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INTRODUCTION*

§1. Constructibility. The notion of constructibility in set theory was first
mentioned by Kurt Gδdel in [7], in the year 1938. Roughly speaking, he said
that a set is "constructible'' if it can be obtained from the empty set by the
elementary set operations applied transfinitely many times. We then say
that if every set in our theory is constructible the axiom of constructibility
holds. Gδdel used the axiom of constructibility to prove the consistency of
the axiom of choice and of the generalized continuum hypothesis (under the
assumption that set theory itself is consistent). To do this, he exhibited a
model in which the axiom of constructibility holds and then showed that the
axiom of constructibility implies the generalized continuum hypothesis and,
hence, the axiom of choice.

*This work is based on a dissertation submitted in partial fulfillment of the
requirements for the Ph.D. degree in Mathematics at the University of Notre Dame,
August, 1970. The author wishes to express his gratitude to Prof. Bolestaw Sobo-
ciήski for directing this research.
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In 1963, P. J. Cohen [2] showed that the axiom of constructibility was
not provable in set theory and later [3] he gave a proof that it was not prov-
able in set theory even if we assume the truth of the generalized continuum
hypothesis. More recently, Gaifman [6], Rowbottom [14], Scott [17],
Silver [21], and Solovay [22] have shown that the axiom of constructibility is
incompatible with the existence of certain large cardinal numbers.

§2. General results. The purpose of this thesis is to investigate some of
the ways in which the axiom of constructibility can be weakened. One
recent method was that used by B. Scarpellini in [16]. He worked with the
assumption that there is some set mQ from which every set is constructive.
In other words, starting with this mowe could, by use of the elementary set
operations applied transfinitely many times, eventually "construct' every
set in our universe.

Azriel Levy, in [9], developed another weakening of the axiom of con-
structibility. He added another "elementary set operation" and considered
the sets that now became constructible. By this method he proved some of
the theorems about constructible sets which we will discuss in Chapters II
and IΠ.

Another approach was that of J. R. Shoenfield, in [19]. He employed
the assumption that every set of integers is constructible in an attempt to
further determine whether the axiom of constructibility is independent of
set theory. We will study this assumption and determine some of its con-
sequences by using the techniques of Cohen, which were unavailable at the
time that Shoenfield published his paper.

The first chapter of this thesis consists entirely of considering this
assumption that every set of integers is constructible. We will see that this
is a consistent assumption (if set theory is consistent) and that it is not
provable in set theory. We will then show that this assumption is actually
weaker than the axiom of constructibility and that, in fact, assuming that all
sets of integers are constructible is not sufficient to prove the axiom of
choice.

In the second chapter we will generalize the results of the first chapter.
There we will assume that all the subsets of some ordinal number are con-
structible. We will see that the consequences of this assumption are very
closely related to the results of Chapter I. We will then study the relation-
ships between these assumptions for various ordinal numbers. It happens
that this method is helpful in distinguishing between regular and singular
cardinal numbers. Finally, in this chapter, we give a result that in some
ways extends the main theorem of Easton's thesis [5], The general theme
of this chapter is that assuming that all the subsets of a certain ordinal
number are constructible does not necessarily affect the properties of sub-
sets of higher ordinal numbers.

The third chapter differs considerably from the first two. There we
will study the axiom of constructibility in a theory which does not have the
axiom of regularity. We will then show that the axiom of constructibility
can be properly decomposed into the axiom of regularity plus a proposition
which states that if every element of a set is constructible then that set is
constructible.
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§3. Notations and Conventions. In most of our discussions we will be work-
ing in Zermelo-Fraenkel set theory. The axiomatization that we shall use
will be that of Cohen [3], pp. 50-53; namely, the axioms of extensionality,
null set, unordered pairs, union, infinity, replacement, power set, and
regularity. At times it may prove advisable to use a different axiomatiza-
tion or a different set theory, but in these cases we will state specifically
in what system we are working. We shall use the following abbreviations:
AC for axiom of choice, CH for continuum hypothesis, and GCH for general-
ized continuum hypothesis. If we wish to add a proposition S as an axiom to
ZF, we will denote the new theory by ZF + S.

We assume familiarity with Gδdel [8], and, following his notation and
definitions, use V(#), OΠ(ΛΓ), l(x), and Oό(x) to mean, respectively, that "x
is a set," "x is an ordinal number," " # is constructive," and "the order
of x." An expression of the form (<x e L" will be interpreted to mean L(Λ-);

hence, we can use the standard notation V = L as an abbreviation for the
axiom of constructibility.

We shall use standard notation wherever possible. Small Greek letters,
a,β,... will denote ordinal numbers. Small Latin letters will represent
sets, except that letters p and q will usually be reserved for forcing condi-
tions. Capital letters will usually represent formulas. P(x) will always
mean "the power set of x." Hence, the formula Λ ) c L will mean: "every
subset of x is constructive." We shall use φ as the empty set. We shall
use xΠy for "x intersect y"; x\jy for "the union of x and y"; \Jx for the
set of all z such that there is a y such that zey and yex; 21 -»53 for "2ί im-
plies 53"; 2ί<-̂ 53 for "2i is equivalent to 53"; 2ί Λ 53 for "2ί and 33"; 2ί v 53
for "2ί or 53"; ~2l for "not 21"; V x 2ί for "for all x 21"; Ix 2ί for "there is
an x such that 21." x*y for the Cartesian product of x and y. If xis a set,
then x will be the cardinality of x. We shall say that a set x is transitive if,
for every yex, zey implies zex. Other special terms will be defined as we
need them.

§4. Forcing. We assume some familiarity with the notion of forcing and the
results of Cohen [3]. Here, however, we shall use forcing as modified by
Levy and Solovay in [10] and [11]. We will now present a brief description
of forcing as presented in [11]. Rather than present it in the full generality,
we will merely give the version that we will need for the results of
Chapters I and II.

Even though we have nothing in ZF that we can properly call classes,
we shall use the term in an intuitive manner to mean a subcollection of the
universe of sets of the form {ΛΓIH(ΛΓ,̂ )}. We shall use the term "subclass"
in a similar manner. Here 2ί is a formula of ZF with two free variables
and the set t serves as parameter. By a "Cohen extension" we mean the
following. We are given a set C, whose members we call conditions; these
conditions will be sets and so will be partially ordered by c and we insist
that the minimal element, φ, be a member of C. We also have a class T,
the members of which we call "terms;" finally there is a one-one mapping
x h» x of the class of all sets into T. For every formula %(xi,... ,xn) of
our language, with no free variables other than xλ,..., xn, we suppose given
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a subclass ι̂  of Cx Tw. We write p Ih 21(tx,..., tn) for </>, ̂ , . . . , Q e u-% ,
and we read this as "p forces 2l(/x,..., tn)." (By "forcing," we here mean
what is frequently referred to as "weak forcing," i.e., forcing of the double
negation.)

Although we will be using forcing relations rather than countable
models, we will use the terminology of models to make the process more
intuitive. We can do this since, if our understanding is that we are extend-
ing from a model 2W to a model 9Ϊ, we are able to define in our language a
unary predicate S(#), which reads "x is standard," which is satisfied in 9Ϊ
precisely by the members of 2W. In 9Ϊ, each set is denoted by some teT. In
particular, if xeWl c $, x is denoted by the term x. If 2ί is a formula of the
language of set theory, let $ls be the formula obtained by relativizing the
quantifiers of S; i.e.,

[V*»(*)]s ^ , [V*(s(*)-« s (*)) ] ;
[lχS8(x)f =df [ 3 * (SW A 9SM)];

this relativization commutes with the logical connectives, and is the identity
on atomic formulas. Then %(xl9... 9xn) holds in the ground model 9W if and
only if 2ί s (x!,. . . , xn) is true in the extension 9Ϊ.

In our use of forcing, we will be using sets of conditions (rather than
classes) and we will obtain our extension model by adding a set α (or sets)
of ordinals to our ground model 9W. For these reasons, by the results of
[9] and [10], we need only specify the set C of conditions and the action of
our conditions on atomic formulas of the form aea to insure that the
classes lĥ  will satisfy the following properties (taken directly from [11]):

(a) />U-~H(fi,...,2n) if and only if for no q such that p c q does
q \hfL(tlf...9tn).

(b) p Ih <^i(t1,..., tm) v SB^i, . . . , tm) if and only if for every q such that
p c q there is a qr such that q <zqf and either qr Ih %(tl9..., O or
q' lh 5δ( ί i , . . . , tm); p lh ̂ x%(t1,..., tn,x) if and only if for every q such that
p c q there is a qf such that q c qf and a ί e Γ such that qf lh 5 ί ( ί i , . . . , tn, t).

(c) p lh$i(* ! , . . . ,4) Λ %(tl9...,tn) if and only if p I h 2 ί ( ^ , . . . , tn) and
/>»-©(* ! , . . . , tn); p ih %(tλ ,...,tn,x) if and only if for every t e T,
p\y-n(tlf...,tn,t).

(d) p Ih S(t) if and only if for every q such that p c q there is a qf such
that q <z qf and a set ΛΓ such that q* \\-t = x. p lh £eb if and only if for every
q such that p c q there is a ^' such that q c qf and a set #€& such that
q'\ht =x.

(e) Let %(xl9.. .,#„) and $ ( # i , . . . ,Xk) be formulas of our language
Let t x,..., 4? Si >. > Sk be terms from T such that that sentences
Sί(*i, . . . , tn) and ΰ ( δ i , . . . , Sft) coincide. Then p lh 2 l ( ί x , . . . , tn) if and only if
p Ih $ ( $ ! , . . . , s*>).

(f) If «(*! , . . . , # „ ) is an axiom of logic or ZF then /> lh %(tλ,..., * n ). If
p l h H ( * i , . . . , U and /> lh %(tlf... ,ί») - 8(* i , . . . , * , ) then /> IhSBfo,... ,fe).
Hence if %(xl9... ,#«) is a theorem of ZF then/? Ih 21 (*i , . . . ,tn).

Note that if n(tx,..., tn) and SBί^,.. . , Q contradict one another in ZF
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then we cannot have p lh %(tι , . . . , / „ ) together with p to- ϋ8(^ , . . . , 4).
Suppose we did have both. Then from p lh 2 ί ( t t , . . . , 4) and p to- %(tλ,..., 4)
-* ~ SB(*i,..., 4) (which we have by (f)) we get p II— $ ( / i , . . . , 4), and this
contradicts /> Ihφft j , . . . ,/«), by (a).

(g) 0 lhV#(# is an ordinal — S(x)).

The following are provable from (a) - (f):

(h) If p to-Kit i , . . . , 4) and P a q, then also q i h H ^ , . . . , 4).

(i) /> lh a ( * i , . . . , tn) -»©(*!, . . . , 4) if and only if for every q such that
pcq and such that q lh 2l(^, . . . ,tn) there is a tf' such that tf c qf and
<?' l h « ( ί i , . . . , 4 ) .

(j) />lhV#(S(#)->»(*!,..., 4,*)) if and only if for every #,/> lh 2ί(^,. ..,
tn,x);p\hVχ(xeb-*U(t1,..., 4,^)) if and only if for every *€&,/> lh H ( ^ , . . . ,
4, x). Use a similar definition for existential quantifiers.

