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TWO MODES OF DEDUCTIVE INFERENCE

JOHN R. GREGG

1. This study is a sequel to the author's [1], which tried to exhibit a
system of natural deduction as a mere typographical variant of an axiom
system G. The aim was to provide a proof technique combining the formal
advantages of deduction from axioms with the intuitive advantages of deduc-
tion from assumptions or premises.

To some readers, however, the central notion of a context—and the no-
tation embodying it—were psychologically opaque or unmanageable in
practice. Furthermore, the conventions bridging the axiomatic method and
the method of natural deduction were jerry-built, piecemeal and by
example. Thus, the paper failed to meet some reasonable standards of
simplicity and directness. For these reasons, a fresh approach seems in
order.

The burden of the sequel, therefore, is to rejustify the claim that the
best features of the axiomatic method and of the method of natural deduction
may be secured within the framework of the first alone; by formulating a
new axiom system G' that is tractable to generalized deductive routine, by
showing that some straightforward conventions for rewriting its formulae
yield a method of proof indistinguishable in practice from well known tech-
niques of natural deduction, and by proving that the system is both complete
and sound in the sense that all and only valid quant if icational formulae are
among its theorems.

G' and its metalanguage are entirely new. The choice of primitives is
in line with popular tastes, the notion of context is abandoned in favor of a
more transparent descriptive device (2.1) and the major link between the
axiomatic and natural methods of deduction is forged in one stroke by re-
cursion (6.1). The presentation is so ordered as to facilitate comparison
with that of the parental essay; nevertheless, it is entirely self-contained,
thus sparing those with no interest in comparative anatomy the labor of
repeated cross-reference.

2o The primitives of G' are 0-place predicate letters (sentence letters)
ζP\ ζQf > iγ\ * s ' a n d their subscripted variants, m-place predicate letters
(m ^ 1) 'Fm', <Gmy, Ήm ' and their subscripted variants, variables (w\ V ,
'y\ (z' and their subscripted variants, the negation sign '-', parentheses,
the conditional sign ' D ' and the universal quantifier sign 'V\
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The formulae of G' are all and only expressions identified by these
rules: an n-place predicate letter (n ^0) followed by a string of n variables
is a formula; if P is a formula then - P is a formula; if P is a formula and Q
is a formula then (P =) Q) is a formula; if X is a variable and P is a formula
then VXP is a formula.

Henceforth, 'P', ζQ', ζR' and CS', plain or subscripted, are to be con-
strued as metalinguistic variables ranging over formulae, 'X' and Ύ' as
ranging over variables. Thus, -(P =) Q) is the negation of the conditional
whose antecedent is P and whose consequent is Q, VXP is the universal
quantification of Pwith respect to X, and so on.

An occurrence of X in P i s free in P if it lies within no part of Pof the
form VXQ, else it is bound in P. X itself is free or bound in P according
as it has free or bound occurrences in P. The formula that is like P except
for having free occurrences of Y at all places where P has free occur-
rences of X will be denoted by ζ(P: Y/X)\ Thus, if P lacks free occurrences
of X, or if Y is X; (P: Y/X) is simply P. The practice of writing, e.g.,
<-(P: Y/xy for '(-P\Y/X)> or <((P: Y/X) D (Q: Y/X))> for <((P D Q): Γ/X)>
should be self-explanatory.

It will be necessary to speak repeatedly of strings of formulae. To this
end, ζ09 is adopted as a metalinguistic constant purporting to name the
empty string of formulae, and the Greek letters ζφ\ 'ψ' and V will be used
as metalinguistic variables ranging over strings of formulae.. What is to
count as a string of formulae is specified by these rules: 0 is a string of
formulae; if φ is a string of formulae then φP is a string of formulae. Each
string of formulae is said to be initial in itself; furthermore, if φ is initial
in ψ, then φ is initial in ψP. In other words, φ is initial inψ if and only if
0 is ψ or is an initial segment of ψ.

A function mapping the class of non-empty strings of formulae into the
class of formulae is given by the following recursion:

2.1 /(OP) = P; f(φPQ) =f(φ(P D Q)).

For example, f(0PQR) = / ( 0 P ( Q D # ) ) = / ( 0 ( P D ( Q ΏR))) = (PD(QΏR)) and

/(0P(PD Q)Q) =/(0P((PD(?) =><?)) =/(0(P=>((PD Q)Ό Q))) = (P=) ( ( P D Q) D Q)).
Clearly, the converse of / is not a function.

