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GENERALIZED ORDINAL NOTATION

FREDERICK S. GASS

This paper* is a contribution to the theory of ordinal notation, and it
should be accessible to those familiar with references [4], [5], and [δ]. For
a textbook reference, see §§11.7 and 11.8 of [7]. For standard results
and notation of recursive function theory, we generally follow [7]. "Sys-
tem" always means ordinal notation system, and "number" means non-
negative integer.

The purpose of this paper is to explore a broad class of systems that
generalize Kieene's notion of r-system. In a background section, following
notation and terminology, we describe some prominent results from ordinal
notation theory. Then in section 1 we review some facts about r-systems
and describe the generalized systems. Since the mathematical notation can
easily become forbidding in such investigations, we have adopted a simpli-
fied notation that is often dependent upon context for its full meaning.
Section 2 pursues the study of three particular systems that are noteworthy
for their resemblence to Kleene's Su including (in section 3) a maximality
property. In section 4 we identify the segment of ordinals for which these
systems provide notations. Since the systems are maximal for only a
proper sub-class of the generalized systems, we turn our attention in
section 5 to a result about the remaining generalized systems: as a class,
they admit no maximal system.

Notation and Terminology The notation and terminology are roughly those
of second-order recursive function theory. φe is the partial recursive
function with Gΰdel number e, N is the set of nonnegative integers, and T is
a fixed T-predicate. We assume familiarity with prenex normal forms
involving the predicate Γ. For m e {θ, l} and n e N, Σf and ϊl% are the

•This paper is derived from a thesis "The present state of ordinal notation
theory" written under the direction of Professor Donald L. Kreider and submitted to
the Graduate School of Dartmouth College, in partial fulfillment of the requirements
for the degree of Doctor of Philosophy with Mathematics as the major subject in
June, 1969. During my work on this dissertation I was supported by an N.S.F. fel-
lowship.
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usual prefix classes of relations on N, including subsets of N as 1-ary
relations. If, when in prenex normal form, the description of R has a
matrix of the form "T ι ' ' ' ' 'R* (e, xl9 . . . , XkV, we call e an index of the
relation R. If the description is specifically in Σw(Πw) form, then e is a
Σ%-index (H^-index) of R. An is the class Σ£ ί l K , and e = 2a 3b is a
An-ίndex of Rif and only if α is a Σw-index of R and b is a Π«-index of R. If
e = 2a 3b, then (e) 0 = a and (e)χ = b.

Ord is the class of all ordinal numbers, and // is the class of countable
ordinals. An ordinal a is classified as Σ j (Δ«, Π») if and only if that prefix
class contains a well-ordering of order type a. We take well-orderings to
be reflexive.

If R is a fc-ary relation, we write "R(xl9 . . . , #&)" as well as
" ( * i , . . . , Xk) eR"- The /ϊeZd of a binary relation R is {x: ly[R(x9y) v
β(3> >#)]}. If S is a well-ordering with # and y in its field, then x S-precedes
y if and only if S(x, y) and x Φ y.

Let F and G be functions, each defined on some subset of Nk, with
values in N. Then F(xί9 . . . , AΓ̂ ) — G(ΛΓI, . . . , Λ:^) if and only if either
both sides are undefined, or else both are defined with the same value. If
E(xl9 . . . , x^ is a mathematical expression having at most one numerical
value for each &-tuple of numbers, then \xλ . . . Xk\β (χi, . . , xk)] ^ s ^ n e

function F defined by F(xl9 . . . , xk) ^ E (x l9 . . . , χk).

We use the Recursion Theorem in this form:

If F is a (k + l)-ary partial recursive function, then there is a number

c such that φc = λΛΓx . . . Xk[F(c9xu . . . , xk)]

An ordinal notation system is a pair (Λ, I I) with A c N and I I a func-
tion from A into Ord. A is the set of names for ordinals, and I I is the
naming function. \A\ = { |#| :# e A} is the set of ordinals "named by
(A, I I ) . " If ^ is a collection of systems, then the system (A, I I) is a
maximal system in S if and only if (A, I |) e <S, and \B\ C \A\ for every
( 5 , I I) e S.

As quantified variables, we use Latin lowercase letters to range over
N, and Latin capitals to range over the class of relations on N.