We say that a formula H(#i , . . . , # » ) of the language of ZF with no free
variables other than xγ,..., xn is absolute with respect to the extension if
for all xi,..., xn

φlh-aίxi, — ,χw) if %{xl9...,xn)

and

0 II— 2l(x x , . . . , xn) if - a U i , . . . , *„).

It can be verified that the following formulas are absolute:

(k) xey, x = y, x ay, xΓ\y = φ, {x} = y,x - yUz, {Jx = y, / i s a function
from x into y, / i s a function from # onto y, / i s a one-one function from #
onto 3;, / is a function from x into P(y), f is a one-one function from x into
P(y)> z = U * ^ ^ ' x i s a n o r^inal.

CHAPTER I

CONSTRUCTIBLE SETS OF INTEGERS

It is clear from [8] that every integer is constructive. It is equally
easy to prove that any finite set of integers is constructive. The question
then arises: "What happens if we assume that every set of integers is
constructive ?" (We abbreviate the proposition "every set of integers is
constructive" by P{ω) c L.). We can immediately conclude that the as-
sumption that P(ω) c L does not contradict anything in ZF, since we have:

Theorem I.I If ZF is consistent then ZF + P{ω) c L is consistent.

Proof: This is clear, since we know that if ZF is consistent then so is
ZF + V = L. Since <P(ω) c L is a theorem in ZF + V = L, our theorem is
proved.
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We next want to know whether the assumption P{ω) c L adds anything
new to ZF set theory. We answer this in the affirmative since:

Theorem 1.2 P(ω) c L is not provable in ZF + GCH.

This follows immediately from Cohen's proof of the independence of
V = L. In his proof, he found a model of ZF in which GCH holds, but in
which there is a non-constructible subset of ω.

On the positive side, Cohen has shown, in [3], that

Theorem 1.3 ZF + P{ω) c L -»CH.

Proof: We found the proof in [3] difficult to follow, so we will present a
proof of this in detail. The proof of Theorem 1.3 will follow closely the
method that Doss [4] used to show that V = L implies GCH. We will use his
notation and numbering for this proof. His theorems will be stated without
proof and in smaller type, if the proof of the theorem goes through un-
changed under the weakened assumption.

11.8 Definition, (yx) e As . = : y is constructible. yex. (z)[θd'z < Od'y .^).

~fee#)]. 9teϊ (As).

Note that we had to add the condition that y be constructible to the right
hand side of the equivalence.

11.81 Definition. C'a = Od'[As'(F'α)]. CδnOn.

11.82 Definition. C/α = Od'[As'(F'α-F'C'α)]. CiSnOn.

12.1 Definition. If me On and m is closed with respect to C, Cly Kl9 K2 and with
respect to Jo, . . . , J β as triadic relations, define recursively a function H on On as
follows'.

rjc©(Jo).=>.HfTj = H"(mΠ η)

η = Ji'(βγ) =>. H'77 = δ f (H'j8, H'γ) for i = 1 , . . . , 8.

12.11 If ηem, then every element x of H fη is of the form H 'a with aemη.

12.12 Ifm satisfies the conditions of definition 12.1, then aem . D.Od'F'αera.

12.2 1) F ' α e F V Ξ H'α€H'τ7 for ηem, aemΠ η.
2) F'α= F'τ7 Ξ H'α = H'η for ηem, aemnη.

12.3 If G is an isomorphism from m to an ordinal ζ with respect to E, then H'η =
Ψ'G'ηfor ηem.

The following two theorems are slightly different than their corre-

sponding numbers in [4].

12.4 F ^ Q ύ Ka

Proof: We note that:

(1) Od is a function from F "ωa into ωα,

and

(2) Od is one-one
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since, if we have Oό'x = Oό'y, we have that x and y are both first con-
structed by the same ordinal number, say β. Hence we have x = F'/3 = y.
By (l) and (2), our theorem is proved.

12.5 2*°^ F"ωlβ

Proof: Since fi(ω) = 2 °, it is sufficient to show that

(1) P{ω) c F"ωi.

(2) Suppose that ueP(ω).

Since P(ω) c L, there is some ordinal number δ such that

(3) u = F'δ.
By (2), we know that every element of u is an integer. But every integer is
constructible by a finite ordinal. Hence, we have

(4) wcF"ω.

Now form the closure of the set ω u {δ} with respect to C, Cl9 Ki, K2and
with respect to the J,*, έ = 0, . . . , 8, as triadic relations, according to 8.73 of
Godel [8], and let the closure be denoted by m. (Note, the closure** of a
set x with respect to a triadic relation R is the smallest class including x
which is closed with respect to R, i.e., Rnx ex*.) Now, by 8.73, m is a set
and

(5) m = « 0

This is true even without AC since ω uίδ} is a countable set. Since m is a
set of ordinal numbers, it is well-ordered by E (concerning definition of E,
see 7.161 of [8]) and hence it is isomorphic to some ordinal ζ. Let the iso-
morphism be denoted by G, so that we have:

(6) G"m =ζ.

Hence, we have

(7) ζ = m = « 0 .

By 12.3, since δe m, we have

(8) H'δ = F'G'δ.

Hence, by (8) and (7), respectively,

(9) Od'(H'δ);! G'δ < ω 1 .

We know that ω c m, and by 12.1,

(10) F'β= H'j3

for βeω. We may suppose that

( l l )δ^ω,

otherwise there is nothing to prove. Therefore, by 12.2, for all βeω,

(12) F'βeF'δ . = .H'j8ehΓδ .
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Hence, F'δ and H'δ have exactly the same elements in common with F"ω;
i.e.,

(13) F'δ ΠF"ω = H ' δ Π F " ω .

But, by (3) and (4), we have

(14) F ' δ c F V

Therefore, we have

(15) F'δ = H'δΠF"α>.

By 9.27 of [8], we have,

(16) co is in the range of J o .

Hence, by 9.35 of [8],

(17) F"co = F'ω

and hence, by (15)

(18) F'δ = H'δ ΠF'co.

(We did not need AC for 9.27 and 9.35 of [8], since we are dealing with co.)
Therefore, by 9.611 of [8], (18), and (9), we have

(19) Od f M<ω 1 .

But this is the same as saying

(20) ueF"ω1.

Hence we have P(ω) c F"ωl9 which is what we wanted to prove.

The proof of Theorem 1.3 now follows quite simply. By 12.4 and 12.5,
we have 2̂ ° ύ «1# But Od well-orders />(ω), hence 2̂ ° = Nαfor some a ^ 1.
Since «0 < 2*°, we have 2*° = «χ.

Note: This proof was carried out in Gδdel-Bernays set theory in order to
take advantage of Doss's results. It could also have been done in ZF if it
had been so desired, since every theorem in Godel-Bernays set theory that
deals only with sets is also a theorem of ZF. (See Cohen [3], pp. 77-78.)

We list one more result which was proved first by Silver [21] and then
elaborated upon by Solovay [22].

Theorem 1.4 The existence of a Ramsey cardinal is incompatible with
P{ω) c L.

Since every measurable cardinal is also a Ramsey cardinal, we have:

Corollary. The existence of a measurable cardinal is incompatible with
P{ω)<z L.

This had earlier been proved directly by Gaifman [6] and Rowbottom
[14].

In each of these past theorems, we note that they would remain true if
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we had used "V = L" instead of CiP(ω) c L," so it seems that, in some
respects, P(ω) c L is "nearly as strong" as V = L. We now give some new
results that show that this is not so.

Theorem 1.5 <P(ω) c L does not imply V = L.

Proof: J. H. Silver in [21], mentions a model of ZF + AC given by Karel
Prikry in which every countable set of ordinal numbers is constructible but
in which there is a non-constructible subset of ωx. Since every set of
integers is countable, this model suffices for the proof of the theorem.
Here, however, since the model of Prikry is not yet published and, there-
fore, is unknown to us, we will prove the theorem directly.

It suffices to find a model in which <P{ω) c L but V φ L. We will start
with the minimal model 9JΪ, (in which V = L holds). (See Cohen [3].) We
must then define C, the set of conditions.

Definition 1.5.1 Let C be the set of all at most countable sets of statements
of the form "αeα" or "~(αeα)" where α is an ordinal < ω x , α is a formal
symbol of the language and not both "αeα" and ζ<~ (αeα)" occur in the
same set.

We now must determine the action of the forcing conditions on our
atomic formulas.

Definition 1.5.2 For peC, we define/) Ih- αeα if and only if "αeα' 1 is in p.

Since 2tt is countable, there are at most countably many formulas in 9W.
Hence, we can find an infinite sequence (called a complete sequence) of con-
ditions, {pn\n<ω, such that for every formula 5ί, there is some k such that
either pk Ih- 5ί or pk Ih- ~ 5ί.

Definition 1.5.3 Let {/>Jw<ωbe a complete sequence of forcing conditions;
we define: α = tαl 3& such that pk ihαeα}.

Our extension Sfi is now a model of ZF that contains 9W and which has α
as an element. We also note that the true statements in 9? are precisely
those which are forced by some />&. We now state without proof a very im-
portant lemma which was first proved by Solovay and which occurs as
Lemma 7 of [11]. Here, this lemma is changed slightly from its original
presentation in [11]. There, the authors assume AC at all times, and
hence, all infinite cardinals are initial ordinals.

Lemma 1.5.4 Let λ be an initial ordinal. Suppose that the set of conditions
has the property that every well-ordered increasing sequence of conditions
of length at most λ has an upper bound in C. Then Vx(xΠλ is standard)
holds in the Cohen extension.

Lemma 1.5.5 In 31, P{ω)c L.

Proof: Suppose we have an infinite sequence of conditions {/>w}w<ωsuch that

(1) ρoap1 ap2

Now let
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(2) P=\Jpn.

Since each pn is at most countable, we know from (2) that p is countable.
Likewise p does not contain both "αeα" and (t~{aea)" for any a since
otherwise, by (1), these statements would both have to be in some pn9 in
which case pn would not be a condition. Therefore

(3) p is a condition.

It is also clear by (2) that

(4) p is an upper bound for the sequence {/>w}w<ω.

Now, by (3) and (4), C satisfies the conditions of Lemma 1.5.4 where λ = ω.
Therefore, in 91, we have

(5) Vx(xΠωis standard).

Therefore, in 91,

(6) every subset of ω is standard.

Hence, by definition of i'standard/'

(7) every subset of ω in 91 is also in 9W.

But V = L holds in2R, hence

(8) every subset of ω is constructible in 9tt.

But by point (k) of our Introduction, the ordinal numbers of 9K and 91 are the
same. But since the constructible sets depend only on the ordinal numbers,
we have

(9) the constructible sets inSW are constructible in 91.

Hence, we have,

(10) every subset of ω is constructible in 91.

This is exactly what we wanted to prove.

We now wish to show that V = L does not hold in our extension model 91.

Lemma 1.5.6 α is not constructible in 91.

Proof: As in point (9) of the previous lemma, 9JI and 91 have the same con-
structible sets. Therefore, if α is not standard, it is not in 9JI, hence not
constructible in 91. Therefore we need only show:

(1) α is not standard.

To show (1) we need only show that if te9tt, then

(2) / > € C - > / > l h ~ ( α = t ) .

Hence, by (a) of the Introduction, we must show that for no q such that
p c q do we have q ihα = t. Now suppose we have

(3) peC
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(4) pcq.

Let a be the smallest ordinal number such that neither " α e α " nor

"~(aea)" is in q. Such an a exists since ^is at most countable and there

are Nx ordinals less than ω x .

(5) If aet, let q' = q U {"~(αeα)"h

(6) If ~(aet), letq" =q u{ααeα"},

Therefore, if ae t, by (5), we have

(7) qf i h α e t Λ ~ (aeσ).

If we do not have aet, then, by (6),

(8) q" ih-(αet) Λ αeα.

