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ATOMISTIC MEREOLOGY I

BOLESLAW SOBOCINSKI

In Lesniewski's mereology the existence of the mereological atoms
cannot be proved without an addition of some new axioms to the original
axiom system of mereology. The strongest form of the possible axioms
concerning the existence of mereological atoms in the field of mereology is
an assumption which implies that every object A is either a mereological
atom or a mereological class constructed from the atoms which are the
mereological elements of A. I shall call an extension of mereology obtained
by adding the above assumption, as a new axiom, to the axiom system of
mereology, atomistic mereology. On the other hand it is possible to con-
struct an entirely different extension of mereology by adding an assumption
that no atom exists in the field of mereology. Such a system which is called
the atomless mereology will not be discussed in this paper. Up to now
these two extreme extensions of mereology which, obviously, are mutually
incompatible were investigated very little. Only, in a still unpublished part
of his doctoral thesis, cf. [5], chapter II, sections 1 and 2, pp. 72-100, Clay
has established several metatheorems about general properties of these
two ramifications of mereology. In [5], p. 83, Clay has remarked that since
there is no mereological zero element, i.e. an element which would corre-
spond to Boolean algebraic zero element, in mereology, the definition of an
atom in the latter system is more simple than it is in Boolean algebra.
And, using mereological functor **pr" he defined a notion of a mereological
atom, as follows:

CD1 [A\\AzA .[B].~(Bεpr (A)). = .Aεatm

But, although in [5] he has proved several metamereological theorems
concerning atomistic mereology, Clay did not axiomatize this system. Re-
cently, in connection with his investigations which are not yet published
concerning a certain geometrical system, V. F. Rickey observed that the
axiomatized atomistic mereology would be very useful for this research.
Consequently, he defined an atom using the mereological functor " e l " in
the field of mereology, as follows:

RD1 [A].'.AεA :[B]: £εel(A).D. B = A :=. Aεαtm
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And, he based his system of atomistic mereology by adding a new

axiom:

RA1 [A]:: AεA . o/.[^a].'. AεK\(a) :[BC]: Bεa. Cεe\(B).Ώ. C=B

in which "Kl" is the symbol of mereological class, to the ordinary mere-
ology. Moreover, Rickey defined a new functor in the field of mereology,
namely "atom of an object B", in symbols "at (B)", as follows:

RD2 [AB]: Aεαtm . At e\(β) . =. AεαtlB)

and he has shown that this notion can be used as the single primitive functor
of his system of atomistic mereology.

Since, as it is well-known, e.g., cf. [18], pp. 333-334, note 1, that in
a certain sense mereology is closely related to the system of complete
Boolean algebra, the natural questions arise: 1) whether the definitions
CD1 and RD1 and the mereological formulas corresponding to the defini-
tions of a Boolean atom introduced by Schroder, cf. [12], pp. 318-349, and
analyzed by Tarski in the field of complete Boolean algebra, cf. [18], p. 334,
are mutually equivalent in mereology; and 2) whether Rickey's axiom RA1
and mereological formulas analogous to the Boolean axioms concerning the
existence of atoms proposed by Schroder and proved to be inferentially
equivalent in the field of complete Boolean algebra by Tarski, cf. [18],
pp. 335-336, also are equivalent in the field of mereology. In this paper I
shall show that in mereology CD1, RD1 and all mereological formulas cor-
responding to Schroder's definitions are mutually equivalent, and that in
the field of mereology RA1 and all formulas analogous to the atomistic
axioms discussed in [18] also are inferentially equivalent.

Moreover, there will be given an axiom system of atomistic mereology
in which Rickey's functor " a t " will be used as a single primitive mereo-
logical notion. Namely, I shall show that the following axiom system:

51 [AB]:Aε<xt(β).^.BεB
52 [ABC]:Aεσt(B).CεGΛ(A).Ξ>.C = A
53 [AB].\AεA.BεB : [C]: CεotU) . = . Cεαtfe) :Ώ.A = B

54 [Aa]::Aεa.z).\[1B].\[1E].Eεat(B):[C]:Cεat(B).^ .[3Z>]. Cεαt(D).