Background In [8] Spector proved the surprising fact that every ΔJ ordinal
is in fact a Δ? ordinal, which is to say, recursive. Spector*s actual result
is that u>ι = ωλ for A e Δj, a statement equivalent to the one mentioned
here. Later Kreisel observed that even the Σj ordinals are recursive. To
display the known equalities and proper inclusions among prefix classes of
ordinals, we offer the following diagram. We note that each class of
ordinals is a proper initial segment of //.

(1) Δj = Δi . Δj ^ X K

Beyond the class of Δ3 ordinals, the equalities and inclusions depend upon
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which set theoretic axioms one assumes. See [1] and [2] for consequences
of the axiom of constructibility and the axiom of determinateness. I n [ l ] ,
assuming the axiom of constructibility, Addison proves the Basis Theorem
for Σλ

n, which is crucial to the proof of

An for n > 3.

1. R-systems and generalized r-systems In [4] an r-system is defined to
be a system (A, | |) satisfying the following conditions: there are partial
recursive functions φk9 φp, and φq such that

(i) If | * | = 0, then φk(x) = 0;
(ii) If \x\ = a + 1, then φk(x) = 1 and \φp(x)\ = a;

(iii) If |AΓ| is a limit ordinal α, then φk(x) = 2 and \φq(x>0)\,
\φq(

χ> 1)1 l0 ?(#>2)|, . . . is a fundamental sequence for a.

One easily proves that \A\ is a proper initial segment of //. An ordinal
is constructive if and only if it is named by an r-system, and Πc is the
class of constructive ordinals, By results of Markwald and Spector, we
may add "IIC = Δ°" to the left end of diagram (1): an ordinal is construc-
tive if and only if it is recursive.

The existence of an r-system that names all the constructive ordinals
was established already in [4], where Kleene described three such systems.
We describe here the first of the three, Si = (A, I I). For each ordinal a,
let Na be the set of names in A for a. Then

^o = {i};
iVα+1 = {2*: xeNa};
for limit ordinal a, Na = {3 5 e : φe is a recursive function and |φβ(0)|,

|φ e ( l ) | , |φ e(2)|, . . . is a fundamental sequence for a}.

Here we follow [7], p. 207, which is a nonessential modification of Kleene's
original definition of Sλ. Having defined Na, we then set A = ( J Na and \x\ =
a if and only if x e Na . a

Before presenting the generalized r-systems, let us recall that the
entire preceding discussion can be "relativized" to any given relation R.
One simply uses everywhere in place of partial recursive functions φa,
functions φ% partial recursive in R. The definitions and notation are also
relativized; for example, " r R - s y s t e m " , " / / § " , and "Sf = (AR, | \)".

Generalized rsystems In ,addition to straightforward relativization, we
can generalize the notion of r-system by using various prefix classes of
relations in place of the partial recursive functions. A preliminary defini-
tion will make our description of the generalized systems easier.

Definition 1. Let Rbe a.(k + l)-ary relation on N. If (xlf . . . , xk, a) e Nk+1,
then \R(x!, . . . , xk, a) if and only if a is the unique x such that R(xλ,..., Xk,x\
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In order to avoid making three very similar definitions, we shall use
"C" to represent the various prefix classes. A generalized r-system is
any C-system, where "C-system" is defined as follows.

Definition 2. Let C be Σ%, Δn, or Π? for fixed m and n. An ordinal notation
system (A, | |) is a C-system if and only if there are relations K, P, and Q
in C such that

(i) If \x\ = 0, then \K(x,0);

(ii) If \x\ = a + 1, then \K(x,l) and \p\ = a, where \P(x,p);

(iii) If \x\ is a limit ordinal a, then \K(x,2) and |sol, UJ, I s2 I, . . . is
a fundamental sequence for a, where \Q(x, n, sn) for each n e N.

Thus the auxiliary relations K, P, and Q enable one to recognize and
deal with the various kinds of ordinals, via their names in A. As with
r-systems, the set |A| is a proper initial segment of //. Obviously every
r-system is also a generalized r-system, being a E^-system; and if C and
D are two prefix classes, C a subclass of D, then every C-system is a
D-system.

Let us call a C-system arithmetical if C is one of the artihmetical
prefix classes. We shall show in section 4 that the Δ^-systems as a class
name precisely the Δj-ordinals, and as a result constitute no ordinal-
naming improvement over the r-systems (recall "Πc = Δ°" and diagram
(1)). Consequently we shall disregard entirely the arithmetical case, con-
centrating on the C-systems with C = Σ£, Δ*, or Π*, for n > 1.

2. Generalized r-systems similar to S1 Letting C be Σj, Δ«, or π£ for
some fixed n > 1, we can describe a C-system that bears to other C-
systems a relationship similar to the one between Sλ and other r-systems.