Since either (7) and (8) must apply in any situation, q does not force α = t.

Therefore, we have verified (2), and the lemma is proved. This completes

the proof of Theorem 1.5. We now strengthen Theorem 1.5 to the following:

Theorem 1.6 P{ω) c L does not imply GCH.

Proof-. As in the proof of Theorem 1.5, we will find a model of ZF in which

P(ω) c L holds but in which GCH fails. Again we start with the minimal

model 2R and we construct an extension model 9Ϊ. As before, we must define

C, our set of conditions:

Definition 1.6.1 Let C be the set of all at most countable statements of the

form " α e α δ " or " ~ ( # e α δ ) " for a < ωlf δ < ωr, where r is an ordinal num-

ber >2, and such that for no a, δ do we have both tζaea§' and " ~ ( α e α δ ) " in

the same set.

We again specify the action of the forcing conditions on our atomic

formulas:

Definition 1.6.2 For peC, we define p Ih αeαδ if "aeaδ" ep.

Definition 1.6.3 Let ί/>wL<ωbe a complete sequence of forcing conditions.

For eachδ< ωΓ, let αδ = {a\ Ik such that pk ihαeαδ}.

Lemma 1.6.4 /*(ω)c L is true in 91.

Proof. We need only show that C satisfies the hypotheses of Lemma 1.5.4

where λ = ω. This is true by exactly the same proof as Lemma 1.5.5.

Lemma 1.6.5 ~ (δ = δ') ->~(αδ= αδ;).

Proof: Suppose

(1) ~(δ = δ').

We need only show that

(2) peC-*ρ ii-~(αδ = αδ,).

By (a) of the Introduction, we must show that for no q such that p c q do we

have q IH αδ = αδ/. Now suppose we have
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(3) peC
(4) paq.

Since q is a condition, it is at most countable, hence there is a condition qf

such that q a qf and there is some aeωt such that "αeα δ " and "~ (αeαδ/)M

are both in q1. Therefore, we have

(5) qf Ih αeαδ

(6) ?r lh~(αeαδ,).

Therefore, by (5), (6) and (c) of the Introduction,

(7) q1 if-αeαδ A ~(αeαδ>).

Therefore, q does not force αδ = αδ/, hence p iκ~(αδ = αδ0.
We can now prove Theorem 1.6. We know that for every δ < ωτ we have

αδ c ωx. Since, by (k) of the Introduction, cardinalities are preserved in the
extension, we have K r^2K l. But this contradicts GCH, and hence we have
Theorem 1.6.

We now strengthen Theorem 1.5 and Theorem 1.6 even further:

Theorem 1.7 P(ω) c L does not imply AC.

Proof: The proof of this theorem will parallel that of Cohen [3]. We will
proceed as in the proof of our two previous theorems.

Definition 1.7.1 Let C be the set of all at most countable sets of statements
of the form "aea§" or "~(aea δ )" for a, δ < ωl9 such that not both "αeα δ "
and "~(αeαg)" occur in the same set for any a or δ.

We now introduce a new constant, W, and so must specify the action of
our forcing conditions on W.

Definition 1.7.2

(i) For peC, p Ih αeαδ<->"αeαδ" ep
(ii) p lhαδeW<-*/>eC and δ < ωλ.

Definition 1.7.3 Let ί^w}w<ωbe a complete sequence of forcing conditions.
Then:

(i) For δ < ωl9 αδ= {a\ Ik such that/^ ihαeαδ}:
(ii) W = {αδl Ik such that ρk ihαδeW}.

Hence, by Definition 1.7.2, we have W = ίαδl δ < α>i}.

Lemma 1.7.4 P{ω) c L is true in 9ί.

Proof: This follows by exactly the same method as Lemma 1.5.5.

Definition 1.7.5 Let (J be the group of all permutations TΓ of ωx such that
~(ττ(α) = a) for only countably many α; let (Jα be the subgroup of (J defined
by: (}«= {ffUίjS) = β for all β ̂ a}.

Ii π is a permutation in (J, we extend to a permutation of W in the following
way:
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Definition 1.7.6

(i) τr(t) = t for ττe(J, tem.
(ii) π(αδ) = α^(δ)for πety, δ < ωλ.

(iii) π(W) = Wfor πe(J.
(iv) For teW, πe(J, if f corresponds to the formula a < - > 8 ( f i , . . . , 4 ) ,

where ί, eft, then τr(a)<-»©(τr(fi)>..., π(tn)).
(v) If p is a forcing condition, nip) is the forcing condition defined by

"aeaδ" ep<^>"aeaπ(δγ' eπ(p) and " ~ ( α e α δ ) " e/><-^'<~(αeα7 r ( δ ))" eτrfe>).

Lemma 1.7.7 £ c q<r^π(p) c τr(#).

Pro*?/: This follows easily from Definition 1.7.6, (v).

Lemma 1.7.8 p Ih a «->π(/>) Ih ττ($ί).

Proof: We use induction on formulas:

(1) Suppose a = ~*B. Then:

/> Ih- 5ϊ^^/> II—SB [by (1)]

<r->p c q~> q does not force 33 [by (a) of the Introduction]
<->/> c q -* π(q) does not force TΓOB) [by induction hypothesis]
<-> π(p) c π(q) ~*τr(q) does not force π(S3) [by Lemma 1.7.7]
<-̂> ττ(p) |μ^π(33) [by (a) of the Introduction]
<-> 7r(/>) Ih π(~S8) [by Definition 1.7.6]

<^τi{p) lhπ(2ί) [by (1)]

(2) Suppose % = ϋδ v Φ. Then:

/> ih «<->/> Ih SB v Φ. [by (2)]

<-̂ /> Ih SB or p iμφ [by (b) of the Introduction]
<-> π(/)) Ihπ(SB) or π(p) ih π(Φ) [by induction hypothesis]
<-^ 7τ(/>) Ih τr(SB) v τr(Φ) [by (b) of the Introduction]
<-> π(p) Ih π($B v $)) [by Definition 1.7.6]
<-»π(/>)lhπ(a) [by (2)]

(3) Suppose a = Ixftix). Then:

/>lhH«^/> lh3Λ:S8(Λ:) [by (3)]
<->p a q-> lq' such that q a qr and 3/ such that qf Ih $8(0

[by (b) of the Introduction]
<->/? c q -> 3^f such that q a q' and 3ί such that π(#') Ih ττ(S3(ί))

[by induction hypothesis]
«-»/> a q~* lqr such that τr(#) c π(^0 and 3ί such that π(qf) Ih τr(S8(0)

[by Lemma 1.7.7]
<r->£ c ? - » 3π(tf') such that π(g) c ir(qf) and 3ί such that ττ(q') Ih π(©(ί))

[since π is a bijection]
<->π(/>) c u ( ί ) -> 3ττ(^0 such that ττ(̂ ) aiϊ(q') and 3ί such that

ir(q') Ih τr(©(ί)) [by Lemma 1.7.7]
^r^π(p) c π(q)-*lτr(qf) such that ττ(#) c π(^f) and It such that

7τfef) Ih 8(π(*)) [by Definition 1.7.6y (iv)]
<-»τr(/>) Ih 3ΛΓ©(π(Ar)) [by (b) of the Introduction]
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<-> π(p) IH Ίπ(x)ft(Ή(x)) [since π is a bijection]

<-*τr(p) Ih-π(H) [by (3)]

(4) Suppose a = αeαδ, or 5ί = αδeW, or 21 = txeta, ίx, ί2e2H. Then:

pIh a <->τr(/>) in π(a) [by Definition 1.7.6]

Lemma 1.7.9 For £#c/z £e9ϊ, formula 2ί, #rad />eC, ί/zβrβ is an a such that
7J €(Jα -* ir(t) = t, ΊΪ(%) = a, πφ) = />.

Proof: We will treat the three conditions separately:

(1) teW

If t is standard, then π{t) - t.

If £ = α§, then 7re(Jδ works, where (Jg is defined as in 1.7.5.
If £ = W, then any π works.
If £ corresponds to a formula %{x9tx,... ,tn)} then if there exist α, such

that τre(Jα|. implies π(ti) = U, then α = max (a, ) works, hence this case can be
proved by induction on formulas.

(2) If H is a statement, it can be handled in the same way as the last case
of (1).

(3) If M s a condition, then there is some a < ω x such that a is greater
than any subscript of the α§'s appearing in p.

If we now let a be the largest of those obtained in (1), (2), and (3), it will
have the desired properties.

Lemma 1.7.10 In W, W is a subset of P{ω^) such that W is uncountable and
yet contains no subset of cardinality N x.

Proof: As in Lemma 1.6.5, we have

(1) ~(y =δ) -/>M-~(αy = α8).

Since, in 9Ϊ, each α§eW, we have

(2) W is uncountable in 9Ϊ.

Now let teW and assume that for some p in {pn}n<ω

(3) p IhU is a 1-1 function from ω x into W}

Let ζ be an ordinal number such that ζ <ωx and if (J^ is defined as in Defini-
tion 1.7.5, then:

(4) πe<Jζ-τr(O=*

and such that ζ is greater than any δ such that α§ occurs in a statement of p.
In the complete sequence {pn}n<ω there must be some pr such that p<^pf and

(5) p' IH t(η) = aσ

for some η and σ where σ is greater than ζ, since t takes uncountably many
values. Let r > ζ be a countable ordinal such that αr does not appear in pr
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and let π be the permutation which interchanges σand τ and is the identity
on all other countable ordinals. If p" = 7r(/>'), then, by (5),

(6) p" Ih- t(η) = α Γ .

We also have that, if q = P'Up", then

(7) q is a forcing condition

since p ' and prt are identical except for conditions involving ασ and aT and pf

does not involve σ and pn does not involve r. But p a q, therefore, by (3),
# forces £ to be a function. But, by (5),

(8) q Ih- t(η) = ασ

and, by (6),

(9) tf tt-t(η) =ar

and (8) and (9) give a contradiction.
Our theorem _now follows quite easily. In 9Ϊ, W is a set such that

W > N o but ~(Ni = W), which violates AC. Thus, our theorem is proved.

This last theorem has some interesting consequences. In [l], Addison
showed that the assumption of V = L gives some strong results about pro-
jective well-orderings of the real numbers. In [13], we showed that the only
lemma that Addison used that required V = L for its proof is equivalent to
P(ω) c L. Therefore, by Theorem 1.7, if we have P(ω) c L we can get
Addison's results in a system that does not even have AC.

We will now show how the results of this chapter fit in with previous
findings. The references listed are not necessarily the original proofs, but
were chosen for convenience. The phrases "2Ϊ -*©," "2ί 7^*8," and
"$ί - - -»23," in the field of a given set theoretical system in which % or 53
are axioms, mean that, respectively, "% is a consequence of 21," "ft is not
a consequence of 21," and "ft is not a consequence of 21 nor is $8 a conse-
quence of ~ 2ί." In the accompanying diagrams, if two propositions are not
connected by any arrow, then either the connection is unknown or else the
connection is obvious because of some intermediate proposition. We will
first list some "classical" results, i.e., these were known before Cohen
introduced his forcing technique.

(1) V = L -GCH [8]
(2) GCH-AC [3]
(3) GCH->CH [obvious]
(4) V = L -»(~(3 measurable cardinal)) [17]
(5) V = L ->/>(ω) c L [obvious]
(6) V = L -*Addison's results about projective sets [l]
(7) (~(3 Ramsey cardinal)) ->(~(3 measurable cardinal)) [obvious]
(8) P(ω) cL ->CH [3]
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V = L
0
/ γ v > ^ (~ (3 Ramsey cardinal))

GCH ό \ X ^ \ 7

Ά X > ^\;;
O 3 8 \ / Λω)CL °

AC 1 ^s^\. (~(3 measurable cardinal))

CH O Addison's results

Next we will list some of Cohen's results together with some related results
obtained since then.