Dεa

is inferentially equivalent to an axiom-system of atomistic mereology

which contains only two axioms, namely the single axiom of general mereo-

logy A which will be presented below at the beginning of section 2 and an

additional atomistic axiom:

V [A]:: At A . D .\ [JB].'.Bεe\(A): [C]: Cεe\(B). D . C = B

which will be discussed in 3.2. It should be noticed that in the latter axiom-
system instead of V, Rickey's axiom RA1 can be used.

An elementary acquaintance with mereology and Lesniewski's system
of logic, i.e. protothetic and ontology, on which mereology is based is pre-
supposed. In order to understand the proofs given below, an acquaintance
with Lesniewski's ontology (about which, eventually, cf. [9], last part, [10],
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[16], [13], [11], [1], [2], [3], and [4]) is especially important. The notation
used in this paper is the well-known Peano-Russell symbolism slightly ad-
justed to the requirements of Lesniewski's system; cf. [14].

1 The symbol " ε " which occurs in the formulas given above means " i s " in
the sense of Lesniewski's ontology. This primitive ontological notion
differs in some respect from "e" which can be found in the other systems
of logic and in set theory. For this reason in ontology besides the usual
logical theorems there are also such theses which have no corresponding
theorems in the fields of the other logical systems. Since some of these
special ontological theorems will be used in the proofs which will appear
below, they are presented in this section without the explanations why they
are valid in the field of ontology. The logical notions "an object (an indi-
vidual) A is identical with an object B", "A is an object" and (ia or b" (a
logical addition) are defined by " ε " in ontology, as follows:

Dfl [AB]:AεB . BεA. = . A = B

Df2 [A]:AεA. = .AεV

Df3 [Aab].'.AεA:Aεa.v .Aεb: = .Aεaub

respectively. And, the following theorems are provable in this system:

Tl [Aa]: Aεa.^.AεA

T2 [A Ba]:Aε B. Bεa. =>. A = B

T3 [A B].' .A ε B' [C D]: C ε B. Dε B .^. C = D:^>.A = B
T4 [ABa]:AεB. Bεa.^.Aεa

These formulas mean: Tl —if A is something, then A is A (A is an
object); T2 (called the characteristic law of ontology)—if A is B and B is
something, then A is identical withi?; T3—if A is B and B is unique, then A
is identical with B; T4 shows that functor " ε " is transitive. It is not pre-
scribed by a rule in Lesniewski's system, but it is only a custom that if we
know that a variable stands for an object, then a capital letter is used. On
the other hand the small letters represent the variables standing for the
general names (sets) in the formulas. Besides Tl - T4, the following,
theorems concerning extensionality which are provable in ontology,

El [ABφ]:A= B.φiA}. D .φ{β}
E2 [ab] .'.[A]: Aεa . = . Aεb := : [φ]:φ{a] .= ,φ{b}

will be used in the proofs, for the most cases tacitly. Concerning the laws
of extensionality in Lesniewski's system, cf. e.g. [3], and for a formalized
derivation of Tl - T4, El and E2 see [17].

2 In mereology the notion of a mereological element, in symbol "e l " , can
be used as a single primitive functor of this theory. In this case the
following thesis:

A [A B]: : Aεe\(B) . = :: B ε B : :[C a): :[D]. .D εC .= :[E]: Eεα.D.
Eεe\(D):[E]:E εe\(D) .^.[^FG]. Fεa . Gεe\(F). Gεe\(E)/.Bεe\(B).
Bεa.^.Aεe\(C)
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can be adopted as a single axiom of this system. Axiom A is due to
Lejewski, cf. [7], pp. 138-139, and [8], and it is a slight modification of my
single axiom of mereology which I obtained in 1945 and published in [14],
section VΠI, p. 257, cf. also [16], p. 38. In this section the following mereo-
logical theorems, which are the consequences of axiom A and which will
be used in our further considerations, are presented without proof.

2.1 It is rather easy to prove that on the basis of ontology axiom A is in-
fer entially equivalent to the following set of formulas:

Al [A£]:Aεel(£).D. BεB
A2 [ABC]:Aεe\(B). Bεe\(C). =>.A εel(C)
Dl [Aa].\AεA : [B]:Bεa . 3 .Bεe\(A): [B]:Bεe\(A). =>. [^EF].Eεa .