3. We are now in position to describe the axioms of G' and to state the
rules of inference»

3.1 Axiom schema. f(φPP), i.e., / ( 0 ( P D P ) ) .
3.2 From /(0-P) one may infer f(ψPQ)9 i.e., f(ψ(PDQ)), provided that φ is

initial in ψ.
3.3 Fromf(φ-PP), i.e., / ( 0 ( - P D P ) ) , one may infer f(ψP), provided that φ

is initial inψ0

3.4 From f{φP) and f(ψPQ), i.e.,f(ψ (Pz)Q)),one may infer f(χQ), provided
that both φ andψ are initial in χ.

3.5 From fiφVXP) one may infer f(ψ (P: Y/X))9provided that φ is initialin

Ψ,
3.6 From f(φ(P:Y/X)) one may infer /(ψVXP), provided that φ is initialin

ψ and Y is free neither in VXP nor in any formula of φ.
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A proof in G' is a sequence Pl9 P2,..., Pm in which, for each k,

1 ^k < m, Pk is an axiom or is inferred from one or more preceding

formulae in accord with the stated rules of inference. A formula P is

provable in (is a theorem of) G' if and only if there exists a proof in G'

whose terminal formula is P.

Familiar truth functional connectives other than ' - ' and ζ^\ as well as

existential quantifiers, are introduced in the following list of definitions.

3.7 (P.Q) for - (PD-β).

3.8 (PvQ) for (-PDQ).

3.9 (P^Q)for - ( ( P D Q ) D - (Q Ώ P)).

3.10 3Z for -VX-.

4. Supposing some formula of the ίormf(0 PλP2 PnQ) to be a candidate

for theoremhood, one may hope to elect it to that office by adopting the

following strategy: first set down the axioms f(0P1P1), f(0P1P2P2),...,

f(0P1P2... PnPr) and then apply the rules of inference.

For example, suppose that /(0P(PoQ)Q) = (PΏ((PΏ Q)Z> Q)) is to be

proven. The proof schema below shows how to proceed.

(1) /(OPP) Axiom

(2) /(0P(P D Q)(P D Q)) Axiom

(3) f(0P(P^Q)Q) (1), (2), 3.4

The same procedure suffices to establish theoremhood of the following

fiO(P^>(QΌR))(PoQ)PR) = ((PΏ(QΏR))Ό((PΏQ)Ώ(PDR))):

(1) /(0(PD(Q=>Λ))(PD(QD/2))) Axiom

(2) /(0(PD(QD,R))(PDQ)(PDQ)) Axiom

(3) / ( 0 ( P D ( Q D / ? ) ) ( P D Q ) P P ) Axiom

(4) f(0(pz>(QDR))U>ΏQ)PQ) (2), (3), 3.4

(5) /(0(PD(QDi?))(PDQ)P(QD#)) (1), (3), 3.4

(6) /(0(PD(QDJR))(PDQ)Pi?) (4), (5), 3.4

Should this strategy fail to yield a proof of/(0P!P2... PnQ), one may

try a second: set downf(0P1P1),f(0P1P2P2),..., f(0PiP2.. ° PnPn) as be-

fore, then add the further axiom f(0P1P2 . . . Pn-Q-Q) and apply the rules of

inference. The aim here is to get f(0PχP2... Pn-QQ)> from which the

theorem will follow by 3.3.

Thus,/(0PQP) = (P'DiQ DP)) is a theorem:

(1) /(OPP) Axiom

(2) f(0PQQ) Axiom

(3) /(OPQ-P-P) Axiom

(4) /(0PQ-P(PD-Q)) (3), 3.2

(5) /(OPQ-P-Q) (1), (4), 3.4

(6) f(0PQ-P(Q^>P)) (5), 3.2

(7) f(0PQ-PP) (2), (6), 3.4

(8) fiOPQP) (7), 3.3

The same strategy establishes/(O(-PD-Q)QP) = ( ( - ? D - Q ) D ( Q D P ) ) :
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(1) /(0(-PD-Q)(-PD-Q)) Axiom

(2) /(O(-PD-Q)QQ) Axiom
(3) /(0(-PD - Q)Q-P-P) Axiom
(4) /(0(-P D - Q)Q-P-Q) <1), (3), 3.4
(5) / ( O ( - P D - Q ) Q - P ( Q D P)) (4), 3.2

(6) /(0(-P D - Q)Q-PP) (2), (5), 3.4
(7) /(O(-PD-Q)QP) (6), 3.3

The reader may have noticed a certain redundancy in some of these
examples; the third, for instance, could have been shortened to three lines.
But here we are concerned less with elegance than with routine.