(9) GCH T4 V = L [3]
(10) GCH T4 P(ω) c L [3]
(11) AC T4 CH [3]
(12) P(ω) c L ->(~(3 Ramsey cardinal) [21]
(13) GCH > (-(3 measurable cardinal)) [11]
(14) P{ω) c L - » Addison's Results [13]

V = L
O

f (~(3 Ramsey cardinal))

9 ™/^
GCH O ^ ^ ^ _ ^ 13 ^ y ^

AC Ov u 9 Λω)cL "^^^°
V / (-(3 measurable cardinal))

CH O Addison's results

We now list the relevant results of Chapter I.

(15) P{ω) c L -A V = L [Theorem 1.5]
(16) P{ω) C L 7 4 GCH [Theorem 1.6]
(17) P{ω) c L T4 AC [Theorem 1.7]

V = L

O

\sl5

G C H O ^ ^ μ ^ g ^ v

AC O^—f



WEAK FORMS OF THE AXIOM OF CONSTRUCTIBILITY 273

Combining the three diagrams and deleting any redundancies, we obtain the
following:

V = L

°v (~(3 Ramsey cardinal))

1 ^ v O

GCH * _ X 1 2 ^ 7

AC °\ \ f Z^\ P ^ c L

TL 1 ^ ^ \\Λ (~(3 measurable cardinal))
ll\ΐ ^^° /

CH O Addison's results

CHAPTER II

CONSTRUCTIBLE SUBSETS OF ORDINALS

We now generalize Chapter I and consider the propositions P(a) c L,
where a is an ordinal number. From the results of Chapter I, in particular
Theorem I.I and Theorem 1.2, it can easily be seen that, for any ordinal
number a, P{a) c L is both consistent with ZF (if ZF itself is consistent)
and, if a ^ ω, it cannot be proved in ZF even with the use of GCH. We now
consider the relationships between these propositions P(a) c L for various
ordinal numbers a. First, we note the fact that, if a <β, then P{a) c/>(β).
This gives us the following easy theorem.

Theorem Π.l If a < β, then P{β) c L implies P(a) c L.

We next consider the situations in which we can infer P(β) c L from
P(a) c L, where a < β. A very simple case in which this can be done is
where β = a +n where nis a natural number. In fact, we have:

Theorem II.2 If n <ω, then P(a) c L implies P(a + n) c L.

Proof:

(1) Suppose we have P(a) c L.

We will use induction on n. We first consider the case

(2) n = 0.

In this case we have nothing to prove, since a + 0 = a.

(3) Suppose P(a + n) c L.

We now wish to show that P(a + n + 1) c L.

(4) Suppose xeP(a + n + 1).
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Hence, we have

(5) x c ( α + (n + 1))

but then

(6) #c((flr + w) + l).

But this means, since for any ordinal γ9 γ + 1 = γ U {y}, that for every z,

(7) zeχ-*zea + n.v.z=a + n.

Hence, we have

(8) x = y U w

where w = φ or w = {a + n], and y c α + n. By (3), then

(9) yet.

We also have that

(10) 0eL.

But, since a +n is an ordinal number, hence constructible, and by 9.92 of
[8], we have

(11) {a + n}el.

By (10) and (11),

(I2)wel.

But, by (9), (12), (8), and 9.85 of [8],

(13)*eL.

Hence we have shown that P(a + n + 1) c L, which completes the induction.

We do not know at this time whether this theorem can be strengthened
to any great degree. We conjecture that P{a) c L implies that (β = a -*P(β)
c L). If this turns out not to be true, then it would be interesting to see
exactly what conditions are necessary and sufficient to have P(a) c L -» P(β)
c L for ά < β, § = j3.

We do have some information, however, about the cases where a and β
are distinct initial ordinals. We first present a theorem about regular
cardinals. (A cardinal 8β is regular if there is no increasing sequence of
length <ωβ of sets of cardinality <$β whose limit is a set of cardinality fy.
In particular, if β is a successor ordinal, fcfy is regular.)

Theorem II.3 Let $β be a regular cardinal. Then (Vα(α < j8 -*P(ωa) c L))
does not imply P(ωβ) c L.

Proof: We will use the same methods as Chapter I and attempt to find a
model 91 in which -(^(ω^) c L), but in which a < β -» P(ωa) c L. We will treat
two cases:

(i) β is a successor ordinal
(ii) β is a limit ordinal.
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Note that, in case (ii), we are saying that #β is a weakly inaccessible cardi-
nal. Hence, in this case, we will have to assume that our ground model 9JΪ
both satisfies V = L and also allows the existence of a weakly inaccessible
cardinal. We also note that, since V = L holds in 2W, weak inaccessibility is
the same as inaccessibility. (We say that a cardinal number #β is inac-
cessible if »0 < #βf $a < #β - 2*a < fy, and fy is regular.)

We now present the proof for (i). Suppose β = a + 1. By Theorem II. 1, it
suffices to find a model Ή in which P(ωa) c L but ~(P(ωa+1) c L). As in the
proofs in Chapter I, we first define our set C of forcing conditions.

Definition II.3.1 Let C be the set of all sets p of statements of the form
" δ e α " or "~(δeα)" such that δ < ωα + 1, p i Nα, and for no δ do we have both
"δeα" and "-(δeα)" in p.

Definition Π.3.2 For p eC, p Ih δ eα if and only if "δ eα" is inp.

Definition II.3.3 Let ίpn}n<ωbe a complete sequence of forcing conditions.
Thenα = {δ < ω α + 1 | 3& such thatpk Ihδeα}.

Lemma II.3.4 P(ωa) c L.

Proof: By the Solovay lemma (see Lemma 1.5.4), we need only show that
any chain of conditions of length at most ωa has an upper bound that is a
condition. Suppose we have a sequence of conditions {/>y}y<ωαsuch that

(1) ζ <η -*Pζ^Pη.

We now let

(2) p = U ρy.
γ<ωa

Clearly, p will be a set of statements of the form " δ e α " or "~(δeα)" and,
by (1), P will not contain contradictory statements. Likewise, by (2), p is
an upper bound for thep γ . Therefore, we will have peC and our lemma, if
we can show that p ^ tfα. In order to prove this, we note that, by (2), we
have = = = = =

(3) 3 = U Pγ.
γ<ωa

But this gives us

(4) ϊ% Σ /v
γ<ωa

But, since each pγeC and, hence p^ Nα, and since there are Nα in terms in
the summation, we have

(5) p ί «β «β .

But Nα Nα = Nα, hence we have

(6) ί^Hfl,

which is what we wanted to prove.
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Lemma Π.3.5 ~{P{ωa+d c L ) ,

Proof. It suffices to show that α is not constructible. As in the proof of
Lemma 1.5.6, we need only show that α is not standard. To do this it is
sufficient to prove that, for any £e9W,

(1) />eC-/>l»-~(α = t).

By condition (a) (for forcing of the negation) which is given in the Introduc-
tion, we must show that for no q such that p c q do we have q ih α = t. Now
suppose we have

(2) peC

and

(3) p c q Λ qeC.

Since qeC, we have, by Definition IL3.1,

(4) q*Ka.

Therefore, there is some ζ < ωa+i such that neither " ζ e α " nor ζt~(ζea)"
is in q. Now we define qr and qft as follows:

(5) If ζet,letqf =q u l M ζ e α ) " } .

(6) If ~(ζ€*), l e t ? " = #(j{"ζeα"}.

Hence, if ζet, by (5), we have

(7) q'U-ζet Λ~(ζeα).

If ~(ζeί), by (6), we have

(8) q"\h~(ζet) Λζeα.

Since we must have either ζet or ~(ζet), either (7) or (8) will hold. Hence,
q does not force α = t. Therefore, p Ih ~(α = t), and α is not standard. This
completes the proof of Lemma Π.3.5.

By Lemma Π.3.4 and Lemma Π.3.5, we have completed the proof of
case (i) of Theorem Π.3. We now prove case (ii).

(ii) If we have a countable model 9W in which V = L and fcfy is an inaccessible
cardinal (i.e., fcfy is regular and β is a limit ordinal), then there is a model
W in which ~(/>(ωβ) c L) but Vζ(ζ < β -^P(ωζ) c L).

We proceed as before by first defining C, our set of conditions.

Definition IL3.6 For every a < β, let Cα be the set of all sets p of state-
ments of the form "δ eα" or "~(δ eα)" such that δ < ωα+i and p = #a and such
that for noδ do we have both "δeα" and "~(δeα)" in p. Then: C = \J Cα.

a<β

Definition 11.3.7 For peC, p Ihδeα if and only if "δeα" is in p.

Definition IL3.8 Let {&Jw<ωbe a complete sequence of forcing conditions.
Thenα = {δ|δ < ωβ .Λ. Ik such that pk ihδeα}.

Lemma Π.3.9 Vζ(ζ < β -> P{ωζ) c L).
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Proof. We will again apply Lemma 1.5.4, where λ = ωζ. Let {pγ}γ<ω, be a
chain of conditions which is of length at most ωζ. Now let

(1) P = U Pγ.
γ<ωζ

Therefore, we have

(2) p = U Pγ

and, hence,

(3) P*Σ Pγ.
γ<ωζ _

But, by Definition Π.3.6, pγ<ωβ. Therefore, since #β is inaccessible,
ωζ< ωβ, andpγ < ωβ, we have

(4) £<fy.

By (4), and the fact that #β is inaccessible, there is some μ <β such that

(5) ( " α e α " in p or "~(<*eα)" in p) - α < ωμ;

otherwise we would have, where ((aep" means that a occurs in a statement
of/?,

(6) U a = *β
aep

which contradicts the regularity of fcfy. Hence, by (4) and (6), if T> - Nv, we
have

(7) />€Cry

where η = max (μ, &>). Hence peC and the lemma is proved.

Lemma Π.3.10 ~(P(ωβ) c L ) .

Proof: As before, we need only show that α is not standard. Let teWl. It
suffices to show that

(1) peC -*p lh~(α = t ) .

Now suppose we have

(2) peC

and

(3) p c q Λ #eC.

Since tf e C, by Definition Π.3.6,

(4) 3α(α</3.Λ. #eCα).

By (4) and Definition Π.3.6, we have

(5) δ < ωa -> neither " δ e α " nor " ~ ( δ β α ) " are in q.

We now choose some δ such that ωa< δ < c^, and define tf' and qft as follows:

(6) If δet, let ^f = q u { "-(δeα)"} .
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(7) If~(δeί), letq" = q U {" δ€α"}.

Therefore, if δe t, we have, by (6),

(8) q'U-δet Λ~(δeα).

If ~(δef), we have, by (8),

(9) qft lH~(δet) Λ δeα.

In either case, q does not force α = t. Therefore p lh~ (α = t), and α is not

standard. This completes the proof of our lemma.

By Lemma Π.3.9 and Lemma II.3.10, case (ii) is proved, and, hence, we

have completed the proof of Theorem Π.3. The reader might ask why we

insisted that #β be regular. The above proof does not go through for singu-

lar cardinals (i.e., cardinals that are not regular). The simplest way to

show that this is true is to note that if we have $β a, singular cardinal and

construct the Cα and C as in Definition II.3.6, there is no guarantee that the

union of a chain of conditions will be a condition. By weakening Theorem

II.3, however, we can obtain a result that holds for singular cardinals as

well.

