
309
Notre Dame Journal of Formal Logic
Volume XII, Number 3, July 1971
NDJFAM

MATRIX SATISFIABILITY AND AXIOMATIZATION

ROBERT ACKERMANN

The appearance of Polish Logic 1920-1939 (edited by Storrs McCall) is
an event of considerable importance for logicians interested in the develop-
ment of modern symbolic logic.1 In conjunction with Tarski's Logic,
Semantics, and Metamathematics, this collection of papers makes the
central early source material from the Polish school of logicians available
in English translation.2 There are, however, a few matters of fit between
the volumes which have escaped scrutiny. This is in no way intended to be
a criticism of McCalΓs editorial decisions. Within the limits of a single
volume of source papers, his choices seem uniformly excellent. In this
paper I would like to discuss one theorem which is stated in [3] without
proof, and no proof for which occurs in the papers which were chosen for
inclusion in [2]. This theorem seems worthy of discussion because of the
interesting connection which it establishes between matrix characteriza-
tions of propositional calculi and equivalent axiomatic systems.^

In their paper "Investigations into the Sentential Calculus/' J. Luka-
siewicz and A. Tar ski state the following theorem about the arbitrary
calculus Ln (2 ^ n < #0):3

Let 2tt = (A, B, f, g) be a normal matrix in which the set AΌB is finite.
If the sentences 'CCpqCCqrCpr9, 'CCqrCCpqCpr', 'CCqrCpp',
'CCpqCNqNp', 'CNqCCpqNp9 are satisfied by this matrix, then the set
of sentences satisfying Wl may be finitely axiomatized.

1. See [2].
2. See [3].
3. See [1], p. 50. A normal matrix in which B is {l} defines the calculus Ln when

the number of values n is identical with the number of values A in the matrix.
Strictly, a normal matrix could have more than one designated value, so that
Wajsberg's theorem applies to a larger class of calculi than the calculi Ln. As
only the calculi Ln have assumed an important role in the literature, we will
ignore this complication in what follows except for one remark preceding Lemma
10.
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I will assume here that the terminology is known from [3], so that Lnis an
arbitrary many-valued calculus with C and N as primitive logical signs of
the kind investigated extensively by Lukasiewicz and Tarski. This theorem
clearly establishes the existence of a finite axiom set for each such cal-
culus. The proof of this theorem referred to in [3] appears in a paper of
M. Wajsberg which is not among those included in McCall's collection.4 My
purpose in this paper is to fill in the lacuna by presenting Wajsberg's
proof.

The following presentation is not a translation of Wajsberg's proof in
the ordinary sense, but a close paraphrase containing some additional
clarifying material. Further, I am not concerned to deal with Wajsberg's
entire paper, which overlaps at many points with material available in [2]
and [3]. The relevant proof by Wajsberg appears in section §3 of his
article. I here present the exact outline of Wajsberg's proof in that
Lemmas 1-23 of this paper correspond exactly in content with Wajsberg's
Saetze 1-23. In each case, the proof I give for a Lemma will follow
Wajsberg's proof strategy closely, but I have taken some liberties in re-
statement, and I correct some obvious misprints and a few minor errors in
proof. My object is to sketch the proof in sufficient detail to exhibit that it
is correct to readers whose knowledge of the related literature is assumed
to be restricted to some familiarity with allied papers in [2] and [3]. In line
with this object, some material embedded in Wajsberg's proof which is not
essential to the development of the proof is also omitted. The terminology
and symbolism of this paper is taken from [2] and [3].

Apart from notational differences, the Hauptsatz of Wajsberg's paper
differs in one respect from the theorem stated by Lukasiewicz and Tarski
in [3]. Where [2] includes CCqrCpp among the sentences assumed to satisfy
the matrix M. Wajsberg includes CCqqCpp. Since the latter is an immediate
consequence of the former, Wajsberg's proof can be regarded as establish-
ing both theorems. We now state the Hauptsatz of Wajsberg's paper:

Hauptsatz. The set of sentences satisfying a finite normal matrix 9W
can be finitely axiomatized if the following sentences satisfy the
matrix:

CCpqCCqrCpr (Sylχ),
CCqrCCpqCpr (Syl2),
CCpqCNqNp (Transpi),
CNqCCpqNp (Transp2),
CCqqCpp (id*).