5. For G', as for most other deductive systems, derived rules of inference
are convenient sources of power—power being measured as units of work
accomplished per unit of elapsed time. Some of the rules stated below are
left unjustified; proof schemata appended to the remainder are to be
imagined as prefaced by assumptions that the provisos on the rules are
satisfied. Rules 5.1-5.12 have the common proviso that φ is initial inψ.

5.1 From f(φP) one may infer f(ψP).

(1) f(φP) Given
(2) f(φPP) Axiom
(3) f(ψP) (1), (2), 3.4

5.2 From f{φ—P) one may infer f(ψP).

(1) f(φ--P) Given
(2) f(φ-PP) (1), 3.2
(3) f(ψP) (2), 3.3

5.3 Fromf(φP) one may infer f{ψ~PQ), i.e.,f(ψ(-P D Q ) ) .

(1) f(φP) Given
(2) f(φ-p-p) Axiom

(3) /(0-P(PDQ)) (2), 3.2

(4) f(ψ-PQ) (1), (3), 3.4

5.4 From f{φP-P), i.e., f(φ(P D -P)), one may inferf(ψ -P).

(1) /(0(PD-P)) Given
(2) /(0--P—p) Axiom

(3) f(φ--PP) (2), 5.2
(4) f(φ-p-p) (1), (3), 3.4

(5) /(Ψ-P) (4), 3.3

5.5 From fiφPQ), i.e., f(φ(P^Q)), one may infer f(Ψ-Q-P)9 i.e.,
/(ψ(-QD-P)).

(1) f(φ(PDQ)) Given
(2) f(φ-Q-Q) Axiom
(3) /(0-Q--P—P) Axiom
(4) /(0-Q-PP) (3), 5.2
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(5) f(φ-Q-PQ) (1), (4), 3.4
(6) f(φ-Q-P(Qo-P)) (2), 3.2
(7) f(φ-Q-p.p) (5), (6), 3.4

(8) f(ψ -Q-P) (7), 3.3

5.6 From f(φP-Q), i.e., f(φ{Po-Q)), one may infer f(ψQ-P), i.e.,
f(ψ(Q^-P)).

5.7 From f(φ-PQ), i.e., f(φi-P^Q)), one may infer f(ψ-QP), i.e.,

f(ψ-Q^>P)).

5.8 From f(φ-P-Q), i.e., f(φ{-Pz)-Q)), one may infer f(ΨQP), i.e.,
f(ψ(Qz>P)).

5.9 From f(φ(P z> Q)P), i.e., f(φ((P3 Q)DP)), one may infer f(ψP).

(1) f(φdP^Q)^P)) Given
(2) f(φ-P-P) Axiom
(3) f(φ-P(PZ)Q)) (2), 3.2
(4) f(φ-PP) (1), (3), 3.4
(5) f(ψP) (4), 3.3

5.10 From f(φ-(P 3 Q)) one may infer f(ψP).

(1) f(φ-(P ^ Q)) Given
(2) /(ψ((PDQ)DP)) (1), 3.2
(3) f&P) (2), 5.9

5.11 From f(φ-(P z> Q)) one may infer f(ψ -Q).

(1) f(φ-(P => Q)) Given
(2) f(φ—Q—Q) Axiom
(3) f(φ-Q(-Qz>-P)) (2), 3.2
(4) f(φ-Q(PDQ)) (3), 5.8
(5) /(f.-Q((PD(?)D-Q)) (1), 3.2
(6) f(φ--Q-Q) (4), (5), 3.4

(7) /(ψ -Q) (6), 3.3

5.12 From f(φ(P:Y/X)) one may infer f(ψ3XP).

(1) f{φ{P:Y/X)) Given

(2) f(ψ-3XP-3XP) Axiom
(3) /(</>- 3 XP--VX-P) (2), 3.10
(4) f(φ-3XPVX-P) (3), 5.2
(5) f(φ- 1XP-(P:Y/X)) (4), 3.5
(6) f(φ(P:Y/X) 3XP) (5), 5.8
(7) f(ψ3XP) (1), (6), 3.4

5.13 Fromf(φVX(PDQ)) one may infer f(ψ 3XPQ), i.e., f(ψ(3XPZ)QΪ), pro-
vided that φ is initial in-ψ and X is not free in Q.