Corollary II.3.11 Let $β be α singular cardinal. Then, for every a such

that a < β, there is a model 91 in which P{ω^ c L but in which it is not true

that P{ωβ) c L.

Proof: Since #β is singular, β is a limit ordinal, Hence, a < β -» there is

some ordinal number γ such that

(1) a<γ<β

and

(2) Ny is regular.

By (1), we have

(3) KQ < Ky < Kβ.

Therefore, by Theorem II.3,

(4) there is a model W in which P(ωa) c L but ~(P(ωγ) c L).

But, by Theorem II. 1, and (1),

(5) (~(/>(ωy)c D - ~{P(ωβ)<z D).

Hence, 91 satisfies the desired conditions.

We also have a result that relates these P(ωa) c L to V = L. The proof

of this following corollary follows very easily from Theorem II.3 and

Corollary Π.3.11.

Corollary Π.3.12 Vα(~(/*(ωα) c L - V = 0 ) .

This sharply contrasts with the following result of Levy [9].
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Theorem II.4 If the axiom of regularity holds and there is a non-con-
structible set, then there is a non-cons true tible set of ordinals.

Changing this to our notation and using the contrapositive, this becomes

Theorem Π.4* If we have the axiom of regularity, then {\/a{P{ωώ c 0 ) -» V
= L.

Thus we see that we can have all the subsets of any ordinal number that
we want to be constructible and yet not have V = L. But if we choose to
have the power set of every ordinal contained in L, then we must have
V = L. We will treat Theorem II.4* more thoroughly in Chapter III.

We now look at the effect of the P{ωώ c L on the axiom of choice.

Theorem II.5 V β ( - ( % ) c L -»AC)).

We will proceed as in earlier proofs.

Definition II.5.1 Let C be the set of all sets p of statements of the form
" α e α δ " or "~(o?€αδ)" for a < cθβ+i, δ < α>β+1 such that not both " α e α δ " and
" ~ ( α e α δ ) " occur inp for any a or δ, and such that p = Nβ.

We now introduce to our language a new constant W.

Definition II.5.2 For peC, / ) l h α e α δ ^ ί < α e α δ " e / ) . />lhαδeW for every
peC and for every δ < u>β+1.

Definition II.5.3 Let {/>«}«<ωbe a complete sequence of forcing conditions.
For each δ < ct>β+1, α δ = {a\ Ik such that pk ihαeαδ}; W = {αδ| Ik such that
/>fclhαδeWh

Hence, by Definitions Π.5.2 and 11.5.3, we have W = ίαδlδ < ωβ+1}.

Lemma Π.5.4 P(ωβ) c L is true in W.

Proof: This follows by exactly the same proof as that of Lemma II.3.4.

Definition II.5.5 Let (J be the group of all permutations π of ωβ+1 such that
π(α) = a for all a < ωβ-n except for a set x of ordinal numbers such that
x ύ Nβ. Let (Jα be the subgroup of (J defined by: (Jα = {π|π(y) = γ for all γ ^ a}.

If 7τ is a permutation in (J, we extend to a permutation on 91 in the following
manner:

Definition II.5.6

(i) τr(t) = t for τre(J, teW.
(ii) ττ(αδ) = αff(δ) for π€ (J, δ < cϋβ+1.

(iii) τr(W) = Wfor all ireCJ.
(iv) For teM, τre(}, if t corresponds to the formula 2!<->23(£i,..., ttι)

where U eM, then ir(%)++to(ir(tj,..., ir(tn)).

(v) If p is a forcing condition, iτ(p) is the forcing condition defined by:

"aea8" ep^>"aeaπ(δ)" eτr(p) and "~(aea8)" ep+*"~(aeaπiδ))" e*(p).

Lemma Π.5.7 p c q<-^>ττ(p) c τr(q).
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Proof. This follows from Definition II.5.6 (v).

Lemma Π.5.8 p Ih a«-» π(/>) Ih τr(«).

Proof: This proof is exactly the same as the proof of Lemma 1.7.8.

Lemma Π.5.9 For each teW, formula %, and peC, there is an a < cθβ+1 such
that πe(Jα -> π(*) = t9 π(5ί) = a, and π(p) =p.

Proof: Same as for Lemma 1.7.9.

Lemma II.5.10 In 9ί, W is a subset of <P(ωβ&J such that ~(W< tfβ+1) β^d 3>e£
W does not contain a subset of cardinality Nβ + 1.

Proof: As in the proof of Lemma 1.6.5, we have, for any p eC,

(1) ~(y=δ)-/>ih~(α ) , = αδ).

Since, inft, each αδeW, we have

(2) ~(W<K β + 1 ),

since we have specified ^ + 1 elements of W. Now let teW and assume that

for some pin {pn)n<ω

(3) p Ih (t is a one-one function from ωβ+1 into W).

Let ζ be an ordinal number such that ζ < ωβ+1 and let (J^ be defined as in
Definition II.5.5. Also suppose that ζ satisfies

(4) π e ( | ί - i r ( O = ί

and that ζ is greater than any δ such that α§ occurs in a statement of p.
Since ί must take on fc^+i distinct values, there must be some p* in the
complete sequence {pn}n<ωSλxch that/? c pr and

(5) p' Ih ffo) = aσ

for some 77 and σ where σis greater than ζ. Let r > ζ be an ordinal number
such that T < ωβ+1 and αΓ does not appear in pr; let π be the permutation
which interchanges σ and T and is the identity on all other ordinals <OJJ3+1.
If P" = Ttψ), then, by (5),

(6) p"H-t(η) =α Γ .

We also have that, if q = P'Up ", then

(7) q is a forcing condition.

Since P c #, and by (3), tf forces ί to be a function. But, by (5), we have,
since pr c q,

(8) q\\~t{η)=<xσ.

But, by (6), p" c ^, therefore,

(9) q\\-t(η) =αΓ .

Hence, (3), (8), and (9) give a contradiction and our lemma is proved.
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By Lemma II.5.10, we see that ^(«/3+1^W) and also that ~(W< K^+i).
Hence, we do not have trichotomy for cardinal numbers and AC fails. By
Lemma II.5.4 and Lemma Π.5.10, we have the proof of Theorem Π.5.

We have now seen the effects of the propositions P{ω<) c L on V = L and
AC. We shall now show their effect on GCH. Since GCH implies AC, and
by Theorem II.5, we immediately have:

Theorem II.6 VjSMΛαfc) c L -*GCH)).

We can, however, strengthen this result to show the various ways in
which GCH can be violated while still assuming P(ω£ c L. Using the results
of Easton's doctoral dissertation, [5], we will prove that if we assume
P(ω£ c L for some initial ordinal ω̂  , then for any initial ordinal number
ωa>ωζwe can assume 2^αto be any cardinal that is compatible with Kδnig's
theorem. Because of the addition of P(ω£ c L, our theorem will be a slight
strengthening of Easton's. We will, however, have to assume that V = L
holds in our ground model (or at least that GCH + P(ω£ c L holds in the
ground model) instead of simply GCH as Easton does. For this reason our
theorem is in some respects weaker than Easton's.

We will pattern our proof very closely after Easton's; hence, we will
use the notation and numbering of [5], For this reason, we will use the
Gδ'del-Bernays axiomatization of set theory (including AC) instead of
ZF + AC. This Godel-Bernays set theory + AC will be denoted Σ*. Most of
the definitions and lemmas in this proof will be taken directly from [5].
For the sake of completeness, we shall state all of the pertinent lemmas
and definitions as they occur in [5]. If no change in the proof of a lemma is
desired or needed, we will simply state the lemma without proof, but in
smaller type. Any change from [5] will be pointed out at its occurrence,
but we will have to remember that the form of some of our lemmas might
be the same as Easton's although the meaning is different due to the change
of some definitions. For ease of reference, in this part of Chapter II we
will use the same enumeration as in [5].

We now state Easton's main theorem.

Theorem (Easton) Let Wbe a countable model of Σ* in which GCH holds
and letG be a function in 951 such that:

(i) a^β implies Gα'^ G'β.
(ii) Nc is n°t cofinal with any cardinal less than or equal to Nα.a

Then there is an extension 91 of 9JZ in which cardinals are absolute and 2 a =
&Gh for regular cardinals #a.

We say that cardinals are absolute in the extension if 9JΪ and 91 have the
same cardinals and #a < 8β in 9W if and only if #a < #β in 91. We now modify
this to the following:

Theorem II.7 Let 9W be a countable model ofΣ^ in which V = L holds) let ζ
be any ordinal number, and let G be a function in 9W defined on ordinal
numbers larger than ζ such that:
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(i) ζ < a ^ β implies G'a i ffβ.
(ii) #G'a is n°t cofinal with any cardinal less than or equal to Nα.

Then there is an extension 91 of 3H in which cardinals are absolute, P(ωA c L
and 2^α = #G'a for regular cardinals #a such that $ζ < #a.

Proof: We will follow the proof of Easton's theorem. Easton defines the
relation A(y, a, η) to be the same as yeαj*. We will have a language <£ which
has functional constants e and A. There will be ranked variables υf for
each ordinal a and each integer i of 9K and there will be variables V{ for
each integer of 2R.

Definition 1 We give an inductive definition of ranked formula and of abstraction
term. The definition is to be given in the model 9W.

1. If u, v and w are abstraction terms, set constants, or ranked variables, then
A(u,v,w) and ueυ are ranked formulas.

2. If Φ and Φ are ranked formulas, then ~Φ, ΦvΦ and (lx?)Φ are ranked formulas.
3. If Φ is ranked formula containing no free variables other than xa, no occur-

rences of (ly^)Φvrith β > a, and no occurrences of abstraction terms yPφor set con-
stants of rank β with β = α, then xaφ is an abstraction term. (WherexΦ = the class of
all x such that ΦW; yaΦ = the class of all ya such that Φΐy0).)

Definition 2 The rank of a variable, abstraction term, or set constant is given by:

1. p(/) = a
2. p(xaΦ) = a
3. p(s) is the rank of the set s.

Definition 3 We now define (unranked) formulas of the language -(. The definition is
to take place in the metalanguage rather than in 9H.

1. If u, v and w are variables or constant terms, then u ev and A(u,vfw) are
formulas. Furthermore, if S is any constant, then we S is a formula.

2. If Φ and Ψ are formulas, then ~Φ, ΦvΨ, (3#)Φ, and (3#α)Φ are formulas.

Lemma 1 There is an assignment of sets of 9R to ranked formulas of JQ such that the
collection of sets assigned to ranked formulas is a class of the model 9W and the usual
syntactical operations (forming negations,, substitution, etc.) are represented by func-
tions o/SW.

Easton introduces the equality relation (for unranked formulas) by the fol-
lowing definition:

u = v -* Vχ{xeu<r^> x e v).

In addition he introduces the expression u~v, where u&ndv are constant
terms, by

u ^ v -* Vxγ(xγeu<r^>xγev),

where γ = mαχ(p(w), p(v)).
In the following definition we make the most significant deviation from

Easton's method in order to achieve the desired result. Note that we use
the class Reĝ  instead of the class Reg which Easton uses (where Reg is the
class of all ordinals a such that tfα is regular).

Definition 4 A set of conditions is a set q of the model 2JΪ of quadruples
(Oγaη) and (lγotη) with the following properties:

(i) q = U qa

f where Reg y is the class of ordinals a such that Nα is regu-
αeReg£

lar and ζ < a, and
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(ii) qais a set of quadruples (iγaη), i < 2, γ < Nα, and η < NG'α
(iii) For ae Reg., M qβis of cardinality < $a.

