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MEASURABLE CARDINALS AND CONSTRUCTIBILITY
WITHOUT REGULARITY

RICHARD L. POSS

It has been shown (see Dana Scott [5]) that the axiom of constructibility
(V= L) is incompatible with the existence of a measurable cardinal number.
In [4] we gave a decomposition of V = L, over set theory without the axiom
of regularity, into the axiom of regularity and the proposition:

P: Vx(xe\ί ΛXCL-^xeL).

In this paper we will show that even without the axiom of regularity P is
sufficient to insure that there are no measurable cardinals. We shall work
within the system of [1] but use the notation of [5]. Our result is thus
formulated as follows:

Theorem I. In GB set theory with AC but without the axiom of regularity, if
P holds, then there does not exist a measurable cardinal.

Our proof will follow that of Scott [5], who assumed V = L in the
following form:

(*) If M is a class such that

(i) MdP{M)(z\Jp{x)

U jceM

x, x} x\yf E\xeMffor all x} yeM;
then V = M.

(In the above, P denotes the power set operation so P(M) is the class of all

subsets of M; yjx = VJy; x denotes the operation of forming the converse of
yex

the relational part of x;x\y denotes the operation of forming the relative
product of the relational parts of x and y; E\y = {(u, v): uevex}.)

We shall formulate P in a similar way. We first note that a set x is
called grounded if there does not exist an infinite descending €-chain
beginning with x.
Proposition II. In the field of GB set theory with AC but without the axiom
of regularity the following statements are equivalent:
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(P) V#(*eVΛ#CL-»#eL)

(**) IfM is a class such that (i) and (ii) of (*) hold, then xe V - M—•# is not
grounded.

Proof: We will need the following lemma:

Lemma II. 1. In the field of set theory without the axiom of regularity, if a
class K satisfies (i) and (ii) of (*) and Ka L, then K = L.

Proof. Suppose we have a class ϋf such that K satisfies (i), (ii) and

(1) K L .

Since K satisfies (i) and (ii), it is a model of GB (without the axiom of
regularity). By (1) and Lemma ΠI.3.15 of [4],

(2) every element of K is grounded.

If we let Ψ(α) = ( J />(Ψ(|3)), Ψ(0) = <t>, then it is clear by (1) and the definition
β<a

of constructibility that

(3) xeK-*3a(xe*(a)) .

By the results of Mendelson [2], (2) and (3) we have

(4) the axiom of regularity holds in K.

Statement (4) allows us to use the equivalence of (*) and V = L. Since K and
L both satisfy (i) and (ii), we have V = K and V = L; hence, K- L and our
lemma is proved.

We now return to the proof of Proposition II. First we will show that
(**) => p. Suppose we have a set x such that

(1) ~(*€L).

But L,the class of constructive sets, satisfies (i) and (ii) of (*). There-
fore, by (1) and (**),

(2) x is not grounded.

By (2) and Lemma IΠ.3.2 of [4], there is some y ex such that

(3) y is not grounded.

Since every constructible set is grounded, (3) gives us

(4) ~(yel).

By (4) we know that ~(#CL). Therefore, we have shown that, under the
assumption of (**), (xeV *~(xe L) ~* ~(#CL)). Hence, (**) => P.

Now suppose that P is true and we have a class M that satisfies (i) and
(ii). Let us also suppose that we have some set x such that

(5) xeV -M.

Since, by Lemma II. 1, L is the smallest class satisfying (i) and (ii), we
know that
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(6) L C M .

By (5) and (6), we have

(7) xeW - L.

By (7), we have

(8) ~(*eL).

By (5), (8), and P, we have

(9) ~(*CL),

hence, by (9), there is some x1 such that

(10) Xίβx a n d ̂ {xγe L ) .

By the same reasoning, we obtain an x2 such that

(11) x2e xλ and ~(#2e L).

Proceeding in the same way as (10) and (11), we obtain an infinite

descending e-chain beginning with x. Therefore x is not grounded. Thus

we have shown that p =>(**) and Proposition II has been proved.

By looking at Proposition II and Theorems IΠ.l and III.3 of [4], we

obtain the following diagram:

V = L ̂  • (*)

U U
p* • (**)

where the bottom entries represent the analogues of the upper entries

without the axiom of regularity.