4. The paper is [5]. At the time of appearance of [2], Geoffrey Keene of Exeter
University (England) and I had been working on a similar volume. [2] put paid to
that idea, but I am very grateful to Keene for hard work on translating articles
from the original Polish, work that now appears to have had no consequence
except improving the quality of his translation. I am also grateful to my wife Inge
for help in translating some articles from the original German. The three of us
can attest to the high quality exhibited by the translations included in [2],
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In the statement of Lemmas and their proofs, we use small greek letters

(except p and σ) to stand for arbitrary sentences of the calculi Ln. An ex-

pression containing greek letters is not really a sentence unless the greek

letters are replaced by sentences, but we will use sentence to refer either

to sentences or to sentential expressions containing greek letters. The

introduction of sufficient terminology to be completely rigorous would be

tedious, and no obscurity results from this decision. Similarly with quota-

tion. We will rely entirely on context to mark relevant use-mention

distinctions involving sentences or symbols of any of the calculi. The sign

\- is used to express deducibility in the relevant calculus, where deducibility

is defined as the sole use of correct substitution and modus ponens. Some

properties of deducibility are assumed throughout, in particular

(a) a h a ,

(b) If a \- β and β^y, then a h- γ ,

(c) If ha and a h β, then hβ ,

(d) If hCaβ, then a h β,

(e) If a h β and β,γ \- δ, then a,γ h δ.

An expression like C(l)CNqNr is used to stand for the conditional sentence

with (1) as antecedent sentence and CNqNr&s consequent, with (l) given as

an explicit sentence in the context.

Wajsberg's proof can be looked at as having two parts. Lemmas 1-9

establish meta-theorems concerning deducibility for all propositional cal-

culi defined by matrix characterization. Lemmas 10-23 construct an axiom

set for an arbitrary but fixed Ln and establish that any sentences satisfying

the matrix 2R defining the calculus Ln is deducible from this axiom set. It

might be noted that proof of some of the Lemmas depends on some simple

theorems of algebra or number theory, which could in principle be

eliminated. The remainder of this paper consists of a statement of

Lemmas 1-23 and a proof or proof sketch of each.

Lemma 1. Caβ, Cβγ h Cay .

Proof. Lemma 1 follows from (SylJ by substitution (S: p/a, q/β, r/γ) and

two uses of modus ponens. (This illustrates the substitution notation to be

used throughout, except that obvious substitutions will not always be explic-

itly cited.)

Lemma 2. Caβ, CγCβδ^ CγCaδ .

Proof. Caβ h CCβδCaδ can be obtained by substitution into (Syl^, and

CyCβδ, CCβδCaδ (- CγCaδ by substitution into Lemma 1. Lemma 2 follows

from property (e) of K

We now introduce some symbolism to be used in connection with later

Lemmas. The first is a device which can be used to refer to any sentence

which appears as a proper part of another sentence. If Caβ is a sentence,

we set (Caβ)1 - a and (Caβ)0 - β. Further, we set (Na)1 - a. By an obvious

recursive procedure, we can thus refer to any sentence a which is a proper

part of a sentence β by enclosing β in parentheses and following the
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parentheses with a suitable string of Γ s and O's, such a string to be known
as a place index. The place index is read from left to right. A place index
is even if it has an even number of Vs in it, otherwise it is odd. Clearly,
each sentential variable occurring as a proper part of some sentence a can
be uniquely referred to by enclosing a in parentheses and following it with a
suitable place index. For example, p = (CCpqr)11, q = {CCpqr)10, q =
(CCpNqr)101, and so on. Using the notion of a place index, we let the
formula 5(α, β, γ, δ, x) express the fact that a sentence β is obtained from a
sentence a when the sentence (or variable) γ defined as the proper part of a
with place index x is substituted for by the sentence (or variable) δ. Thus
we have S(Cpp,Cpq,p,q,O) and S(Cqp,CNqp,q,Nq,l). Using this new sym-
bolism, we state several additional Lemmas.

Lemma 3. If S(α,β, γ,δ,x), then if x is even, [-CaCCγδβ and hCCγδCaβ,
and if x is odd, \-CaCCδγβ and \-CCδγCaβ.