β<a
(iv) For no y, a, and 77, does q contain both (Oγaη) and (Iγaη).

The following definitions and lemmas (up to but not including Definition 15)
are the same as in [5]. However, we must keep in mind that we now have a
different class of sets of conditions, due to the use of Reĝ  instead of
Eastern's Reg.

Definition 5 Sc is the class of all sets of conditions.

Definition 6 pf is an extension of a set of conditions p if p' is a set of conditions and
P cp'.

Definition 7 For a ranked statement Φ, we set:

ord(Φ) = ω2-a+ω-t + l

where:

a is the least ordinal such that Φ contains no variable of rank > α and no constant
term of rank = a.

t = 0 if Φ contains no subformula of the form v eu, where υ is a constant term of
rank α, and no subformula A{u,v,w) other than inside an abstraction term; otherwise,
t = 1.

/ is the length of the formula Φ. (ueυ and A(u,v,w) have length 1.)

Definition 8 The rank of a set of conditions p, (rank(/))) is the supremum of the ranks
of its elements, where (iγaη) is said to have rank max (y, a, 77).

We note that with our modifications on the conditions, if p is a set of conditions, then
rαnk(p) > ζ.

Definition 9 p Ih Φ is defined (for ranked Φ) in terms of />ΊhΨ, ordfa) < ord(Φ) and
rαnk(/>') = mαx(ord(Φ), rαnk(/>)), as follows:

1. p II Φ if there is no set of conditions p', rαnk(/>') ̂  ord(Φ), such that p' is
compatible with p and p' IH Φ. (Sets of conditions p and p' are said to be compatible if
their union pup' is a set of conditions.)

2. p Ih Φ v # if either p Ih Φ or p Ih Ψ (or both).
3. p Ih (lxa)Φ(xa) if /> Ih Φ(u) for some constant term u, p(u) <a.
4. /> IH ues if £ Ih u ̂  t for some /es.
5. /)lhMe ίΦfe) if for some constant term u', p(u')<a, p Ih u ̂  w', and/> ihΦ(w').
6. £ Ih A(u,υ,w) if there exist ordinals y, α, and η, such that y = p(w), a = p(v),

77 ̂ p(w), /> IHW = y, /> Ihv = α, /> Ihw = 17, and/? contains (Oyαη).
7. p IhΦ only as required by 1-6 above.

Definition 10 p IhΦ is defined for unranked Φ by induction on the length of the state-
ment Φ.

1. p to-uev, p H- A(u,υ,w) if so required by Definition 9.
2. p Ih ueS if for some teS, p\\-u^ t.
3. /> lh~Φ if there is no extension p' of p such that pf IhΦ.
4. /> Ih Φ v \£ if p ih Φ or £ ih Ψ (or both).
5. p Ih (3#α)ΦUα) if, for some constant term u, p IhΦ(w).
6. p Ih Φ only as required by 1-5 above.

Lemma 2 There is a class in the model 2Λ whose elements are the pairs (p,"Φ")
such that Φ is a ranked statement and p Ih Φ. {Where " Φ " is the set corresponding to
the ranked formula Φ which was defined by Lemma 1.)

Lemma 3 Let Φixi,... ,xn) be an unranked formula of £. There is a class of the
model Wl whose elements are the (n + 1) -tuples (p, 'u^ , . . .,'un') such that
p\hΦ(ulf...fun)t
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Lemma 4 If Φ is a ranked formula and p Ih Φ, then pf\\- Φfor any extension p1 of p.

Lemma 5. p Ih ~ Φ<-*no extension p ' of p forces Φ.

Lemma 6 No set of conditions forces both a statement Φ and its negation ~Φ.

Lemma 7 Let p be a set of conditions and let Φ be a statement of J£. Then there is
an extension p' of p such that either p' It- Φ or p' li—Φ.

Lemma 8 Let p Ih Φ and let p' be an extension of p. Then p' Ih Φ.

Definition 11 p l£Φ, p weakly forces Φ, if p Ih ~~ φ.

Lemma 9 The weak forcing relation has the following properties.

(i) p Ih" Φ<r^ no extension of p forces ~Φ.
(ii) p Ih Φ -* p if1 Φ.

(iii) p lf*~Φ<->/> Ih ~Φ.
(iv) If Φis of the form Φ Λ Ϊ , Φ O T , VΛ Ψ, V*a^, u ^ v, or u= v, then p Ih Φ<->/> l£Φ.
(v) p ι£ VΛTΦ(#)<->/> Ih Φ(u)for all constant terms u.

(vi) /> If VΛ^Φ(y) <-»/> L^Φ(w) / o r α/Z constant terms u of rank less than a.
(vii) /> II? Φ<-*Ψ and p If Φ -/> If Ψ.

(viii) /> II1 Φ<->ψ «rcd /> l£ Ψ -»/> Ih" Φ.

L e m m a 10 p Ih w = v<-^p Ih w = ι>.

L e m m a 11 i^or ίm y sβί o/ conditions p,

(i) p \\-u= u.
(ii) /> lh w = v<->p Ih i; = M .

(iii) /> Ih w = v αn^? /> Ih f = w -»/> Ih M = ẑ .

L e m m a 12 F o r αw^ s^ί of conditions p,

(i) /> Ih u ew and p \hu = v — p Ih υew.
(ii) /> ih w e w αwc? p \\-u = v ~*p \\£ weυ.

L e m m a 13 If p Ih u = a, then p(u) ^ a.

Corollary 13.1 If p Ih A(u,v,w) and p\\-u = u', p Ih v = ?/, αwί/ />lhw = w', then
p ihA(w f,z; f,^ f).

Definition 12 A sequence of se t s of conditions />(0) c />(1) c . . . i s said to be complete
if for every c las s C of se t s of conditions such that every set of conditions has an
extension in C, pik)e C for some k.

Lemma 14 Let p(0) c £ ( 1 ) c . . . be a complete sequence of sets of conditions. Then
every statement or its negation is eventually forced by some p^k\

Lemma 15 There exists a complete sequence of sets of conditions.

Definition 13 (Definition of the model 9?)
(i) Let Φ(x) be an unranked formula of J£. The collection of all constant terms v

such that for some kyp
{k)\\- Φ(υ) will be a class of the model sJl; we will denote this

class by xΦ(x).
(ii) Sets of the model 9Ϊ will be classes of the form x(xeu), where u is a constant

term of «C
(iii) The e -relation is defined as follows:

x Φ(x)ey<ίf(y) will hold if £Φ(Λ;) is the same as x(xeu) for some constant term wand
p(k) IH φ(w) for some k.

(iv) The relation A(£Φ(ΛT), y^(y), xΎ(z)) will hold if for some y, α, and η such that
(Oγaη) is contained in some p^k\ χφ(x) is x(xeγ), yMy) is y{yea), and zΎ{z) is z(zeη).

(v) If H7 is a constant term or constant of „(, then W denotes the class £(#e W).
(vi) Individual variables x, y}..., range over all sets of 31; ranked variables of rank

a range over sets of the form x(xeu) where u is a constant term of rank less than a.
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Definition 14 We will say that the ranked or unranked statement p is eventually
forced if for some k, p^hhΦ.

Lemma 16 xΦ(x) is the same as y^(y) if and only if Vx(Φ(x)<->Φ(x)) is eventually
forced. Hence, if U and W are constants or constant terms, then U= W if and only if
U -W is eventually forced.

Lemma 17 An unranked statement Φ of 4! is true in the model W if and only if Φ is
eventually forced.

Lemma 18 If Φ is an unranked statement of -C, then p W1 Φ if and only ifΦis true in
all models obtained by the above construction from complete sequences of sets of
conditions in which p occurs.

Corollary 18.1 If Φ{x) is a ranked formula of finite length, then uexaφ(xa) is true in
9Ϊ if and only if u -uf for some uf of rank less than a and Φ(u) is true in 9ϊ.

Lemma 19 The mapping Φ of 2W into 91 given by ^(S) = S is an isomorphism with
respect to the e-relation.

With Lemmas 20-23, Easton shows that the axioms of Σ*, except for
replacement, power set, and AC, hold in the model W. He now goes on to
verify these remaining axioms. In the following definition and its applica-
tions we again must use the class Reg> instead of Easton's Reg.

Definition 15 We define Γα and Δα as follows:

(i) Γα = {2 X Kβ X {β} X aG,β | βe ReQζ . Λ . β ί a}
(ii) Δβ ={2X «|8X{j3}x ^G'βlβeReg^ . Λ. β >a}>

where, as in Definition 4, Reĝ  is the class of ordinal numbers a such that
$a is regular and ζ < a.

We note that if a * ζ, then Γα = 0.

Definition 16 Sets of conditions p and q are said to be compatible if their union is
again a set of conditions, i.e., if it is not the case that one of them contains a quadruple
(Qγaη) while the other contains (lγorφ.

Lemma 24 is stated exactly as in [5]. But because of our use of Reĝ , its
proof is somewhat different from that given by Easton. For the same
reason we must give the new proofs for the next several lemmas.

Lemma 24 Let #a be a regular cardinal ofWl9and let q be a set of condi-
tions, q c Δα, and let Φ be a statement of j£. Then there is an extension
q c Aaof q and a set Π of sets of conditions such that:

(i) Π Ξ «e.
(ii) pell -^ either p U q Ih Φ or p U q Ih ~ Φ.

(iii) If p' is any set of conditions, there is some p elί compatible with p'.
(iv) pell -+ pcTa.

Proof: If a > ζ, the proof is exactly the same as Easton's. If a = ζ, we note,
by Definition 15, that

(1) Γa=φ.

In this case we let

(2) Π ={</>}.

By (2), it is obviously true that
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(3) (i) and (iv) are satisfied.

By Definition 16, φ is compatible with any set of conditions, hence, we have

(4) (iii) is satisfied.

By Lemma 7, there is an extension q of q such that

(5) q Ih-Φ or q lh~Φ.

By (1)

(6) q c ΔΛ.

Since p eΠ means p = φ, we have

(7) peU-^pUq =q.

Hence, by (5), (6) and (7),

(8) (ii) i s satisfied.

By (3), (4) and (8), our l e m m a is proved for a=ζ.

Lemma 25 Let β be any ordinal of 9tt, let q be a set of conditions, let

Φ(#i, . . . ,xn) be an unranked formula of *£, and let U{ , 1 ̂ i %n and μ< fcfy be

constant terms. There is an extension q of q and a setΐlof sets of condi-

tions such that:

(i) ft ^ Kβ.

(ii) If qf is an extension of q, and μ < Nβ, there is some pell compatible

with qr such that either p u q IH Φ(% μ , . . . ,un{) or pUq Ih ~Φ(ulμ,..., ^ ) .

(iii) pell ->p c Γβ.

Proof: We treat the case where β = ζ in exactly the same way as in the
proof of Lemma 24. The proof for β > ζ holds as in [5].

Lemma 26 Let q be a set of conditions and let Φ{xl9... ,xζ) be an unranked formula.
Then there is an extension q of q and an ordinal δ such that

q\\-VxI... VxUly Φixϊt..., x!,y)*+ly8Φ(xϊ,..., xlj)).

Corollary 26.1 Let Φ(xϊ,..., x%,y) be an unranked formula. Then there is an ordinal
δ such that:

V*jf... V#fey Hxl,..., £,y) «-> 3^δΦ(ΛΓ!y,..., xlj))

is true in the model 9Ϊ.