(1) f(φVX(PZ) Q)) Given

Let Y be any variable that is not free in (l).

(2) f(φ((P:Y/X)z>Q)) (1), 3.5
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(3) f{φ-Q-{P:Y/X)) (2), 5.5
(4) /(φ-QVZ-P) (3), 3.6
(5) /(ψ-VX-PQ) (4), 5.7
(6) f(ψ 1XPQ) (5), 3.10

5.14 Fromf(φlXP) andf(ψ(p:Y/X)Q),i.e.,f(ψ ((P:Y/X)ΏQ)), one may infer
f(χQ)y provided that both φ and ψ are initial in χ and Y is free neither in
1XP nor in any formula of'ψ nor in Qo

(1) f(φlXP) Given
(2) f(ψ(P:Y/X)Q) Given

(3) f(ψ-Q-(P:Y/X)) (2), 5.5
(4) /(ψ -QVX-P) (3), 3.6
(5) f(ψ -VX-PQ) (4), 5.7
(6) f(ψlXPQ) (5), 3.10
(7) f{χQ) (1), (6), 3.4

5.15 From f(φVXP) one may infer f(ψ -IX-P),from f(φ-lX-P) one may
infer f(ψVXP), from f(φ-VXP) one may infer f(ψlX-P), from f(φlX-P) one
may infer /(ψ-VXP), from /(φVX-P) one may infer f(ψ-3XP) and from
f(φ-lXP) one may infer f(ψVX-P), provided that φ is initial inψo

6. Perhaps enough has been said to show that G' is like a system of natural
deduction in being amenable to explicitly statable strategies for construct-
ing proofs. Three simple conventions for rewriting formulae will work it
into something resembling a system of natural deduction in still other
respects.

As already noted, the converse of/is not a function: to distinct argu-
ments of / there may correspond the same value. Thus, f(0PQRS) =
flOPQfaΏS)) =/(0P(Q=)(βDS))) = / ( O ( P D ( Q D ( R D S ) ) ) ) = ( P D ( Q D ( R D S ) ) ) .

But the functionality of / itself suggests our first convention: construe any
argument of/as abbreviating the corresponding value, and ignore the nota-
tion '/( )' of functional application when reading axiom schemata or rules
of inference. In effect, we adopt a recursion applicable to whole lines of
proof:

6.1 OP for P; φPQ for φ(P^Q).

Thus, the first proof schema of section 4 may now be written as follows:

(1) OPP Axiom

(2) 0 P ( P D Q ) ( P D Q ) Axiom
(3) 0P(P^Q)Q (1), (2), 3.4

Under this convention, each axiom is of the form φPP. The second
convention now follows: replace the first occurrence of P in φPP by the
numeral of the line in which φPP appears, and preserve the numerical
representation of P in succeeding lines as long as convenience dictates.
Accordingly, the proof schema above may be written in the following way,
numerals being used autonymously:

(1) 01P Axiom
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(2) O12(P^Q) Axiom
(3) 012<? (1), (2), 3.4

In this form, proofs are faintly reminiscent of proofs by natural de-
duction. The resemblance is enhanced by use of a third convention: set off
strings of numerals established by application of the second convention
from the formulae succeeding them. Thus, rewriting the example above:

(1) 01 P Axiom
(2) 012 (PDQ) Axiom
(3) 012 Q (1), (2), 3.4

With 6.1 at hand, a really striking likeness is obtained by systematically
lifting conventions:

(4) 01 (tPΏQ)ΏQ) (3), 6.1
(5) 0 ( P D ( ( P D Q ) D Q ) ) (4), 6.1

(6) (PΏ((PΏQ)ΏQ)) (5), 6.1

Without instruction to the contrary, one viewing this layout might well
suppose it to be a proof by natural deduction; that 'Axiom' is a misnomer
for 'Premise ' ; that 6.1 is a conditionalization rule; that the strings of
numerals are devices for indicating the scopes of premises; that but two of
the six lines are valid. (The recurrence of Ό ' , and its final elimination,
might be puzzling.) The reader sees the twists in this assessment; never-
theless, it is not altogether bad, and the fact that it might have been made
goes far to establish the claim of the introductory section. Our three con-
ventions have yielded what may be called a system of quasi-natural deduc-
tion.

