Notre Dame Journal of Formal Logic Volume XII, Number 3, July 1971 NDJFAM

MEASURABLE CARDINALS AND CONSTRUCTIBILITY WITHOUT REGULARITY

RICHARD L. POSS

It has been shown (see Dana Scott [5]) that the axiom of constructibility (V = L) is incompatible with the existence of a measurable cardinal number. In [4] we gave a decomposition of V = L, over set theory without the axiom of regularity, into the axiom of regularity and the proposition:

P:
$$\forall x(x \in \vee \land x \subset \sqcup \rightarrow x \in L).$$

In this paper we will show that even without the axiom of regularity P is sufficient to insure that there are no measurable cardinals. We shall work within the system of [1] but use the notation of [5]. Our result is thus formulated as follows:

Theorem I. In GB set theory with AC but without the axiom of regularity, if P holds, then there does not exist a measurable cardinal.

Our proof will follow that of Scott [5], who assumed V = L in the following form:

(*) If M is a class such that

(i)
$$M \subset \mathcal{P}(M) \subset \bigcup_{x \in M} \mathcal{P}(x)$$

(ii) $x - y, \bigcup x, \check{x}, x \mid y, E \mid x \in M, \text{ for all } x, y \in M;$

then $\lor = M$.

(In the above, P denotes the power set operation so P(M) is the class of all subsets of M; $\bigcup x = \bigcup_{y \in x} y$; \check{x} denotes the operation of forming the converse of the relational part of x; $x \mid y$ denotes the operation of forming the relative product of the relational parts of x and y; $E \mid y = \{\langle u, v \rangle : u \in v \in x\}$.)

We shall formulate **P** in a similar way. We first note that a set x is called *grounded* if there does not exist an infinite descending ϵ -chain beginning with x.

Proposition II. In the field of GB set theory with AC but without the axiom of regularity the following statements are equivalent:

Received August 22, 1970

300

(P) $\forall x (x \in \forall \land x \subset \mathsf{L} \rightarrow x \in \mathsf{L})$

(**) If M is a class such that (i) and (ii) of (*) hold, then $x \in \vee - M \rightarrow x$ is not grounded.

Proof: We will need the following lemma:

Lemma II.1. In the field of set theory without the axiom of regularity, if a class K satisfies (i) and (ii) of (*) and $K \subset L$, then K = L.

Proof: Suppose we have a class K such that K satisfies (i), (ii) and

(1) $K \subset L$.

Since K satisfies (i) and (ii), it is a model of **GB** (without the axiom of regularity). By (1) and Lemma III.3.15 of [4],

(2) every element of K is grounded.

If we let $\Psi(\alpha) = \bigcup_{\beta < \alpha} \mathcal{P}(\Psi(\beta)), \Psi(0) = \phi$, then it is clear by (1) and the definition of constructibility that

(3) $x \in K \to \exists \alpha (x \in \Psi(\alpha))$.

By the results of Mendelson [2], (2) and (3) we have

(4) the axiom of regularity holds in K.

Statement (4) allows us to use the equivalence of (*) and V = L. Since K and L both satisfy (i) and (ii), we have V = K and V = L; hence, K = L and our lemma is proved.

We now return to the proof of Proposition II. First we will show that $(**) \Rightarrow P$. Suppose we have a set x such that

(1) ~ $(x \in L)$.

But L, the class of constructible sets, satisfies (i) and (ii) of (*). Therefore, by (1) and (**),

(2) x is not grounded.

By (2) and Lemma III.3.2 of [4], there is some $y \in x$ such that

(3) y is not grounded.

Since every constructible set is grounded, (3) gives us

(4) $\sim (y \in L)$.

By (4) we know that $\sim (x \subset L)$. Therefore, we have shown that, under the assumption of (**), $(x \in \lor \land \sim (x \in L) \rightarrow \sim (x \subset L))$. Hence, (**) $\Rightarrow P$.