Lemma 27 Let Φ (x ϊ , . . . , xl) be an unranked formula. Then there is a formula
Φ'(xϊ,... ,xl) which is both a ranked and an unranked formula such that

Vxl . . VX%(Φ (xl, ...,XY

n) ^Φ'{XΎ

U . . . , XY

n))

is true in !W.

Lemma 28 The axiom of replacement holds in W.

Lemma 29 There is a class Q of the model 9& such that xeQ if and only if x is a set
of conditions compatible with all p&Hn the complete sequence used to define W.

Lemma 30 There is-a class Den of the model 9Ί such that (^)eDen if and only if x
is a constant term and y is the set denoted by it. (i.e., Den is the class of pairs (yx)
such that for some ranked term u denoting y, x is the set 'u' of Lemma 1.)
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Lemma 31 The power set axiom holds in the model W.

Lemma 32 The ordinal numbers of 9Ί are precisely the sets denoted by the constants
a.

Corollary 32.1 The ordinals of 9Ϊ are precisely the ordinals ofWl; in particular, if 9tt
is a well-founded model, then so is W.

Corollary 32.2 The sets of 9W are well-ordered by a class in the model W.

Lemma 33 The class form of AC holds in W.

By these past lemmas, we see that 9ί satisfies the axioms of Σ*. We will
now show that 9f satisfies P(ω/) c L.

Proof: We will apply Lemma 1.5.4 (of this dissertation), which can be
proved in this method of forcing, for the case where λ = ωζ. Let {qμ}μ<^. be
a sequence of conditions such that:

(1) y<δ-> qγd q8.

We now let

(2) q = U qμ.

By (1), q is an upper bound for the qμ. We will be done if we can show that
q is a set of conditions. We must, therefore, show that q satisfies the con-
ditions of Definition 4. Since each qμ is a set of conditions, we have

(3) qμ = U <$.
aeRegζ

Therefore, by (2) and (3),

(4) q = U U <.

By the generalized commutativity and associativity of unions, we obtain

(5) q = U U qa

μ

If we now let

(6) q* = U Qa

μ

μ<$ζ

we obtain

(7) q = U qa

creReg^

where we now need only show that the qa, as defined in (6), are of the proper
form. But, by (6), any quadruple in #αmust be in some qj*, and hence must
be in the form required by Definition 4. We have now verified (i) and (ii) of
Definition 4. We must now show that

(8) U Qβ is of cardinality < Kα, for ae Reg ,̂ βe Reg,.
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By (6), we have

βSa βSa μ<$ζ r

By reversing the order of unions, we have:

do)U^=U U ^
β^a μ<$ζβ^a

But, by (3), we have

(11)U<C U qβ

μ=qμ-
βSa r βeRegy

Since qμ is a set of conditions,

(12) U *£<«*.

Therefore, since $ζ < ttσ> and fcVis regular, and by (12), we have

(13) U U ^ Σ [)qίl<Xa.
μ<$ζ β^a μ<$ζ β^a

Thus, q satisfies part (iii) of Definition 4. Part (iv) is clear by (1) and (2).
Therefore q is a set of conditions and we have satisfied the hypotheses of
Lemma 1.5.4. Thus we have P{ω^ c L in W.

Lemma 34 If fy/s of cofinality greater than Kα in the model 9W, then the same holds
in the extension 91.

Corollary 34.1 Cardinals are absolute in the extension from 9W to il.

We must make the same changes in the proof of Lemma 35 as we have made
earlier.

Lemma 35 Let u denote a subset of tta in sJl. Then there is some p^kHn the
complete sequence used to define W and some set Π of sets of conditions
such that:

(i) /MΞΪI-» p c Γα.

(ii) Π ύ NQ.

(iii) /><*> ih u c tfα.

(iv) If qf is an extension of p^ and γ < N α , there is some pell compatible
with q ' such that either pΌp{k)\h- γeu or pΌp{k) IH ~(γeu).

In [5], Easton makes the convention that, for singular cardinals ^α, $G>a

is the first cardinal greater than or equal to ^ ' β f o r all β < a which are not
cofinal with Nα. We extend our definition of G to all ordinals (instead of
merely those > ζ) by letting G ra = a + 1 for a i ζ. We then have exactly the
same result as Easton's Lemma 36.

Lemma 36 2^α = NG,α m the model 9̂ .
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Proof: If a > ζ, the proof follows in exactly the same way as Easton's. If
a ^ ζ, we need to show 2^α = Nα+1, but this is easily proved using the methods
of our proof of Theorem 1.3 where we can now use AC (since it holds in 9l).

We have now completed the proof of Theorem II.7. The following is a
summary of the differences between Easton's Theorem and Theorem Π.7.

(1) Easton starts with a model of Σ* + GCH, while we used a model of
Σ* + GCH +P(ωζ) c L.
(2) Easton showed that the power sets of regular cardinals could have any
cardinalities compatible with Kδnig's theorem. We showed that we could
have P(o)ζ) c L and still allow the power sets of cardinals > ^ t o have any
cardinalities compatible with Konig's theorem.

Thus we see that the assumption of P(ωζ) c L does not affect the possible
cardinalities of regular cardinals greater than $ζ.

In this chapter we have seen the effect that the assumption of P(ω^ c L
has on V = L, GCH, and AC. In the next chapter we will study the effect of
assuming that all sets of cardinals are constructible.

CHAPTER III

CONSTRUCTIBILITY WITHOUT REGULARITY

In the first two chapters we studied the propositions P(a) c L for given
ordinal numbers α. We also mentioned a result of Levy that says that if
every set of ordinal numbers is constructible, and if we assume the axiom
of regularity in our set theory, then every set is constructible; i.e., V = L.
So, in some ways, the presence of the axiom of regularity makes V = L a
"least upper bound" for the P(a) c L. It then seems natural to ask whether
it is necessary to have the axiom of regularity in order to have this situa-
tion. We answer this in the affirmative. In fact, we will even go further
than this. We will show that if the axiom of regularity does not hold, then it
is possible to have a model in which every set that consists solely of con-
structible elements will itself be constructible (yet in which we do not have
V = L). Thus, we will have a proper decomposition (in ZF without regular-
ity) of V = L into the axiom of regularity and the proposition
VxixeW A ^ ί c L ^ ^ L ) . We will formalize these ideas with the following
theorems.

The first theorem that we present is weaker than the above-mentioned
result of Levy, but we include it because it gives a good idea of the role
that the axiom of regularity plays in relation to V = L. Before giving this
theorem, we first mention that if the axiom of regularity is true, then it is
impossible to have an infinite descending e-chain; i.e., there do not exist
sets x, xl9 x2,... such that . . . e xn+χ€xne... exλex. (For a proof of this
see Rubin [15], p. 117.) In this chapter we shall use ZF* for ZF without the
axiom of regularity.
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Theorem ΠI.l In ZF*, V = L ^

(i) Axiom of regularity

and

(ii) Vx(xeV .Λ.X c L -tfeL).

Proof: If V = L, then clearly (ii) is true (because the consequence of the
implication is true). It is likewise easy to show that V = L -> (i). (See [15],
p. 360, Theorem 14.2.17.) Therefore we have V = L -• (i) + (ii).
(1) Suppose we have (i) and (ii),

and also suppose it is false that V = L; i.e., there is some xeV such that

(2) ~(*eU.

We first note that, since φe L, we have

(3) x ?φ.

By (ii) and (2), there must be some xλ such that

(4) xλex

and yet

(5) - ( ^ e L ) .

By (5), we see that

(6) xλ ϊφ.

Again, by (ii) and (5), there must be some x2 such that

(7) x2exx

(8) ~(* 2 eL).

This process can be continued for every integer n; hence, we will obtain
#, #I,ΛΓ2, . . . such that, by (4), (7), . . . we will have

(9) . . . xn+1exne. . . ex1ex

which contradicts (i). Thus the theorem has been proved.

We now wish to show that this is a proper decomposition of V = L. We
will do this by showing that the axiom of regularity does not imply
Vx(xeV. A.X c L -> xel) nor does the reverse implication hold. We treat
the easy case first:

Theorem III.2 In the field of ZF*, the axiom of regularity does not imply
Vx(xeV ΛΛΓC L ->xel).

Proof: Suppose it did. Then, by Theorem ΠI.l, V = L<-> the axiom of reg-
ularity. But Cohen [3] has exhibited a model in which ZF* and the axiom of
regularity hold but in which ~(V = L).

Theorem ΠI.3 In the field of ZF*, VΛΓ(ΛΓ€V Λ X C L -*xel)does not imply
the axiom of regularity.
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Proof: It is enough to find a model 9Ϊ in which Vx(xe\/ Λ X C L -* xel) but
in which the axiom of regularity fails. We will now proceed to do this.
Since we are working with ZF*, we would like to define the subclass of sets
which satisfy the axiom of regularity. We do this in a way similar to that
which Shoenfield suggests in [20], p. 315, §2. He calls a set x regular if
each of its subsets z has a minimal element (i.e., lyiyez Λ yί)z = φ)). In-
stead of Shoenfield's notion of regular set, we shall use the related notion
of grounded set, whose definition is due to Mendelson [12]. The reason for
the use of grounded sets will become clear by Lemma IΠ.3.2.

Definition III.3.1 A set x is grounded <-> there is no infinite descending
e-chain beginning with x. (i.e., there do not exist xl9 x2,... such that
. . . exn+1exne . . . exxex.)

Lemma ΠI.3.2 x is grounded if and only if every element of x is grounded.

Proof:

(1) Suppose x is grounded;

suppose also that we have

(2) yex

and

(3) y is not grounded.

By (3) and Definition IΠ.3.1, we have yl9 y2,... such that

(4) . . . eyn+1eyne... ey2ey1ey.

But then, by (2) and (4), we have

(5) . ..eyn+1eyne. . . eyλeyex.

Hence we have

(6) x is not grounded,

which contradicts (l). Now suppose

(7) x is not grounded.

Then there are xί9 x2,... such that

(8) . . . exn+ιexne... ex2exxex.

But then we also have

(9) . . . exn+1exne... ex2ex1

and so,

(10) xλ is not grounded.

But x1ex) therefore, by (10), there is some element of x that is not
grounded.
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We now define our constructible sets in ZF*. We use the definition that
Cohen [3] gives and note that we can use this in ZF* as well as in ZF since
this definition depends only on the available ordinal numbers, and these are
the same in the two systems. To see that the ordinal numbers are the same
in ZF and ZF*, note that the definition of ordinal numbers in ZF* (e.g.,
Rubin [15], p. 176) requires that an ordinal number be well-ordered by the
e-relationship. But being well-ordered by e requires that there not be any
infinite descending e-chain; hence, the ordinal number must be grounded.

Definition HI.3.3 Let x be a set. The setx1 is defined as the union of x and
the set of all sets y for which there is a formula 2t(s, tl9..., tk) in ZF*
such that if 2ίx denotes 21 with all bound variables restricted to x, then for
some ζ in x, y = izex\ %x{z, lγ,..., Tk)\.

Definition III.3A For a an ordinal number, define Mα by:

Mo = 0

Mα= ( ( J M β ) '

Definition III.3.5 A set x is constructible (xel) if 3α such that #eMα.

Now we introduce into our language a countable number of O-ary func-
tion symbols (constants) χx, χ 2 , . . . and a binary predicate symbol " e " such
that:

Xi " e " x; <->z =j + 1.