Fεe\(E). Fεe\(B) : = .A εKI(α)
A3 \ABa]:AεK\(a).BεK\(a). o.A = B
A4 [Aβ]:Aεf l .3 . [ 3 5]. BεK\(a)

Since we have {A} ^ {Al, A2, Dl, A3, A4] and the second axiom-system
is more convenient for our purposes, in further argumentations we shall
refer to it rather than to the axiom A. The formula Dl given above is a
definition of a mereological class by " e l " . And, it should be noticed that
Dl can be easily eliminated in an equivalent way from the second axiom -
system by replacing the axioms A3 a,ndA4 by some theorems in which the
defined functor "Kl" does not occur.

2.2 Furthermore, the following theses are the consequences of A (or {Al,
A2,D1,A3,A4}):

A5 [A]:AεA.Ό.Aεel(A)

Concerning the provability of A5 from {Al, A2, Dl, A3, A4\, cf. [6].

A6 [AB].'.AεA :[D]: Dεe\(A) .=) .[3F]. Fεe\(p). Fεe\(B): D.Aεelte)

A6 is a very strong mereological theorem. Its proof given by Lesniew-
ski in [9] is rather difficult. An entirely different, but also difficult, proof
which is not yet published has been obtained by R. E. Clay.

A7 [AB]:Aεe\(B).Bεe\(A).^.A =B
A8 [Aά]:AεK\(a).Ώ.Aεe\(K\(a))
A9 [Aa]:Aεa.^.Aεel(K\(a))
D2 [AB]:Aεe\(jB).~(A = B). = .Aεpr(B)

D2 is a definition of the mereological notion of a part: an object A is a
part of an object B iff A is an element of B and A is not identical with B.

A10[A].~(Aεpr(A))
All [AB].\Aεe\(B). = :Aεpr(B).v .A = B
A12 [A B]: Bεpr(A). D . A ε KI(pr(A))
D3 [A B]. .A εA . Bε B :[C]: Cεe\(A). D . - (Cεe\(B)) : =. Aεex(B)

D3 is a definition of the mereological notion to be outside: an object A

is outside of an object B iff A and B are the objects and no element of A is

an element of B.
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Al 3 [A B C]: A ε el (B). B ε ex(C). D . A ε ex(C)

AZ4 [A B] :A εe l (#) . =>. ~ (Aεex(£) ) .- (ΰεex(A))
A15 [AB]:AεA.BεB.~(Aεe\(B)). =>. [gC]. C εel(A).C εex(S)
2)4 [ABC]:AεK\(Buc).Bεex(C). = .AεB + C

Z>4 is a definition of mereological addition: an object A is a sum of two
objects B and C iff A is a class constructed from the logical addition of two
objects B and C and B is outside C. Concerning this mereological functor,
c/ [15], section 2.

Aitf [AB]:Aεe\(B).~(A =£).=>. [gC].l? = A + C
AZ7[AJ3C]:AεelCB + C).A εex(C).D. AεelCB)
£5 J A 5 C ] : A ε A . £ ε A + C. = .AεB ± C

D5 is a definition of mereological subtraction: an object A is obtained
from an object B from which an object Cis removed iff B is an object ob-
tained by the mereological addition of C to A.

D6 [A]:AεKI(V). = .AεUn

D6 is a definition of Universe in the field of mereology: A is the Uni-
verse iff A is the mereological class of all existing objects.

A18 [A]:AεA.D.Aεel(Un)
A19 [A]:AεA.D.Un = (Un •=- A) + A

Previously given theses A4 and A3 imply that a mereological class of
the given objects a exists, if at least one object a exists, and that if such
class exists, then it is unique. Hence, by D6, the Universe exists and is
unique under condition that at least one arbitrary object exists. A18 shows
that every existing object is an element of Un. Therefore, in a certain way
Un corresponds to Boolean-algebraic unit element. On the other hand, in
mereology the following theorem is easily provable:

A20 [AB]:AεA. B&B .~(A =B).D.~([gC].\ CεC:[D]:DεD. D . Cεel(Z)))

i.e., if there are two different objects, then there does not exist an object
which would be an element of every existing object. Therefore, in the field
of mereology, which is not degenerate by an additional assumption that
there is one and only one object, there is no constant which would corre-
spond to the zero element of non-degenerate Boolean algebra.

