8= (by,...,b;) with card g =¢+12
n =1; assume b, < 5, <...<b,; thus b, < n. FlI‘St consider the case thatF
is infinite. Let ¢ be the functlon from F into € mentioned in [1, p. 363]. Pu
v, =0~ (n), thenF =@ro, 7y, ...), where 7, =0p, 7 = 1p. Define for 0 = £ Et,

ih = (WX)rbp = n), bp = vip) g .

Since Zk is a non-zero scalar multiple of b, the set f% = (30, ceey l;,) satisfies
the requirements. Now assume that F is finite. Consider the set 7 =
(Boybo+byy...,bo+b,). Since 0, by,...,0b, are distinct, so are b, bo+ by, .. .,
bo+ b;, hence card T =¢+1 = n. Also, by # 0, for b, belongs to a repére. Let
1 =i <¢; then (b,,b;) is a repére, hence b, + b; # 0. Since 7 consists of at
least 7 distinct non~zero numbers, 7 contains at least one number =#n. Put

i= [l =x=t& b+b.=n),
bo—b +b1, B "(bo’bly bt)

The element b, of 8 may be replaced by the element 130 =pn, and B’ eq B. Re-
arrange the sequence Bo,bl s+ .., 0, so that it becomes strictly increasing:
by’ < bl' <...<b/. by =nwe are done and put E B'. If by <n we de-
fine bo' in terms of b’ as we defined b in terms of b,. Continuing thls pro-
cedure we obtain (after at most ¢ + 1 replacements) a repére B which
satisfies the requirements. Note that B is uniquely determined by 8.

PROPOSITION A. Every v.e. space has a recursive basis.
Proof. Let V be a r.e. space. Then V has a r.e. basis, say 8. If Vis
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finite-dimensional, § is a finite, hence recursive set. We therefore assume
that dim V=8; then B is an infinite r.e. set. Let b, be a one-to-one re-
cursive function ranging over B. If F is infinite, the function ¢, defined as
in the proof of [1, P8] ranges over a recursive basis of V. From now on
we suppose that F is finite. Define L, = L(by,..., b) and

My = L, Mo = max Mo,
M; =L ,0)+25 my = max M,
Mz = L) 4m(1)+5 mz = max M.,

Using L3 we see that dim Lp=k+1 implies

Mpyy = max Lm(0)+...+m(k)+2(k+l) > my ’

while m,> 0, since (0) E L,. Thus wmy, is a strictly increasing recursive
function all of whose values are positive. Clearly, My = M, =... and the
function m, being strictly increasing, M, < M, <.... It follows from
0 < my<my,, that (m,, m,,,) is a 2-element repére in M,, where M, has
dimension 7+ 3 = 4; this repére can therefore be extended to an (m,+3)-
element basis of M; of the form
By = (7’}’10, —,m, )-
mo +1nos <my
Using L2 we see that the (mg+1)-element repére B, - (mg,m,) in M, is
equivalent to a repére in M, all of whose elements are = m, +1, but still
=< my (since m, = max M;). Thus M, has a basis of the type
(*) (WIO, N —TN T ——— 5 ml)'
mg + 1 nos between mg and my
The basis of M, which is not only of type (*), but also has the lowest Godel
number under

k
Gla,...,an = ILp;*, a5 <a,<...<a,
is called the minimal basis of M; it can be effectively computed from the
basis (by, ..., 8 m0)+2) Of My; let its enumeration according to size be
My =CoyCryesesCmlo)+a =My,

The (m, + 3)-element repére (Cy,...,Cm0)+2) in M, is also a repére in M,.
Since M, has dimension m, + m; + 5, it can be effectively extended to a
basis of M, of the form

(**) (Co, coe ,c,,,(o)+2, —T T mz),
m1 + 1 nos between m; and mp

in fact, to the minimal such basis of M,. Let its enumeration according to
size be

Coseves Cm(0)429 Cm(0)485 « + * 5 C(0)+m(1) +¢ = M2«
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Continuing this procedure, we construct a strictly increasing recursive
function ¢, such that the set consisting of

Cosvevs Cn(0)+,..+m(k)+2k = My

is a basis of M. Thus c, ranges over a recursive basis of the space

0
U m, = L(bo, 81,...) = LB) = V.
k=0
This completes the proof.
If a is a subset of € we denote the Turing degree of a by A(a). Let
V = [a, +, -] be a space, i.e., a subspace of Ug= [ep, +, »]. Then the Turing
degvee of V [written: Ay]is defined as A(a). In particular, V is called
decidable, if Ay =0, i.e., if both V and Ur-V (considered as sets, i.e., as
o and €p-a) are r.e. With every set 8 we can associate a space V such that
Ay = A(B), namely the a-space V = L[e(B)]; this is discussed in [1, p. 368].
Consider the case that V= L[e(0)], where o is a r.e., but not recursive set.
Then V is a r.e., but not decidable space; nevertheless, V has a recursive
basis according to Proposition A. It is therefore of some interest that we
can associate with every space V a unique basis 7 such that Ay = A(7), the
so-called perfect basis of V. Consequently, a space is decidable if and only
if its perfect basis is recursive. We shall now discuss these matters in
more detail.
If 0 is a set and # a number we shall write o[z] for the set {yeoly =nl

DEFINITION. A repére B is perfect, if
xe ) <> xe L(B[x), for xeeE.

DEFINITION. A perfect basis of a space V is a basis of V which is
also a perfect repére.

As an example we mention the fact that the canonical basis 7 of U [see
1, p. 365] is also the perfect basis of Up; this is true for every choice of the
countable field F.

REMARK. Let pg,...,p, and pg,p,,... be strictly increasing se-
quences and let P denote the class of all perfect repéres. Then

(Poy +++» pr) € P<>(Vu=7)[(poy ... ,Pn) € P,
(Pos Pry - - -) € P<>(Vn) [(Boy - . « 1) € P).

PROPOSITION B. Every space V has exactly one perfect basis 7.
Moveover, Ay = A(T).

Proof. Let V be any space. If V =(0), it only has the empty set as
basis and this basis is perfect. Now assume V # (0). Define

Do =0 <x&xeV]
Dutr = WP <x&xeV& x¢ L(po, - . - s o)),
(DPos +++ sPr-1)y, if dim V= =1,

17 =
(po:Pl, ced)y if dim V=R,.
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It is readily proved that 7 is a perfect basis of V and the only such basis. It
follows from the definition of po,...,pr-1 OT po,P1,... in terms of Vthat
is Turing reducible to V. It remains to be proved that Vis Turing reduc-
ible to 7. Suppose that 7 is a finite repére. Then we have for x€¢p,

XET
(*) xe L(T)<> < or
7 U(x) is not a repére.

Given a finite set 0 we can effectively test whether ois a repére [1, P2].
Thus it follows from (*) that given a number x and a finite repére 7, we can
effectively test xe L(7). We now conclude from

x € Ve>xeL(m[x]), for xeep,
that V is Turing reducible to 7.

REMARK. Let a C €r. In discussing the decision problem of @ we have
only considered elements of €r. This is justified, since € is a recursive
set.
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