Proof. The proof is by induction on the length of the place index x. For
place index of length one, x = 0 or x = 1. In the former case, a and β are of
the form Cηγ and Cηδ, respectively. Then CCγδCaβ is provable by substi-
tution into (Syl2). Similarly, CaCCγδβ is provable by substitution into (Syli).
If x = 1, then a and β are either of the form Cγη and Cδη respectively, or
they are of the form Nγ and Nδ. In the former case, we prove CaCCδγβ and
CCδγCaβ by substitution into (Syl2) and (SylJ as in the case x = 0. In the
latter case, we prove CaCCδγβ and CCδγCaβ by substitution into (Transp2)
and (Transpi) respectively. Notice that (Syli), (Syl2), (Transpi), and
(Transp2) are all used to establish this important Lemma. To complete the
proof by induction, we must show that if the proof holds when the place
index x has λ numerals, it also holds when the place index x has λ + 1
numerals. In this case x has the form λO or λ l . We must consider in each
case whether λ is odd or even, giving four cases of λ + 1 all together. We
discuss just the case where λ is even and x is of the form λO. By the
assumption that the proof holds for x = λ, we have S(α, β, γf, δ',λ) and
the provability of CaCCγ'δ fβ and CCγrδrCaβ, where γf and δ ' are of the
forms Cηγ and Cηδ in view of the place index λO. Substituting into Lemma
2, we obtain the deducibility of CaCCγδβ from CCγδCCηγCηδ and
CaCCCηγCηδβ. But CCγδCCηγCηδ is a substitution instance of (Syl2) and
CaCCCηγCηδβ is equivalent to CaCCγrδ(β which is already known to be
provable. Similarly, we establish that CCγδCaβ can be obtained by substi-
tution into Lemma 1 along with the established provability of CCγδCCηγCηδ
and CCγ'δ'Caβ. Proof of the cases where λ is even and x is of the form λl
and where λ is odd and x is of the form λO or λl proceed similarly.

Lemma 4. CatCa2 . . . Cakγ, Cγδ \- CaxCa2 . . . Cakδ.

Proof Let a be CaιCa2... Cakγ and β be Ca1Ca2... Cakδ. By Lemma 3, we
have 5(α, β, y, δ,x) for an even x, and the provability of CCγδCaβ. Using
modus ponens twice with Cγδ and α, we have the provability of β.

Lemma 5. Suppose we have S(ai9 ai+v γi9 δf , x{) for i - 1, 2 , . . . , k.
Then we have as provable sentences CaλCβχCβ2... Cβkak+i and CβλCβ2...
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CβkPctiOik+i' βi is °f the form Cγiδi or Cδiγi, depending on whether i is
even or odd.

Proof. Use induction on k. For k = 1, Lemma 3 suffices. The induction
step is easy to work out for various cases using Lemmas 3 and 4. Detailed
proofs of Lemmas 3 and 5 can be found on pp. 270-272 of [2].

To state the next few Lemmas, we give a recursive definition of a

superscripted C'

C°pq = q,

and

Cί+1pq = CpClpq.

These identities allow us to replace one sentence by its notational variant

in doing proofs.

Lemma 6. If β follows from a by substitution of δ for γ at k places with
even place index and I places with odd place index, then the sentences
CaCkCγδCιCδγβ and CaCιCδγCkCγδβ are provable. (Neither k nor I is 0.)

Proof. If the notation is read correctly, this Lemma is a special case of
one half of Lemma 5. Notice, for example, that CaC3CδγC2Cγδβ is equiva-
lent to CaCCδγCCδγCCδγCCγδCCγδβ.

Lemma 7. If β follows from a by substitution of δfor γ at k places with
even place index and I places with odd place index, then the following hold:

(a) a \-CkCγδCιCδγβ,

(b) a h CιCδγCkCyδβ,
(c) a,CγδhCιCδγβ,
(d) a,Cδγ\-CkCyδβ,
(e) α, Cγδ, Cδγ h β.

Proof. Obvious consequence of Lemma 6 and properties of K

Lemma 8. If a contains the variable p as a proper part, then

CaCCpqCCqpa and CaCCqpCCpqa are provable.

Proof. We have 5(α, a,p,p,x) for some place index x, and so by Lemma 3,
CaCCppa is provable. Furthermore, we have S(CCppa, CCqpa,p, q, 11),
and so again by Lemma 3 we have CCCppaCCpqCCqpa. From the provabil-
ity of these two sentences and Lemma 1, we have CaCCpqCCqpa. A similar
proof shows that CaCCqpCCpqa is provable.

Lemma 9. If a contains the variable p as a proper part, then the
sentences CaCkCpqCkCqpa and CaCkqpCkpqa are provable, (k = 1, 2, . . .)

Proof. By induction on k. For k = 1, Lemma 8 is sufficient. Let the
Lemma be assumed true for k-1. Then

(1) CaC^CpqC^Cqpa

and
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(2) CaCk"1CqpCk'1Cpqa

are provable. Substitution in Lemma 8 (S: a/C^^qpa) yields

(3) CCkmmlCqpaCCpqCCqpCk'1Cqpaf

and another substitution in Lemma 8 (S: a/Ck~1Cpqa) yields

(4) CCk~xCpqaCCqpCCpq&~xCpqa.

By the definition of the superscript, we have

(5) CC^CqpaCCpq&Cqpa,

and

(6) CCk"λCpqaCCqpCkCpqa

from (3) and (4). By substitution in Lemma 4 (S: aja, cii/Cpq (i =
2, 3 , . . . , k), y/Ck-xCqpa, b/CCpqCkCqpa) we obtain

(7) CaCk'1CpqCCpqCkCqpa

from (1) and (5). To complete the proof, we need the following property of
the superscript notation:

Ck'1aCafi = Ckaβ.