To forestall possible misunderstanding, we shall close this section
with two versions of the same proof; one in regular axiomatic form, the
other a quasi-natural deduction. Their lines are formulae of the object
language, hence Ό ' and other metalinguistic signs do not occur. There is a
single two-place predicate letter from which the numerical superscript is
omitted.

(1) QyVxFxy D ΊyVxFxy) Axiom
(2) (3 yVxFxy^> (VxFxy^VxFxy)) Axiom
(3) (lyVxFxy^(VxFxy^Fxy)) (2), 3.5
(4) (lyVxFxy^> (VxFxyΏ lyFxy)) (3), 5.12
(5) {ΊyVxFxy^lyFxy) (l), (4), 5.14
(6) (lyVxFxy^VxlyFxy) (5), 3.6

This is the full dress axiomatic version; the other follows.

(1) 1 lyVxFxy Axiom
(2) 12 VxFxy Axiom
(3) 12 Fxy (2), 3.5
(4) 12 lyFxy (3), 5.12
(5) 1 (VxFxy^lyFxy) (4), 6.1
(6) 1 lyFxy (1), (5), 5.14
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(7) 1 VxlyFxy (6), 3.6

(8) (lyVxFxy^VxlyFxy) (7), 6.1

7. Church's system F 1 [2] is known to be complete in the sense that all

valid quantificational formulae are among its theorems. Therefore, to show

that G' is complete, it is sufficient to show that all theorems of F 1 are

theorems of G\

The axioms of F1 are given, in our notation, by the schemata following:

(i) f(OPQP)

(ii) f(O(P^(Qz)R))(PZ)Q)PR)

(iii) fiΌ(-P^-Q)QP)

(iv) /(OVX(PDQ)(PDVXQ)) , ifX is not free in P.

(v) f(0VXP(P:Y/X))

There are two rules of inference:

(vi) From /(OP) and f(θ(P D Q)) one may infer /(θ Q).

(vii) From f (OP) one may infer /(OVXP).

A proof in F 1 is a sequence Pu P2,..., Pm which is such that, for each

k, 1 ^k ^m, Pk is an axiom or is inferred from one or more preceding

formulae by (vi) or by (vii). A formula P is provable in (is a theorem of)

F 1 if and only if there exists a proof in F 1 whose terminal formula is P.

Suppose of a proof in F 1 that all lines preceding some arbitrarily

chosen line Pk are provable in G'. What is to be shown is that Pk is prov-

able in G'. There are seven cases to consider. Cases (i)-(iii): Pk is

either an axiom f(0PQP), or/(θ(PD (Q Z)R))(PD Q)PR), or/(θ(-P=) -Q)QP).

Then Pk is provable in G', as shown in section 4. Case (iv): Pk is an

axiom f(0VX(PD Q)(P D VXQ)) having no free occurrence of Xin P. Then Pk

is provable in G', as follows:

(1) /(OV^PD <?)VX(P=) Q)) Axiom

(2) / ( O V ^ P D Q)P(Q:X/X)) (l), 3.5

(3) /(OVX(P=)Q)(PDVZQ)) (2), 3.6

Case (v): Pk is an axiom f{WXP{P\Y/x)). Then Pk is provable in G', as

follows:

(1) /(OVXPVXP) Axiom

(2) f(0VXP(P:Y/X)) (1), 3.5

Case (vi): Pk is f(0Q) and is inferred from preceding lines f(0P) and

/ ( O ( P D Q ) ) . By hypothesis, both/(OP) and/(θ(P^Q)) are provable in GO

Hence, there exists a proof in G' (a proof of/(OP) continued by a proof of

/(0(PD<?)), say) in which both/(OP) and/(θ(P D Q)) are lines; whence, one

may infer/(OQ) as a further line by 3.4O That is, Pk is provable in G\

Case (vii): Pk is/(0VXP) and is inferred from a preceding line /(OP) β By

hypothesis,/(OP) is provable in G\ Hence, there exists a proof in G' whose

terminal line is/(0P), i.e.,f(θ(P:X/X)); whence, one may infer/(OVXP) as a

further line by 3.6. That is, Pk is provable in G'. Thus, in all cases, Pk is

provable in G'. But Pk was any line of a proof in F 1 . That all formulae

provable in F 1 are provable in G' follows by course of values induction.
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What has been shown is that all theorems of F1 are theorems of G\
But all valid quant if icational formulae are theorems of F 1 ; hence, all valid
qualificational formulae are theorems of G\ That is, G' is complete.