Now suppose that P is true and we have a class M that satisfies (i) and (ii). Let us also suppose that we have some set x such that

(5) $x \in \vee \neg M$.

Since, by Lemma II.1, ${\sf L}$ is the smallest class satisfying (i) and (ii), we know that

(6) $L \subset M$.

By (5) and (6), we have

(7) $x \in V - L$.

By (7), we have

(8) $\sim (x \in L)$.

By (5), (8), and **P**, we have

(9)
$$\sim (x \subset L)$$

hence, by (9), there is some x_1 such that

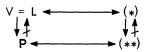
(10) $x_1 \epsilon x$ and $\sim (x_1 \epsilon L)$.

By the same reasoning, we obtain an x_2 such that

(11) $x_2 \epsilon x_1$ and $\sim (x_2 \epsilon L)$.

Proceeding in the same way as (10) and (11), we obtain an infinite descending ϵ -chain beginning with x. Therefore x is not grounded. Thus we have shown that $P \Rightarrow (**)$ and Proposition II has been proved.

By looking at Proposition II and Theorems III.1 and III.3 of [4], we obtain the following diagram:



where the bottom entries represent the analogues of the upper entries without the axiom of regularity.

We now continue the proof of Theorem I. Since, by [4], GCH follows from AC + P, we can assume, as in [5], that ω_{κ} is the least measurable cardinal and that $\omega_{\kappa} = \kappa$. We pattern the rest of our proof after Scott's and use the same notation wherever possible. Let $\mu \in \{0,1\}^{p(\kappa)}$ be a 2-valued, non-trivial, countably additive measure defined on all subsets of κ . (If A is a class and b is a set, A^b denotes the class of all functions with domain b and range contained in A.) We now define relations Q_{μ} and E_{μ} over \vee^{κ} exactly as Scott does.

Definition I.1.

- (i) $Q_{\mu} = \{ \langle f, g \rangle : f, g \in \vee^{\kappa} \land \mu (\{ \xi < \kappa : f(\xi) = g(\xi) \}) = 1 \};$ (ii) $E_{\mu} = \{ \langle f, g \rangle : f, g \in \vee^{\kappa} \land \mu (\{ \xi < \kappa : f(\xi) \in g(\xi) \}) = 1 \}.$

The following lemma is proved exactly as in [5]:

Lemma I.1. Q_{μ} is a congruence relation for E_{μ} over \vee^{κ} .

The next lemma is different from Scott's in that we cannot prove his point (iii) since we do not have the axiom of regularity.

Lemma I.2.

- (i) If $\{h \in \vee^{\kappa}: hE_{\mu}f\} = \{h \in \vee^{\kappa}: hE_{\mu}g\}, then fQ_{\mu}g;$
- (ii) $\{h \in \vee^{\kappa}: hE_{\mu}f\} = \{h \in \vee^{\kappa}: \exists k [k \in \left(\bigcup_{\xi \leq k} f(\xi) \cup \{\phi\}\right)^{\kappa} \land kE_{\mu}f \land hQ_{\mu}k]\}.$

For the next lemma we need some notation for the functions which map onto grounded sets "almost everywhere." Therefore we let

 $G = \{ f \in \bigvee^{\kappa} : \mu\{\xi : f(\xi) \text{ is grounded} \} = 1 \}.$

We then have:

Lemma I.3. There is a function σ with domain G such that for f, $g \in G$.

- (i) $\sigma(f) = \{\sigma(h): h \in \bigvee^{\kappa} \land hE_{\mu}f\};$
- (ii) $\sigma(f) = \sigma(g)$ if and only if $fQ_{\mu}g$;
- (iii) $\sigma(f) \in \sigma(g)$ if and only if $fE_{\mu}g$.