This is easily proved by induction. For k = 1, the equivalence follows from
the definition. Assuming the property for £-1, we have Ck~2aCaβ = C*" 1^.
Then CkmmlaCaβ = CσCk~2aCaβ = Ca&^aβ = Ckaβ by the definition. We use
this property of the superscript notation to find (7) equivalent to
CaCkCpqCkCqpa, proving one half of the Lemma. The other half follows
from (2) and (6) by Lemma 4 and a similar use of properties of the super-
script notation.

(In Lemmas 1-9, various meta-theorems concerning deducibility in all
of the propositional calculi defined by finite normal matrices were estab-
lished. To this point, we have used the sentences (SyU), (Syl2), (Transpx),
and (Transp2) from the antecedent of the Hauptsatz. In the remaining
Lemmas, we will use (id*) and we will assume that 9W refers to a fixed
finite normal matrix. (Syli), (Syl2), (Transp^, (Transp2), and (id*), all of
which satisfy 9W by hypothesis, will be taken as axioms of a deductive sys-
tem using h as its deducibility relation. This set of five axioms will then be
constructively enlarged until it can be shown that any sentence satisfying 2K
can be deduced from the enlarged, but finite, axiom set. The existence of
this axiom set is sufficient to establish the Hauptsatz.)

We let E^(a,β) express the equivalence of a and β with respect to 9JΪ,
that is, the fact that a and β are assigned the same value by 9W whenever
those variables common to a and β are assigned the same value from 2K.
Egji is obviously reflexive, commutative, and transitive. We let E^α, β)
express the fact that Caβ and Cβa are both assigned the value 1 (this for Ln,
otherwise any designated value) on every assignment of values to their
constituent variables. Clearly, if Eaκ(y,δ), then if a satisfies 9W, so will β>
where β is obtained from a by substituting γ for δ at one or more occur-
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rences of γ in a. We can thus proceed as though Egjt(y,δ) provided us with
a replacement rule.

Lemma 10. If E»(α,jS), then E™(a,β).

Proof. We can establish Cpp (id) from (Id*). CCqqCqq is first obtained
from Lemma 1, using (Id*) and CCppCqq, an obvious substitution instance
of (Id*). Substitution in (id*) (S: q/Cqq) yields CCCqqCqqCpp. By modus
ponens, the two sentences just obtained give (id). We therefore have C aa,
by consideration of the role of small greek letters. By the replacement
rule equivalent to the use of E$ι(a,β), Caβ and Cβa follow from Caa, and the
Lemma is proved.

For convenience in establishing the next Lemmas, we will assume that
the variables of the propositional calculi are ordered in this fashion: pi,p2,
p3, and so on. To preserve continuity with the earlier part of the paper, we
may assume the well known convention that px is p, p2 is q, p3 is r, and so
forth. We then define V(n) as the set of sentences in which only proposi-
tional variables identical with one of pi to pn occur.

Lemma 11. There is a finite set N(n) c V(w) such that for every sen-
tence a e V(n), we have an element β eN(n) such that ETO(α,j8).

Proof. It is easy to see that such a finite set exists. Let m be the number
of values in the matrix 9JΪ. Then the possible value assignments to then
propositional variables p19... ,pn are mn in number. Any particular sen-
tence could have any of the m values assigned to each of its constituent
variables. There are thus at most mm distinct functions given 9)? from
sentences with n variables to values in 9W. One could construct a set N(n)
by finding representative sentences for n = 1, n = 2, and so on, on the basis
of the given matrix 9JΪ. To fix ideas, we will adopt the following procedure.
We start with the set T, consisting of the propositional variables pl9 p29...,
pn. Then a series of sets T2, Γ 3,... is formed by the following recursive
strategy. If AT; is the set of all sentences of the form Caβ, Cβa, and Na,
where a is in T i-l9 and β is in any of the sets Tl9 T2,..., T^l9 then T, is
any subset of JVi which contains a single sentence β for every sentence a of
N{ which is not equivalent with respect to 9W to some sentence in one of the
sets Tl9 T2,..., T/_1. By the observation made above, some set T; will be
the first empty set of the sequence. (It is easy to find an upper bound on the
value of i within which the first empty set will appear.) The union of the
sets TίUT2U... UT -j. will have the properties attributed to N(n) by
Lemma 11.

Lemma 12. Every infinite set of sentences which is a subset of V(n)
contains as a proper part an infinite subset of sentences which are all
equivalent with respect to 9W.

Proof. Obvious as a corollary to Lemma 11.