8. In showing that all formulae provable in G' are valid, free use will be
made of well known laws of validity, implication and equivalence (e.g., see
Quine, [3]). An auxiliary notation will be useful: if 0 is empty, ζ*φ' will
refer to any valid formula devoid of free variables; if 0 is non-empty, '*0'
will refer to any conjunction of all and only formulae of 0. Thus, by laws
alluded to above, f(φP) is equivalent to (*φ DP) and if 0 is initial inψ then
*ψ implies *0.

Suppose of a proof in G' that all lines preceding some arbitrarily
chosen line P& are valid. What is to be shown is that Pk is valid. There are
six cases to consider. Case (i): Pk is an axiom f(φPP), i.e., f(φ(P^P)).
Because (P=>P) is valid, it is implied by any formula; in particular, by *0.
Hence, ( * p ( P 3 P ) ) is valid; hence, so is its equivalentf(φ(Pz)P)). That
is, Pk is valid. Case (ii): Pk is/(ψ(P=) Q)) and is inferred from a preceding
line /(0-P). By the proviso on 3.2, 0 is initial in ψ, so *ψ implies *0. By
hypothesis, f(φ-P) is valid; hence, so is its equivalent (*0=) -P). That is, *0
implies -P, But -P implies ( P D Q ) ; SO, by transitivity of implication, *ψ
implies (PD Q). That is, (*ψ ^(P'D Q)) is valid; hence, so is its equivalent
/(ψ(P=)Q)). That is, Pk is valid. Case (iii): Pk is f(ψP) and is inferred
from a preceding l i n e / ( 0 ( - P D P ) ) . The argument establishing validity of
Pk is analogous to that of Case (ii) and is omitted. Case (iv): P& is f(χQ)
and is inferred from preceding lines/(0P) and/(ψ(P^ Q)). By the proviso
on 3.4, both 0 and ψ are initial in χ. Hence, *ψ implies *0, also *ψ, also
(*0.*ψ). By hypothesis,/(0P) and/(ψ(P^Q)) are both valid; hence their
respective equivalents (*φDP) and (*ψ ^ (PΌ Q)) are both valid. That is,
*0 implies P and *ψ implies (P^>Q). Hence, (*0.*^) implies ( P . ( P D Q » .

But ( P . ( P D Q ) ) implies Q; hence, (*0.*ψ) implies Q; hence, *χ implies Q.
That is, (*χ^Q) is valid; hence, so is its equivalent/(χQ). That is, Pk is
valid. Case (v): P^ is f(ψ(P:Y/X)) and is inferred from a preceding line
f(φVXP). By the proviso on 3.5, 0 is initial in ψ, so *ψ implies *0. By
hypothesis, f(φVXP) is valid; hence, so is its equivalent (*03 VXP). That
is, *0 implies VXP. But VXP implies (P:Y/X); hence, *0 implies [P:Y/X\
hence, *ψ implies (P:Y/X). That is, (*ψ Ό(P:Y/X)) is valid; hence, so is its
equivalent f(ψ(P:Y/X)). That is, Pk is valid. Case (vi): Pk iaf(ψ VXP) and
is inferred from a preceding linef(φ(P:Y/X)). By the proviso on 3.6, 0 is
initial in ψ, so *ψ implies *0. Furthermore, by the same proviso, Y has no
free occurrence in VXP or in the formulae of 0. By hypothesis, f(φ(P:Y/X))
is valid; hence, so is its equivalent (*0D (P:Y/X)); hence, so is
V 7 ( * 0 D ( P : F / X ) ) ; hence, so is (*φ^VY(P:Y/X)); hence, rewriting bound
variables, so is its equivalent (*0D VXP). That is, *0 implies VXP; hence,
*ψ implies VXP. That is, (*ψ ^ VXP) is valid; hence, so is its equivalent
fiψVXP). That is, Pk is valid.. Thus, in all cases, Pk is valid. But Pk was
any line of a proof in G'. That all formulae provable in G' are valid follows
by course of values induction. That is, Gf is sound.
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