Definition 3. The system (C, | |) is defined as follows. For each ordinal a,
let Na be the set of names in C for a. Then C = (J AΓα, where

iV0 = {l};

for limit ordinal α, iVα = {3 5e : e is an index for a function F in the
prefix class C such that |F(0)|, | F ( 1 ) | , 1 (̂2)1, . . . is a fundamental
sequence for a}.

To verify that (Σ£, I I), (Δ^, | |), and (Πi, I I) are C-systems for
appropriate C, let us consider possible auxiliary relations for them.
Clearly there are recursive functions able to play the roles of K and P (in
fact, the same K and P for all three systems), but the relation Q is neces-
sarily more complex. In the case of (Σ«, I I) and (ΔJi, | |), Q may be taken
to be Σn; in the case of (π£, | |) and (Δ*, | I) Q may be taken to be Π*.
Thus (Δi, I I) is both a Σji-system and a Π^-system.

Specifically, consider (Σg, II). We take

K(x,y) if and only if [x = 1 & y = 0] v [2 | x & y = 1] v
[otherwise y = 2]

P(Λ;,3;) if and only if [x has the form 2n & y = n] v [otherwise y = 1]
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(2) Q(x, nyy) if and only if [x has the form 3 5e &

lAVB3wTAtB(e, x, n, y, w)] v [otherwise y = 1].

Now if IxI is a limit ordinal a, then x = 3 5e where e is a Σ£-index of a
function F whose successive values name a fundamental sequence for a.
Hence \Q(x, n, F(n)) for every n; and so Q is a suitable auxiliary function
for (Σa1, I I). By the form of (2), we observe that (Σ2\ | |) is in fact a Σj-
system. To show that (Δ2, | |) is a Σj-system, we simply define the third
auxiliary function by

Q{x,ny y) if and only if [x has the form 3 5e & lAVBlwTΛ'B((e)0, x, n,y, w)] v

[otherwise y = 1].

Is (Δg, I I) a Δg-system? A by-product of section 5 will be the negative
answer to this question. For now, let us show that the three systems
mentioned above provide names for the same segment of ordinals.

Proposition 1. | ΣXJ = | Δx

w| = | fij|, for n > 1.

Proof: The proof is based upon the fact that every total Σi function F is a
total Π«-function., and vice versa. In fact, one can obtain a Πj-index (Σ^-
index) for F uniformly and effectively from a given Σi-index (Πj-index) e.
To substantiate this well-known fact, one observes that

(3) F(x) = y if and only if Vz[F(x) = z — z = y].

A Σj; description of "F(x) = z" gives rise to a Πj description of "Fix) = y",
and likewise with the prefix classes interchanged.

We shall prove only | Σ£| C |π£ | , since the other inclusions are proved
similarly. If F is a total Σj function with index e and φc is a recursive
function, one can evidently obtain a Πj-index for φcF uniformly and effec-
tively from e and c. Let H e a binary recursive function that accomplishes
this task. Now consider the partial recursive function

1, if y = 1
( 4 ) w % ~ 2Φc(x\ i f y = 2 x * 1

0, otherwise

With c regarded as a variable, the right side of (4) is a partial recursive
function of two variables. By the Recursion Theorem, then, (4) is a legiti-
mate definition of φc. One easily proves by mathematical induction that φc

is in fact recursive, being total. Next one proves by transfinite induction
on \y\ that y e Σj implies

(5) φc(y) e fίι

n a n d \ φ £ y ) \ = \y\ .

If I3H = 0, then 3; = 1 and (5) is obvious. If \y\ = a + 1, then y has the form
2*, Ul = α, then (5) follows by the inductive hypothesis. If \y\ is a limit
ordinal a, then y has the form 3 5 e where e is a Σg-index of a total function
JP whose successive values name a functional sequence for a. By properties
of h and the Gδdel number c, and by the inductive hypothesis, we again
conclude (5). Q.E.D.



GENERALIZED ORDINAL NOTATION 109

3. Maximalityof(C, | |) Having compared the systems (Σi, | |), (Δ^, | |),

and (Π», I I) with each other, we now turn to the maximality properties that

show how they compare with other C-systems. A useful lemma is this

second-order version of the Recursion Theorem.

Lemma Let C be Σ* or Π*, for n > 1. If S is a (k + ϊ)-ary relation in C,

then there is a number c such that the relation R with C-index c satisfies

R{xly . . . , xk) if and only if S(c,xly . . . , xk).