Lemma 13. If a e V{m) {where m is the number of values in 9W), then
there exists a certain a1 eN(m) such that \-Caa' and \-Ca'a.
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Proof. If a is a variable, then a is identical with one of the variables
Pi> ,Pm By construction of N(m), all of the variables are elements of
N(m). Hence the Lemma is trivial in view of the provability of (Id). The
remaining cases are where a is of the form Nβ or Cβγ. To prove Lemma
13 in these cases, we will start our definition of the set of sentences Ax
which will eventually establish the axiomatization of the sentences satisfy-
ing 2B. The first step is to define the set A1 which will be a subset of Ax.
Aλ contains (Syli), (Syl2), (Transpi), (Transp2), (id*) as well as all sentences
satisfying 9W which are in N(m) and all sentences of the form CCaβγ and
CγCaβ, where a, β, γ are sentences in N(m) and γ is equivalent to Caβ with
respect to $31 and all sentences of the form CNaγ and CγNa where α, γ are
sentences in N(m) and γ is equivalent to Na with respect to 9W. Since N(m)
is finite, Ax is obviously finite. We prove just one of the cases. Let a be
of the form Cβγ. Then there are sentences β', γr in N(m) such that the
statements Cββ\ Cβ'β, Cγγf, and Cγfγ are provable by Lemmas 10 and 11.
Ax contains the sentences (1) CCβ'γ'a' and (2) Ca'Cβ'γ' in view of the con-
struction of Alβ By replacement (which can in this case be rigorously
justified by means of Lemma 3), we can also prove CCβγa' and Ca'Cβγ.
Thus we have Egn(α, Cβ'γ') and Ew(Cβrγ'9 ar), therefore i-Cααf and hCa'a
by Lemma 10. The case where a is of the form Nβ can be proved in an
analogous fashion.

A sentence containing exactly k distinct variables will be called &-di-
mensional. The set of all k-dimensional sentences will be designated by
Yfe. V& should be distinguished from V(&), the set of sentences containing
only propositional variables from pu p2,... 9pk which was introduced in
Lemma 11.

Lemma 14. If a satisfies 9W and is at most m-dimensional, then a is

provable.

Proof. We assume that a e V(ra), that is, uses at most the variables
Pi, p2f* >Pm. Otherwise a is equivalent to some β which has this property,
and β is taken as the a of the Lemma. By Lemma 13, there is an element
a' of N(m) such that \-Caa' and ϊ-Ca'a. Caa' clearly satisfies 9W, and since
a satisfies 9W by the assumption of the Lemma, a! also satisfies SJt. Since
all sentences satisfying 2W which are elements of N(m) are elements of Au

a' is an element of A x. But from this fact and the provability of Ca'a, it
follows that a is provable (given At).

We now consider the set of all sentences φ of the form CtCp1p2pz (i =
0, 1,2,.. •). This set is an infinite subset of V(3) and must therefore (in
view of Lemma 12) contain two sentences which are equivalent to each other
with respect to 9W. Let p, p + σ(σ^0) be the pair of smallest indices such
that φp = Cp Cpxp2pz and φp+σ= Cp+σCp1p2p3 are equivalent to each other with
respect to 9W. By Lemma 10 we have \-CCp+σCp1p2pzCpCp1p2pZ' By our in-
formal convention interchanging subscripted variables with the usual nota-
tion, this means that we can prove (Red) CCp+σCpqrCpCpqr. We add (Red)
to the sentences of Ax to form the set A2.
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Lemma 15. The following sentences are provable given A2:

(a) CσCqpCCσCppCpCpqrCpCpqr ,

(b) CCpqCCppCpq ,

(c) CCpqCCrrCpq ,
(d) CCpqCσCrrCpq ,
(e) CCpCpqrCσCppCpCpqr ,
(f) CσCqpCCσCppCpCpqrCσCppCpCpqr ,
(g) CσCqpCrr ,
(h) CCrsCσCqpCrs ,
(i) CCCσCqpCrstCCrst ,
(j) CCp+kσCpqrCpCpqr (k = 1,2, . . . ) .

Proofs:

(a) Proof from Lemma 7(a) by substitution (S: α/(Red), β/CCσCppCp

CpqrCpCpqr, k/σ, 1/0, γ/q, b/p).

(b) Proof from (Syl2) by substitution (S: r//>).
(c) Use (b), Lemma 3, and substitution in (id*) or (Id).
(d) Substitution in(c)(S: p/Crr, q/Cpq) yields (l) CCCrrCpqCCrrCCrrCpq.

(1) and (c), in view of Lemma 1, yield CCpqCCrrCCrrCpq, or
CCpqC2CrrCpq. Repeated use of this strategy yields (d) for the partic-
ular value of σ required.