We now continue the proof of Theorem I. Since, by [4], GCH follows

from AC + P, we can assume, as in [5], that ωκ is the least measurable

cardinal and that ωκ = K. We pattern the rest of our proof after Scott's and

use the same notation wherever possible. Let μ e {0, l}^κ) be a 2-valued,

non-trivial, countably additive measure defined on all subsets of K. (If A is

a class and δ is a set, Ab denotes the class of all functions with domain b

and range contained in A.) We now define relations Qμ and Eμ over Vκ

exactly as Scott does.

Definition LI.

(i) Qμ = {</,£>:/,*eVκΛμ({ξ<κ:/(ξ) = g(U}) = 1};
(ii) ^ = {(/,^):/,^6VκAμ({ξ</c:/(ξ)6^ξ)}) = 1}.

The following lemma is proved exactly as in [5]:

Lemma I.I. Qμ is a congruence relation for Eμ over Vκ.

The next lemma is different from Scott's in that we cannot prove his point

(iii) since we do not have the axiom of regularity.

Lemma 1.2.
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(i) If {he Vκ: hEμf) = {he Vκ: /zEμ^}, ί/zen fQμg

(ii) {^eV κ :^/} ={/^eVκ: 3A?[^efU/(Q u { 0 } V A ^ / A Λ ^ ] } .

\£<* /
For the next lemma we need some notation for the functions which map

onto grounded sets "almost everywhere." Therefore we let

G = {/eVκ:μ{ξ:/(ξ) is grounded} = 1}.

We then have:

Lemma 1.3. There is a function σ with domain G such that for f, ge G.

(i) σ(f)={σ(h):heVκ*hEμf};
(ii) σ(f) = σ(g) if and only if fQμg \

(iii) σ( /) e σ(g) if and only iffEμg.

Proof: We follow the technique of Mostowski, [3], Theorem 3. We define
the sets my by induction:

™o = {g:geGAβ{ξ:g(O = φ}= 1};

mγ = \f:feG - U nta such that Vh(hEμf -^ he\}πio\\.

{ a<γ \ a<γ })
We then define the function σ by:

femo-σ(f) = φ;
ferny, y>0->σ(/) = | # Λ V ) .

It is clear that σ is the desired function.
Because of our definition of σ, the following definition is slightly

different from Scott's:

Definition L2. M = {σ(/) :/eG}.

The next lemma is proved in precisely the same way as Scott's:

Lemma 1.4. Me/>(M) c (J/*(*)•

In the following, Φ ( ^ , . . . , vk) will stand for any formula of set theory
with free variables vu . . . , v^ and with all quantifiers restricted to V (i.e.,
no bound class variables). Further, Φ^\vl9... 9 Vj) is the result of rela-
tivizing all the quantifiers of Φ(v1}..., vk) to the class M.

L e m m a 1.5. If fu ...,fkeG, then Φ ( M ) ( σ ( / i ) , . . . , σ(fk)) if and only if

μ(t l<Λ:Φ(/ i ( l ) , . . . ,Λ( l ) ) } ) = l .

As in [5], we can show that M satisfies (i) and (ii) of (*) and thus we
have:

Corollary 1.5.1. xeW - M —> x is not grounded.

We introduce another definition that is similar to Scott's:

Definition L3, If x is grounded, t h e n * * = σ({(ξ,Λ:): | < K}).

We then obtain the following corollary as a special case of Lemma 1.5.
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Corollary 1.5.2. If χlf... , xk are grounded, then Φ ( Λ I )(#f,... ,x\) if and only

if Φ(#i,... ,Xk).

If we now combine 1.5.1 and 1.5.2 and use the formula Φ(/c) that
expresses in formal terms that K is the least 2-valued measurable cardinal
and note that since K is an ordinal number it is grounded, we prove:

Corollary 1.5.3. K = K*.

The rest of the proof follows [5] exactly. We sketch the remainder of
Scott's proof for the sake of completeness.

Definition 1.4. δ = σ({(ξ, ξ): ξ <κ}).

Lemma 1.6. If λ< K, then λ*<δ< K*.

From 1.5.2 it follows at once that the mapping from grounded sets x to
sets x* is one-one; hence, the set {λ*:λ</c} must have cardinality K. By
Lemma 1.6 it follows that δ must have cardinality at least that of K. But
1.5.3 and 1.6 imply that δ</c, which contradicts the choice of K as an initial
ordinal, and thus no measurable cardinals exist.
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