3 As was mentioned previously, in [18] TarsM has proved in the field of
complete Boolean algebra that the conditions of various definitions of
Boolean atom given in [12] are equivalent (this fact already was known to
Schroder), and that several formulas which Schroder proposed as possible
atomistic axioms also are inferentially equivalent. It will be proved here
that in mereology the same holds for the mereological formulas which cor-
respond to the above mentioned Boolean ones. Since in mereology there is
no constant corresponding to Boolean algebraic zero element, the proofs
presented below will differ considerably from those which TarsM gave in
his paper. The Boolean formulas discussed in this section will be written
in the same symbolism which is used in [18]. In particular, the capital
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letter B always will indicate the carrier set of the given, say S3, system of
complete Boolean algebra.

3.1 Definitions of a Boolean atom. In [18], p. 334, Tarski accepted the fol-
lowing definition of a Boolean atom:

(S x eAt (1) if and only if x eB and x / 0, and (2) for every element yeB,
the formulas y < x and y / 0 imply y = x.

And, he noticed, cf. his Theorem 3, that in the field of complete Boolean
algebra the conditions of definition (S and of the following definitions of
Schroder are equivalent:

(Si x e At if and only if x eB and every element yeB satisfies one and only
one of the two formulas x <y orx< yf.

(£2 xeAt if and only if xeB,χ j- 0 and formula x =y + z, for all elements
y,zeB, implies x = y or x = z.

(S3 x eAt if and only if x eB,x /0 and the formula x<y + z9for all elements

y,zeB, implies x <y or x <z.

(£4 x eAt if and only if for every set X c B, the formula x = 2J y implies
y € Λ

xeX.
§5 x e At if and only if xeB and for every set XQB, the formula x < Σ) y

implies x < y. y€X

3.2 In [18], pp. 335-336, in order to obtain the atomistic system of Boolean
algebra, Tarski added the following formula:

Φ If xeB and x ^ 0, then there is an element y eAt such that y < x

as a new axiom to a certain axiom system which he assumed previously as
a postulate system of complete Boolean algebra. And, he has proved that
on the base of that postulate system axiom Φ is inferentially equivalent to
each of the following formulas:

Φl 1 = Σ y.
yeAt

Φ2 IfxeB9thenx= Σ) y.
ye At and y <ΛΓ

Jt/3 If x, yeB and for every element zeAt the formula z<x implies z<y,

thenx<y.
Φ4 If x, yeB and if the formulas z<x and z<y are equivalent for every

z eAt, then x = y.

3.3 Besides set-theoretical symbols e and c, in the formulas which appear
in 3.1 and 3.2 the symbols " 0 " , " 1 " , "x <y", «x =y>>, "x + y", "x"> and
"Σ/y" have, obviously, the following Boolean meanings "the zero element/'
yeX

"the unit element'% "x is included in y", "x is equal to y", "x j o i n y ,
"the complement of the element x" and "the (Boolean) sum of all elements
of the set X9' respectively. Now, in order to construct mereological
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formulas analogous to ones which are given in 3.1 and 3.2 we should substi-
tute the Boolean expressions occurring in those formulas by the suitable
mereological ones. For this end instead of " 1 " , "x <y", "x = y", "x + y",
"x"9 and " Σ y " we shall use "Un", "x εe\(y)", "x=y", (ix + y" ,

xeX

"Un -*- x" and "KI(X)" respectively. Moreover, since in mereology there
are no such notions as a carrier set or zero element, the condition ζtxeB"
will be substituted by the condition "x is an object", and the condition
"xyίO" will be dropped altogether. It is clear that instead of "xeAt"
formula "Λ ε α t m " will be used, and that the condition "ye At and y < x"
which occurs in D2 will be substituted by "y εαtOO". Then:

(A) Using the mereological expressions which are discussed above we can
introduce the following definitions of mereological atoms correctly con-
structed according to the rules of procedure of Lesniewski's system:

£1 [A].'. AεA :[B]: Bεel(A) .^>. B = A : =. Aεαtm

£ 1 which we accept as the standard definition of an atom in mere-
ology is Rickey's definition RD1. In an obvious way it corresponds to
definition 6 from 3.1. The factor "A εA" occurring according to rules of
procedure in the definiens of £1 guarantees that A is an object.