Proof: The form of this proof depends upon the specific Γ-predicate one

adopts. Suppose, for example, that C is Σj, k is 1, and "TA'B(e, . . . , MI)"

means that φA>B(. . .) converges by the wth step of computation. Let S have

Σg-index e, and let c be the number such that φA>B = Xx^φA'B(c yxx)], as

provided by the relativized Recursion Theorem. If R is the Σ\ relation with

index c, then R(xj) if and only if 3A\/BlwTA'B(c 9xl9w) if and only if

lAVBliwTA'B(e9c,xuw) if and only if S(c,Xj). Q.E.D.

Now we are ready for the proposition of this section.

Proposition 2. (Σ«, | I) and (Δ^, | |) are maximal Σn-systerns; (Π^, | |) and

(Δ«, I I) are maximal Π^ -systernsy for n > 1.

Proof: In light of Proposition 1, we may pass over (Δ^, | |). Since the

proofs for the other two systems are entirely similar, we shall consider

only (Σg, I I) as an example.

Let (A, I I) be a Σ^-system with auxiliary relations K, P, and Q. We

shall define a new Σ̂  relation R such that for all x e A,

(6) l y [ y e Σ * & \ R ( x , y ) & \ y \ = U l ] .

Delaying for a moment the justification for our definition, let R be defined

by

ί[K(x,0) & y = l ] v

(7) R(x,y) if and only if < [K(x, 1) & lulυ[R(x, u) & R(u, v) & y = 2V]] v

([K(x,2) & y = 3 . 5 ^ ] ,

where h is recursive, and h(x) is a Σg-index of the relation F such that

(8) F(nfm) if and only if lv[Q(x,n, v) &R(v9m)].

Proceeding by transfinite induction on \x\, we prove that R satisfies (6)

for all Are A. If \x\ = 0, then \K(x,Q)f \R(x,l), and (6) is true.

If \x\ = a + 1, then \K(x, 1) and \p\ = a, where \P{x,p). By the induc-

tive hypothesis, lq[q e Σg & lR(p,q) & Ul = Ipl ]; and by the definition of R

(second clause), ! R{x, 2q). Thus (6) is satisfied by taking y to be 2q.

If I x\ is a limit ordinal α, then ! # ( # , 2) and |s o l, IsJ, |s 2l, . . . is a

fundamental sequence for a, where \Q{x9n,sn) for each n. By the choice of

h,h{x) is a Σ^-index of a relation F such that F(n,m) if and only if ft(sw, m\

and by the inductive hypothesis F(n,m) implies \F(n,m). So F is in fact a

Σg-function with index k(x) and the property that \F(0)\, |F(1)|, |F(2)1, . . .

is a fundamental sequence for a. We conclude that 3 5 A ( x ) e Σ^ &

! β ( ^ , 3 5A(x)) & |3 5 M x ) | = Ul. That is, (6) holds.
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Finally, we must verify the existence of a Σg relation R with the de-
scription (7). For the remainder of this proof, let "flc" denote the Σg
relation with index c. We rephrase (7) and (8) as follows:

([K(x,0) & y = 1] v
(70 Rc(x,y) if and only if \ [K(x, ΐ) & lulv[P{x, u) & Rc(u, v) & y = 2"]] v

([#(*, 2) & 3> = 3 5g ( c 'x )],

where g is recursive, and g(c 9 x) is a Σg-index of the relation F given by

(80 F(n,m) if and only if lv[Q(x,n,v) & β c(t;,m)].
The existence of such a recursive g is evident. Since the right side of

(70 is a ternary Σ\ relation S(c,x,y), we obtain the Σ£ relation Rc for fixed
c via the lemma. Thus the R of (7) is Rc, and the h of (7) is λ#[g (c, x)].
Q.E.D.

What we have proved is more than just the maximality of (Σj, I I). The
relation R that enters into the proof establishes a kind of universality
property much like the one Kleene established for his systems Si and S3.
R is a Σ£ •"liaison" between the given system (A, I I) and fΣj, I I).

This is an appropriate place to indicate the motivation behind the
definition we gave for "C-system". A more obvious generalization of the
notion of r-system would be to require that K, P, and Q be functions, as are
the φk, φp, and φq of an r-system. However, our primary objective was to
find a generalization within which (Σ1

Λf | I), (Δi, I |\ and (&i, I I) would be
C-systems for appropriate C, and such that the proof of their maximality
would be fairly straightforward. The reader might ponder the difficulties
that arise when K, P, and Q are required to be functions.