(e) Substitution in (d) (S: p/Cpq, q/C^Cpqr, r/p).
(f) In Lemma 4, let CpCpqrbe substituted for γ. Then (a) and (e) are ob-

vious substitutions into the sentences assumed in Lemma 4, and (f)
follows from an application of the Lemma.

(g) In Lemma 4, let k = σ. Then substitution (S: aJCqp, γ/CCσCppCp

CpqrCσCppCpCpqr, δ/Crr) and the Lemma yield (g). The assumptions
of the Lemma after substitution are (f) and a substitution instance of
(Id*) (S: q/CσCppCpCpqr).

(h) Substitution in Lemma 3 (S: a/CσCqpCrr, β/CσCqpCrs, γ/r, δ/s), and
modus ponens on the result with (g).

(i) Substitution in (Syli)(S: p/Crs, q/CσCqpCrs, r/t) yields a sentence from
which a use of modus ponens with (h) yields (i).

(j) Induction on k using (Red) and Lemma 1.

In order to state and prove the remaining Lemmas, we introduce a

number of definitions:

(a) gr(α, β) = the number of the even place indices x such that β = ax.
If a is a variable, x is defined as 1 or 0 depending on whether β - a
or β ^ a.

(b) ngr (a, β) = the number of the odd place indices x such that β = ax.
If a is a variable, then ngr(α, β) = 0.

(c) df(α, β) = gr(α, j8) - ngr(α, j8).
(d) div(α) = the greatest common divisor of the numbers df(α, β) dif-

ferent from 0, where β is a variable occurring in a; 0 if no such
divisor otherwise exists.
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(e) ά\v(X) (X is a set of sentences) = the greatest common divisor of
all numbers div(α), where aeX; div(X) = 0 if no such divisor
otherwise exists.

(f) div(9W) = div(E(9K)), where E(Wl) is the set of sentences satisfying

9H.

Examples. gr(Ckpq,p) = 0, ngr(Ckpq,p) = k, άf(Ckpq,p) = -k, gr(p,p) = df (/>,/>)
= 1. The divisors (div) of (id), (id*), (SylJ, (Syl2), (TranspΛ, and (Transp2)
are equal to 0, on the other hand the divisor of (Red) is equal to σ.

Lemma 16. Suppose β and a are not variables, and substitution of q
for p turnsβ into a. If gr (a ,p) = & and ngr (a ,p) = I, then CβCk+mCqpClMnCpqa
and CβCι+mCpqCk+mCqpa are both provable, where m is any natural number.

Proof. Using Lemma 6, and the conditions on this Lemma, we can prove
CβCkCqpCιCpqa and CβC1 CpqCkCqpa. Using Lemma9 (S: k/m (m = 1, 2 , . . . ) ,
a/CιCpqa or CkCqpa) we can then prove CCιCpqaCmCqpCmCpqCι Cpqa and
CCkCqpaCnCpqCmCqpCkCqpa. The Lemma is then provable from these
sentences by means of Lemma 4.

Lemma 17. If a satisfies 2W, and όϊ(a,p) = + m (m = 1, 2,. . .), then
CmCqpCrr satisfies 9».

Proof. If a = β (S: p/q) and a satisfies 2R, so will β. From Lemma 16,
(1) CkCqpCιCpqa satisfies 2W. Assuming k ^ Z, and setting k-l = m, we
write (1) as (2) CmCqpCιCqpCιCpqa. a contains p as a proper part, since
not both gr(a,p) and ngr(a,p) are equal to 0. By substitution in Lemma 9
and use of modus ponens with α, it follows that CιCqpCιCpqa satisfies 9R.
Since Crr satisfies 9W, we have (3) CCιCqpCιCpqaCrr, by Lemma 10. Using
Lemma 4 on (2) and (3), we have CmCqpCrr. lϊk<l, then letting l-k = m,
and exchanging />and q, we obtain the same result.

Lemma 18. If CkCqpCrr and CιCqpCrr (k, I = 1, 2,...) satisfy 2JΪ, and
m is the greatest common divisor of k and I, then CmCqpCrr satisfies 9K.