Definition III.3.6 For a an ordinal number, define Nα by:

No = {χi, χ2, . •}

Nα= ( U N ^ ' -
β<a

Definition III.3.7 xeyi<^>la such that xeNa

Definition III.3.8 We define v e u in 91 by:

If u is a set, then v e u if and only if v is a member of vu
If u = xz , then veu if and only if υ = xt + 1 .

In other words, if u= x*, then veu<r^v " e " u. (See Cohen [3] p. 72 for
a similar introduction of symbols.)

Lemma IΠ.3.9 If x eMQand y ex, then there is some β < a such that y e Mβ.

Proof: This is evident from Definition III.3.3, Definition IΠ.3.4, and an
application of transfinite induction.

Lemma IΠ.3.10 For every x, y> and a:

(i) If xeHoand yex, then ytH0.
(ii) If x eNα, for a > 0, and yex, then there is some β > a such that yeNβ.

Proof: (i) is clear from Definitions III.3.6 and III.3.8. (ii) is clear from
Definitions IΠ.3.3, III.3.6, IIL3.8, and an application of transfinite induction.
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Lemma IΠ.3.11 The axioms ofZF* hold in L.

Proof: In [8], p. 6, Gδdel indicates that the axiom of regularity is unnec-
essary in his construction of L; i.e., even if he does not assume the axiom
of regularity in the original theory, he would still get a model L which has
all the same properties as when the axiom of regularity is assumed. Then,
in [18], Shepherdson proves that the axiom of regularity does not have to be
assumed. We proceed to give an informal proof. We note that in Cohen's
proof that L is a model for ZF, he does not use the axiom of regularity
except to verify the axiom of regularity in L (which we do not need) and to
show that, for every ordinal number a, αeMα+1 (which shows that the axiom
of infinity holds in L). We can avoid his use of the axiom of regularity in
verifying the axiom of infinity in the following way. To verify the axiom of
infinity in L, we need only show that the ordinal number ω is in L. We note
that 0eL, and if xe L, then^uU} is in L (since ίx}el by the axiom of pair-
ing and xuix} is in L by the sub-set axiom). Thus every finite ordinal
number is in L, and ω is just the union of all these finite ordinals.

Lemma IΠ.3.12 The axioms of ZF* hold in Ή.

Proof: This is handled in exactly the same way as the previous lemma,
except for the axiom of extensionality. But this is shown to be satisfied by
Definition IΠ.3.8.

Lemma IΠ.3.13 If a is an ordinal number, then Mα c Nα and, therefore,
L c m.

Proof: It is sufficient to show that for any sets a and b, a c b -» af c br. If
this can be shown then the proof proceeds by simple transfinite induction.

(1) Suppose a c b.

(2) Suppose that xe a\

By Definition ΠI.3.3, and (2), there is a formula %{z, tx,..., 4) such that

(3) x - { z\ zea A 3t1... \^xea A . . . Λ \ea A 2ία(£, 7ί9. . . , ?&))}.

But, by (1), we then have, from (3), that

(4) x = {z\zeb Λ ίtx... Ίk(tίeb Λ . . . Λ Tkeb Λ [%a(z, Ίl9... ,Ίk) A zea A ζ e a])}.

Now we let 33 be the formula

(5) 58(z, tl9 . . . , tkί^> zea A tλeaA . . .Atkea A [na(z9 tl9..., tk)].

Since a c b9 we know that

(6) (aΛ<->«β.

Therefore, by (5) and (6), we have

(7) %b(z9 t l 9 . . . 9 t k ) ^ > z e a A t 1 e a A . . . Λ t k e a A $ ϊ / e , tl9...9 t k ) .

Hence, by (4) and (7), we have

(8) x = {z \zeb A ίtl9.. .,Ίk(tιeb Λ , , , Λ 4 e h % U , 7 i , . . . , \))}.
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Thus, by (8) and Definition III.3.3,

(9) xeb'.

We have thus verified that a c b -* ar c b' and our lemma is proved.

We will now give the key lemma which determined our choice of a
model W.

Lemma IΠ.3.14 If x is a set in 9Ϊ and x is grounded, then x e L.

Proof: It is sufficient to show that if x is grounded and ΛreNαthen xelsΛa+1.
We will prove this by transfinite induction. We note that, by Definition
III.3.1 and Definition III.3.6,

(1) if x is grounded, then ~(xeNo).

Thus, if x is grounded and x eNa, we know that a > 0. Our induction
hypothesis is: for all β < a, if x is grounded and ΛΈN^, then x e M^+i Let
us suppose that

(2) x is grounded

and that

(3) xeNa.

If x = 0, then xetλi c Mα+1. Suppose ~(x = φ). Then, by Lemma ΠI.3.8 and
(3),

(4) y ex -" there is some β < a such that y eNβ.

By Lemma IΠ. 3.2, y is grounded, thus by (2), (4), and the induction hypoth-
esis, we have

(5) yeMβ+i.

By (5), we have

(6) x c Mα.

But we know that, by (6),

(7) x = {zebAa\zex}.

But, by (6),

(8) ztx*-*(zex)Ma.

Thus, by (7) and (8), we have

(9) x = {zehλa\ (zex)^a).

Therefore, if we let "zex" be the "H(z)" of Definition III.3.3, we immedi-
ately know that

(10)*e(Me)'.

But Mα = U Mβ = U MΛ. Therefore, by Definition III.3.4, we have
βSa β<a+i
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(11) xe(Ma)
f = ( U Mβ)f = Mβ+i. This completes the proof of the lemma.

β<a+i

Lemma III. 3.15 xe L -* x is grounded.

Proof: Let us suppose that

(1) x is constructible

and that

(2) x is not grounded.

By (2), there are yu y2,. . . such that

(3) . . . eyn+1eyne. . . ey^x.

By (1), there is an a such that #eMα. Hence by Lemma III.3.9 and (3), we
obtain

(4) 3αi(αi < a Λ ̂ e M ^ ) .

Likewise we obtain

(5) 3α2(α2

 < aι Λ 3>2eMα2).

In this way we obtain an infinite descending chain of ordinal numbers, which
contradicts the well-ordering of a by the e-relationship.

Lemma III. 3.16 W does not satisfy the axiom of regularity-

Proof: Noe9ϊ and . . . exn+1exne . . . e^eNo.

L e m m a I Π . 3 . 1 7 In SR, Vx(xeV, x c L -> xel) holds.

Proof: Let us suppose that

(1) x is a set such that x c L.

By Lemma IΠ.3.15 and (1),

(2) yex -* y is grounded.

By (2) and Lemma IΠ.3.2,

(3) x is grounded.

By (3) and Lemma III. 3.14,

(4) xel,

which concludes the proof of the lemma. The proof of Theorem IΠ.3.now
follows easily from Lemma III. 3.16 and Lemma ΠI.3.17.

The model W that we found for Theorem ΠI.3 is also useful in other
applications. It enables us to properly decompose other axioms of set
theory.

Corollary IΠ.4 Suppose b(x) is a predicate on sets such that, in ZF*, B(0),
l(x) -> B(ΛΓ), B(ΛΓ) -» (x is grounded) and V = B is not provable in ZF. Then
the axiom V = B can be properly decomposed into

(i) axiom of regularity
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and

(ii) Vx(xeV A x c B -> xe B).

Proof: The proof that V = B <-» (i) + (ii) is clear from Theorem IΠ.l when
we note that no property of L was used in that proof other than the fact that
φe L. The fact that (i) does not imply (ii) is clear from Theorem III.2 and
our hypothesis that V = B is not provable in ZF. It now remains to show
that (ii) does not imply (i). To show this, we note that in the model 91 of
Theorem III.3, by Lemma IΠ.3.14 and Lemma IIL3.15.

(1) x e L <r-^>χ is grounded.

Therefore, by our hypotheses,

(3) x el_<r->#€ B <e^x is grounded

and the proof proceeds as in Lemma III.3.16 and Lemma III. 3.17.

An example of such a predicate B is found in Levy [9], He defines a
weaker form of V = L which he calls V = L^, where xe Lκ if and only if x is
constructible from K, where K is a class. He also shows that (lK(v = lκ))
<->AC + axiom of regularity. Thus, for any K, Lκ satisfies the conditions
for Corollary III.4.

The proposition

Vx(xeV Λ j f c L - ^ i e L )

is also interesting in itself. Using the methods of Theorem 1.3, it can be
shown that if we assume this proposition and AC, then GCH is provable,
even without the axiom of regularity. Thus, even without the use of forcing,
we have the following independence theorem:

Theorem III.5 In the field of ZF*, GCH does not imply V = L.

The model W of Theorem III. 3 gives us an explicit example of a model
of ZF*, in which GCH holds but not V = L, since,

Theorem ΠI.6 In W, AC holds.

Proof: We first note a theorem of Cohen [3], p. 95 (which he proves without
the axiom of regularity):

Theorem (Cohen) There is a formula %(u, v, X, Y)9 such that, if Y is a
well-ordering of the set X, the relation u < v<r-^%{u, v, X, Ϋ) induces a
well-ordering of the set X\

Thus, in % we let φ(ρc) be the least a such that #eNα. Define x<y if φ(x) <
φ(y) or if φ(x) = φ(y) = a and* precedes y in the well-ordering of Nα. Thus
we have a well-ordering of all sets; hence, every set is well-ordered. Thus
we have AC, and Theorem III.6 has been proved.

Although AC is a theorem in the model 9? that we constructed above, it
is not true that AC follows from Vx(xeV Λ X C L -» xe L). In fact, we have:

Theorem ΠI.7 In the field of ZF*, AC is not a consequence ofVx(xeV Λ X

C L "» A Γ € L ) .
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Proof: We first note that, by [3], if ZF* is consistent, then so is ZF* +
(~AC). Since AC is equivalent to the well-ordering theorem (Zermelo's
Theorem), we can assume that there is a model 9t of ZF* which contains a
set that cannot be well-ordered. Call this set b. Now define Mα and L as in
Definitions III.3A and HI.3.5. As before, we introduce some new symbols
into our language. For each yeb, introduce the constant symbol χy.

Definition III.7.1. For a an ordinal number, define NQby:

N o = { x y b eb}

Nα=(UNβ>'
β<ct

Definition III. 7.2. x e W <-» 3 a such that x e Nα.

Definition 111.7.3. We define uev in 91 by:

(i) If v is a set, then u ev if and only if u is a member of v.
(ii) If v = χy, then u ev if and only if u = v.

The proof that W is a model of ZF* and that Vx(xe V Λ X C L -» xe L) holds
in 9? proceed as in Theorem IΠ.3. We will now show that AC does not hold
in W.

Lemma IΠ.7.4. No cannot be well-ordered.

Proof: Suppose No is well-ordered by some relation < . We then define the
ordering, in 91, y <<R Z if and only if χy < χz in

 sJl. This induced ordering, <<»,
thus well-orders the set b in 91. But this contradicts our assumptions on b,
and the lemma is proved. This completes the proof of Theorem III.7.

By Theorems III.5, IΠ.6, and III.7, we see the unusual role that the
proposition

Vx(xeV Λ x a I -» xe L)

plays with respect to the other strong axioms of set theory. By itself (i.e.,
without the axiom of regularity) it is not even sufficient for the proof of AC.
If we assume that both it and AC hold, we then have GCH but not V = L.
Finally, and perhaps most importantly, together with the axiom of regular-
ity it provides a proper decomposition of V = L. Thus, it gives a better
explanation of the place of the axiom of regularity in the theory of con-
structible sets.

We shall investigate some other properties of the proposition
Vx(xeV Λ # c L - * Λ ; e L ) i n a future paper.
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