4. The ordinals named by (C, I I) By virtue of Proposition 1, we can study
the classes \c\ by considering I Σn | for n > 1. We show in this section that
for fixed n this class of ordinals is exactly the class of Δi ordinals. Our
proof is in two parts, the first of which uses the fact that, for any relation
R in Δ ,̂ Kleene's relativized r-system sf is a Δ^-system. Indeed, the
auxiliary relations K and P for Si might as well be the same ones de-
scribed for Σg in section 2, and for Q we can take

Q{x,n,m) if and only if x = 3 5e & φ*(n) = m.

The fact that Q is a Δi relation follows from the recursive function
theoretic result that A e Δ*'R & R e Δi implies A e Δi (c.f. [7], p. 412).

Proposi t ion 3. If a is a Δi ordinal, then a e I Σ i |, for n>\.

Proof'. Let R be a Δi well-ordering of order type a. Since R is trivially
recursive in R, a belongs to the class Δj'R of β-recursive ordinals. By
relativized versions of results mentioned in section 1, a e Δj' if and only
if a e Πc if and only if a is named by the maximal rR-system S?. Then,
since Sf is known to be a Δ^-system, hence a Σ«-system, we conclude that
a is named by the maximal Σ^-system (Σ^, | |). Q.E.Ό.

Proposition 4. If a e I Σj |, then a is a ΔJj ordinal, for n > 1.
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Proof. We shall exhibit a recursive function φc with the property that for

all y e ΐι

n,

(9) φc(y) i s a n index of a ΣL

n well-ordering of order type > I3; I.

Before defining </>c, we must descr ibe some other functions that will

enter into the definition of φc.

Given an index e of a Σn binary relation S, one can uniformly and effec-

tively obtain an index of the Σn relation Sr given by

S'( a, b) if and only if [a > 0 & b > 0 & S(a - 1, b - 1)] v

[6 = 0 & a> 0 & S(α - 1, a- 1)] .

If S is a well-ordering of order type a, then S' is a well-ordering of order

type a + 1. We take / to be a recurs ive function such that /(0) is an index

of Sr whenever e is an index of S.

Suppose that for every i e N, S{ is a Σ^ binary relation; and suppose that

R is a Σj-binary relation with the property that for each i e N, 3 !^.[β(z, ej\

and βi is an index of S,-]. Then given an index of β, one can uniformly and

effectively obtain an index of the Σj relation Sf given by

S'(a,b) if and only if 3z3c3j3rf{α = 2f' 3C & & = 2y 3^ &

[[f = j & S, fc,d)] v [ e < 7 & Si(c,c) & S ; W,rf)]]}

If each of the S/ is a well-ordering, say of order type ah then S f is a well-

ordering of order type Σ,•«,-. We take ^ to be a recurs ive function such that

g(e) is an index of Sf whenever e is an index of R.

The final prel iminary function we need is a recurs ive function h with

the property that h(dye) is a Σ^-index of the " c o m p o s i t i o n " of R and φ^

whenever e is a Σ^-index of # . The composition S' is given by

Sr(a, b) if and only if lm[R(a, m) & φ/m) = δ ] .

We let w0 be a Σj-index of the empty well-ordering, and define φc via

the Recursion Theorem as follows.

Wo, if y = 1

,0, otherwise .

φc is easily seen to be recurs ive . One can prove that φc has property (9)

for every y e Σx

nby using transfinite induction on I y I. As usual, the cases

to consider a r e

(a) 13; I = 0, in which case y = 1

(b) \y\ = a + 1, in which case y - 2X and \x\ - a

(c) \y\ is a limit ordinal, in which case y = 3 5 e and e is a Σ^-index

of a function F such that | F ( 0 ) | , | F ( 1 ) | , | F ( 2 ) | , . . . is a fundamental se-

quence for I3; I .

We leave verification of these cases to the r e a d e r . Q.E.Ό.
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Corollary Let C be Σι

n, Δ
x

w, or Uι

n for n > 1. The system (C, | |) provides
names for precisely the Δι

n ordinals.

5. Maximal Δn-systems Given that (έ£, I I) and (Πi, | |) are maximal for
Σjz-systems and Πj-systems, respectively, one might guess that (Δ ,̂ | |) is
maximal for Δj-systems. If it were in fact a Δi-system it would automati-
cally be maximal by previous results and observations. In this section we
shall answer the question about (Δi, | |) by showing that there is no maximal
Δ^-system. The reader may recognize that our argument is an adaptation
of one used by Putnam in [6], A useful construction, described below, will
enable us to focus on certain Δ^-systems whose explicit description makes
them more tenable than others.