Proof. To establish Lemma 18, we first show that if (1) Ct+uCqpCrr and
(2) CuCqpCrr satisfy a», then (3) C*CqpCrr satisfies 2H. (1) is equivalent to
(4) C'CqpCuCqpCrr. From (2), and the fact that Crr satisfies 9W, we have
(5) CCuCqpCrrCrr by Lemma 10. Lemma 4 with (4) and (5) yields (3),
proving this new rule of inference. This rule can now be used with
(6) CkCqpCrr and (7) CιCqpCrr from the antecedent of Lemma 18 to obtain
CmCqpCrr by means of number theoretic considerations. Without loss of
generality, we assume k>l,lfm=l, the theorem is proved. We therefore
assume m < I. We can set k = ma and I = mb, with a > b. Further, by
virtue of the fact that m is the greatest common divisor of k and Z, a and b
must be relatively prime. Now consider the quantity (k-l). Either (k-l) <l
or I <(k-l). We establish the remainder of the proof for the case (k-l) < 1 .
Similar remarks could be constructed if 1 < (k-l). By the rule of inference
introduced, we obtain C{k~ι)CqpCrr from (6) and (7). Continuing the use of
the rule, we can obtain Cι'{k'ι)CqpCrr•, Cι"2(k"ι)CqpCrr9 and so on, until we
obtain Cι~λ(k~ι)CqpCrr with l-λ(k-l) the smallest such number larger than
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0. If l-λ(k-l) = m, the theorem is proved. Otherwise, since a and b are
relatively prime, l-λ(k-l) <k-l, and (k-l) ̂  c(l-(k-l)) for c = 1, 2, . . . If
this were not so, since m divides (k-l) and (I-(k-l)), both k and I would be
multiples of (k-l), and hence of md (d = 2, 3,...), so that k and I would not
be relatively prime after division by m, contrary to hypothesis. We use
(I-(k-l)) to obtain C{k'ι)' {ι"{k'ι)) CqpCrr, and so on, until either we reach
CmCqpCrr or some sentence CmnCqpCrrwhich can be reduced by repeating
the same procedure until CmCqpCrr is finally obtained.

Lemma 19. CAywWCqpCrr satisfies 3W.

Proof. This follows immediately from Lemma 17 and 18 and the definition
of div(9»).

Lemma 20. div (9R) = σ.

Proof, σ is given a value in (Red) such that σ= df((Red),/>) and (Red) satis-
fies 9W. σ is therefore some multiple of div(9W), say k div(2W). Since both σ
and div(SW) are greater than 0, we need only show that k = 1. By the defini-
tion of (Red), p + σ is the smallest number greater than p for which
(Red) CC^σCpqrCpCpqr satisfies 9W. By Lemma 19, we have (1) Cdiv(9 ϊ l )

CqpCrr satisfies 2W. Repeating the derivation of (i) from (g) in Lemma 15,
using Lemma 3 and (SylJ, except that div (9W) replaces σ everywhere in the
derivation, we can obtain (2) CCCάιwmCqpCrstCCrst from (1). Substituting
in (2) (S: q/p, p/q, r/Cpq, s/C^-^^^Cpqr, t/CpCpqr), and using the
identity σ= k div(9»), we obtain (3) C(Reά)CC(k"^dιy/m+pCpqrCpCpqr. Using
modus ponens with (Red) on (3), we obtain that (4) CC{k"1)dMm)+pCpqrCpCpqr
satisfies 9M. Now, unless & -1 = 0, the fact that (4) satisfies 9W is incompat-
ible with the stipulation used to define (Red) that p,σ are the smallest
indices such that CCp+σCCpqrCpCpqr satisfies 2W. (An easily proved prop-
erty of exponents is required.) Therefore k = 1.

Lemma 21. Let a satisfy 9B and contain the variable p as a proper
part. Let β be provable from A2 where βis obtained from a if p is every-
where replaced by q. Then the sentences CpCqpCpCpqa and CpCpqCpCqpa
are provable.

Proof. If the assumptions of the Lemma hold, and gr(a,p) = k and ngr(a,p)
= I, then by Lemma 16 the statements (1) Ckj~mCqpCι+mCqpa and
(2) Cι+mCpqCk+mCqpa are provable, for any m. With a suitable choice of m,
we have k+ m = p (mod σ) and l + m = p (mod σ). This follows from the fact
that since a satisfies 9W, and k-l = df (a,p), σ (which is by Lemma 20 identi-
cal with div(9W)) must divide k-l. We therefore have k = l (mod σ). Using
(Red) and Lemma 4, we can always obtain the sentences desired from (1)
and (2) with suitable choice" of m.

We now introduce a sentence-type which satisfies 301, and when added to
A2 to yield A3, results in an axiomatization of the sentences satisfying SW,
withA3 as the axiom set. This sentence, to be referred to as (Fίnw), de-
pends on the degree of 9W, and on p and σ. Consider sentences of the form
C^pkpipcpφkCqr, where k < I, and k, I = 1,2,... ,m + 1. There will be
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m(m +1)/2 sentences of this form, which we can designate φl9 φ2,..., φm(m+i)/2-
( FinOT) is then the following:

C\ Cσφ2,..., Cσφm(m+1)/2 Cσ+1 φm{m+1)/2 C2p CqqCqr. (For example, with
m = 2, we have (Fin2):

CσC pCp1 p2 C pCp2 px CqrC σC pCpx p3 CpCp3 px CqrCσCpCp2 p3 CpCp3 p2 CqrCσ+1 C p

Cp2p3C
pCp3p2CqrC2pCqqCqr. Notice that we do not strictly adhere to our

convention in which pi - p, P = q, and so on, because q and r are used in
(F\nm) as variables distinct from any of the pi (i = 1, 2 , . . . , m + 1).)