Proof: We follow the technique of Mostowski, [3], Theorem 3. We define the sets m_{γ} by induction:

$$m_{0} = \{g: g \in G \land \mu\{\xi:g(\xi) = \phi\} = 1\};$$

$$m_{\gamma} = \left\{f: f \in G - \bigcup_{\alpha < \gamma} m_{\alpha} \text{ such that } \forall h \left(hE_{\mu}f \to h \in \bigcup_{\alpha < \gamma} m_{\alpha}\right)\right\}.$$

We then define the function σ by:

$$f \in m_0 \to \sigma(f) = \phi;$$

$$f \in m_\gamma, \ \gamma \ge 0 \to \sigma(f) = \{ \sigma(h) : hE_\mu f \}.$$

It is clear that σ is the desired function.

Because of our definition of σ , the following definition is slightly different from Scott's:

Definition I.2. $M = \{\sigma(f) : f \in G\}.$

The next lemma is proved in precisely the same way as Scott's:

Lemma I.4. $M \subset \mathcal{P}(M) \subset \bigcup_{x \in M} \mathcal{P}(x)$.

In the following, $\Phi(v_1, \ldots, v_k)$ will stand for any formula of set theory with free variables v_1, \ldots, v_k and with all quantifiers restricted to \vee (i.e., no bound class variables). Further, $\Phi^{(M)}(v_1, \ldots, v_k)$ is the result of relativizing all the quantifiers of $\Phi(v_1, \ldots, v_k)$ to the class M.

Lemma I.5. If $f_1, \ldots, f_k \in G$, then $\Phi^{(M)}(\sigma(f_1), \ldots, \sigma(f_k))$ if and only if $\mu(\{\xi \leq \kappa : \Phi(f_1(\xi), \ldots, f_k(\xi))\}) = 1$.

As in [5], we can show that M satisfies (i) and (ii) of (*) and thus we have:

Corollary I.5.1. $x \in \vee - M \rightarrow x$ is not grounded.

We introduce another definition that is similar to Scott's:

Definition I.3. If x is grounded, then $x^* = \sigma(\{\langle \xi, x \rangle : \xi \le \kappa\})$.

We then obtain the following corollary as a special case of Lemma I.5.

Corollary I.5.2. If x_1, \ldots, x_k are grounded, then $\Phi^{(M)}(x_1^*, \ldots, x_k^*)$ if and only if $\Phi(x_1, \ldots, x_k)$.

If we now combine I.5.1 and I.5.2 and use the formula $\Phi(\kappa)$ that expresses in formal terms that κ is the least 2-valued measurable cardinal and note that since κ is an ordinal number it is grounded, we prove:

Corollary I.5.3. $\kappa = \kappa^*$.

The rest of the proof follows [5] exactly. We sketch the remainder of Scott's proof for the sake of completeness.

Definition I.4. $\delta = \sigma(\{\langle \xi, \xi \rangle : \xi < \kappa\}).$

Lemma I.6. If $\lambda \leq \kappa$, then $\lambda^* \leq \delta \leq \kappa^*$.

From I.5.2 it follows at once that the mapping from grounded sets x to sets x^* is one-one; hence, the set $\{\lambda^*: \lambda < \kappa\}$ must have cardinality κ . By Lemma I.6 it follows that δ must have cardinality at least that of κ . But I.5.3 and I.6 imply that $\delta < \kappa$, which contradicts the choice of κ as an initial ordinal, and thus no measurable cardinals exist.

BIBLIOGRAPHY

- [1] Gödel, K., *The Consistency of the Continuum Hypothesis*, Princeton University Press, Princeton (1940).
- [2] Mendelson, E., "A note on the axioms of restriction and fundierung," Information Sciences, vol. 1 (1968/69), pp. 217-220.
- [3] Mostowski, A., "An Undecidable Arithmetical Statement," Fundamenta Mathematicae, vol. 36 (1949), pp. 143-164.
- [4] Poss, R. L., "Weak Forms of the Axiom of Constructibility," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 257-299.
- [5] Scott, D., "Measurable cardinals and constructible sets," Bulletin de l'Académie Polonaise des Sciences, vol. IX (1961), pp. 521-524.

St. Norbert College West De Pere, Wisconsin