Let (A, I I) be a Δ^-system with auxiliary relations K, P, and Q. If Na

is the set of names in A for the ordinal a, then the following relationships
are implied by the definition of C-system.

N0<z{x: \K(x,0)}
(10) Na+I<z{x: \K(x, 1)& V.pP(xyp)}

For limit ordinals α, Na c {x : \K(x, 2) & {(i,k): Q(x,i,k)}is a total
function whose successive values name a fundamental sequence for a}.

We shall keep inclusions (10) in mind while defining a new system (B, | |)
that names at least all of IA | .

We define B to be (J Ma, where

M0 = {x: \K(x,0)}
Ma+1 = {x: \K(x,l)& lp[\P(x,p)&p e Ma ]}
For limit ordinals a, Ma = {x: etc. as in (10)}.

The ordinal-naming function I I is specified by | a\ λ - Ma for each ordinal
a. A little thought reveals that (B, \ |) is a Δ^-system with K, P, and Q as
auxiliary relations; and since Na Q Ma for all a, we have |A| c \B\ .

Proposition 5. \B\ is a proper subclass of the class of Δn-ordinals.

Proof: We shall describe a Δ^ well-ordering R whose order type is exactly
that of the set \B\ . As a result, the order type cannot belong to the initial
segment | J3|.

If S is a well-ordering, we associate with each y in the field of S a
unique ordinal y according to the rule y is the least ordinal greater than ~χ
for every x that S-precedes y. One proves by induction that the order type
of S is precisely the least ordinal greater than 3F for every y in the field
of S.

The well-ordering R promised above has the property that {x: x in the
field of R} = \B\ . We define R by

R(myn) if and only if 3α3/3[α < β & m is the least integer in Ma &
n is the least integer in Mβ].

Observe that R can also be described as in (11) and (12) below, where we
intend that G represent the set {(x, y) :x e Λf-}.
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(11) 3S3G{S is a w ell-ordering & N is the field ofS&
Vy[{x:G(x,y)} = M-] & lxly[x S-precedes y &
G(myx) &G(n,y) & Vz[[G(z,x) -> m < z] & [G(z,y) ^n <*]]]}.

(12) VSVG{[S is a well-ordering & N is the field of S &
Vy[{x: G(x,y)}= M-y] & lyVx -\G(x,y)] —
3#3;y[# S-precedes y & efc. as m(ll)]}.

Our intention is to prove that (11) describes R as a Σ^ relation, while
(12) describes β as a Πj relation. Thus R e Δ .̂ By inspection (recalling
that "S is a well-ordering" is a ΐl\'s expression), the reader will see that
it suffices to show the following expression to be in Σn

f ' form:

(13) {x: G(x,y)} = M^

Assuming that S is a well-ordering with field N, we can express (13) as
the conjunction of

(14) y is the first element of S-> {x: G{χ,y)} = {x: \K(x,0)}
(15) V£ [y is the successor of z in S —> {x: G(x,y)} =

{x: \K(x,\) & lp[\P(x,p) & Glp,z)]}]
(16) y is a limit element in S -> {x: G(x,y)} = {Λ:: !/ίU, 2) &

{(z,^) : Q(x,ί,k)} is a total function whose successive
values name a fundamental sequence for ~y }.

Bearing in mind that K, P, and Q are Δj relations, we recognize that these
expressions can all be put into Σ%StG prenex form, provided that the asser-
tion about Q in (16) is not overly complex. We verify that this provision is
satisfied, by expressing the assertion in detail:

Vz llkQ(x,i,k) & ViVjVkVl[[i <j& Q{xyi,k) & Q(x,j, D] -~>
3m3n[G(k ,m) &G(l,n) & m S-precedes n & n S-precedes y] &
Vv[v S-precedes y -> lilklm [Q(x, i,k) & G(k, m) & S( v, m)]]].

Thus the assertion is not overly complex, since it can plainly be put into
Δi>5tG prenex form. Q.E.D.

Corollary There is no maximal An-system for n > 1.

In spite of this corollary, every An ordinal is named by some An-
system. The proof of Proposition 3 shows that the order type of a Δ*2 well-
ordering R is named by the Δ^-system Sf.
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