Lemma 22. (Fίnw) satisfies 9W.

Proof. First we derive some sentences from A3:

(a) CCpqCσCpCrsCpCsrCpCtuCpCutCvwCpq. (Substitution in Lemma 15(h)
(S: r/p, s/q, q/Crs, p/Cp'1CrsCpCsrCpCtuCpCutCvw).)

(b) CpCpqCpCqpCpp. (Substitution in Lemma 9 (S: a/Cpp,k/p) yields
CCppCpCpqCpCqpCpp, which in turn yields (b) after modus ponens with
(Id).)

(c) CpCpqCpCqpCrr. (From (b) and CCppCrr (Substitution in (id*)) using
Lemma 4.)

(d) CCrsCpCpqCpCqpCrs. (Substitution in Lemma 3 (S: α/(c), β/CpCpqCp

CqpCrs, γ/r, δ/s) yields C(c)(d). Modus ponens with (c) obviously then
yields (d).

(e) CCυwCpCtuCpCutCvw. (Substitution in (d) (S: r/v, s/w, p/t, q/u).)
(f) CCpCtuCpCutCvwCpCrsCpCsrCpCtuCpCutCvw. (Substitution in (e) (S:

v/Ctu9 w/Cp"1CtuCpCutCυwi t/r, u/s).)
(g) CCpqCσ'1CpCrsCpCsrCvwCCpCtuCpCutCvwCpq. (Using Lemma 5, with

α/(a), we let (e) beC61γ1. Replacing γλ by δx at σ-1 odd places in (a),
we obtain CCpqC0'1 CprsCpsrCυwCCpCrsCpCsrCpCtuCpCutCvwCpw, as
α& of Lemma 5. Now, using (f), we obtain (g) as ctk+i of Lemma 5.)

Returning to (F\nm), some pair of variables pi,pk(i ϊ k,i, k = 1, 2 , . . . , m +1)
must have equal values on any given valuation. As a result, (Fιnm) satisfies
9Γ on any particular valuation, and hence on all valuations, that is, satisfies
9tt in the sense of the Lemma. This is shown only for the case where m = 2,
and px and p2 are assigned the same value. (Fin2) is then of the following
form:

(1) CσC?PCp2p2 Cqr(?°+1 CpCp2p3 CpCp3p2 CqrCfPCqqCqr.

If, in this sentence, we replace Cp2p2 with Cqq everywhere, we obtain a
sentence (2) such that C(l)(2) and C(2)(l) are provable by (Id*) and Lemma
7. (2) satisfies 9W since it is a substitution instance of

(3) CCpqC0"1 CpCrsCpCsrCυwCCptuC p CutCvwC?σ CxyCpq.

(3) may be proved,from Lemma 22(g) and Lemma 15(h) using Lemma 4. It
is easily seen that other cases can be proved in a similar manner, and
hence that (1), or (Finw) in the general case, satisfies 9W. We now add
(FirO to Λ2 to obtain Λ3 and state Lemma 23.
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Lemma 23. All sentences which satisfy 9W are provable from A3.

Proof. The proof proceeds by establishing this inductive statement: If, for
any s ^m, all the s-dimensional (or less) sentences satisfying 9JΪ are prov-
able, then the s+1 -dimensional (or less) sentences satisfying 9ft are also
provable. Let a be any s+1 -dimensional sentence in which all of the vari-
ables p1} p2f... ,pm+i occur. Consider the sentences obtained from a by
replacing occurrences of a variable Pk with another variable pi where
pi < pk. By hypothesis, all such sentences satisfy 2JΪ and are provable. By
Lemma 21, therefore, all sentences of the form CpCpkpiCpCpipfza are
provable. If a is of the form Cβγ, then by means of (Finw), it is possible to
prove C2pCββCβγ, and therefore also Cβγ. If a is of the form Nδ, then the
sentence (1) CCδδNδ satisfies 9JΪ by substitution in (Transp2). (1) is of the
form Cβγ and is also s+1 -dimensional. Therefore (1) and hence a is prov-
able by the strategy just suggested. As a is provable no matter what its
form, Lemma 23 is proved. This also suffices to establish the Hauptsatz,
since the construction of A3 completes the development of an axiom set Ax
for the sentences satisfying the arbitrary matrix 9W.
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