£ 1 . 1 [A]:: AεA Λ [B].'.BεB.=>: Aεel(B). v . A ε e l ( U n - B ) : = . A ε α t m i

£ 1 . 1 c o r r e s p o n d s to definition (Si from 3.1. In the la t te r definition the

second factor of i t s definiens has the following form: "every element yeB

satisfies one and only one of the two formulas x <y or x <yf", i.e. in
symbolic form:

(a) \y].\yeB.^>:x<y.v.x<yf:x<y.^.~(x<yr)

It is clear that in the field of Boolean algebra formula (a) is inferen-

tially equivalent to:

(b) x ϊ O . ' . \ y ] . ' . y e B . Ώ : x < y . v . x < y '

Hence in DIΛ the restriction "one and only one" can be omitted.

DI.2 [A]::AεA.'.[BC].\AεB + C. D : A = B. v . A = C .'. = .A εαtm2

DI.3 \A]::AεA.\[BC].φ.Aεe\(B + C). ^:A εe\(B). v . Aεel(C) .'. = .
A εαtrri3

D1.2 and D1.3 correspond to S2 and (S3 respectively. It follows at
once from Al, D4, and D3, cf. 2.1, that B and C which occur in the de-
finiens of Dl.2 and £1.3 are objects.

DIΛ [A].'. AεA : [a]: AεK\(a). D . Aεa . =. Aεαtm4

£1.5 [A].'. AεA : [a]: Aεe\(K\(a)). =). [3B].Bεa . AεeltB) : = . Λεαtm5

Clearly, £1.4 and £1.5 correspond to £4 and (55 respectively. Finally,

we add to this set of definitions Clay's CD1:

£1.6 [A]:AεA.[B]. - (Bε pr(A)). =. Aεαtm 6

and
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(B) In the introductory remarks to this paper we already assumed that
atomistic mereology is a system which is obtained by adding the following
formula:

V [A]::AεA.o>.'. [ 3 #].\Bεe\(A) : [ c ] : Cεe\(B).D. B = A

as a new axiom, to the single axiom A of mereology. Now, we add definition
Dl, cf. (A), and Rickey's RD2:

DΏ. [AB]:Aεatπ\.Aεe\(B). = .Aεat(B)

to this theory. Then, using the same translation of Boolean expressions
into mereological ones which was established in 3.3 we obtain the formulas:

VI [A]:AεA.z>.[iB].Bεat(A)
V2 μ]:AεΛ.D.Un = KI(αtm)

V3 [A]:AεA.^.AεK\(at(A))
V4 [AB]/.AεA:[C]:CεatίA).^>.CεcΛ{B):^.Aεe\(B)
V5 [A B].'.A εA .BεB:[C]: Cεαt(A). =.Cεαttδ): =>. A = B

which, obviously, are the mereological analogues of 3), 3)1, 5)2, 2)3 and Φ4
respectively. In connection with the structure of V2, it should be remarked
that its antecedent, viz. "AεA", is necessary in mereology, since in its
field the existence of a class of the given objects can be assumed only if at
least one such object exists, cf. A4. Furthermore, we add Rickey's axiom

V6 [ A ] : : A ε A . 3 . . [ g α]/.> lεKI(α) :[^C]:Bεβ.Cεe l( i5 ) .D.C = B

to the formulas VI - V5.

3.4 We shall prove that in the field of mereology the formulas Dl and DI.l
- />L6 given in 3.3, point (A), define exactly the same concept, viz. mereo-
logical atom. Let us assume, as the single axiom of mereology, thesis A.
Hence, we have at our disposal all definitions and theorems given in 2.
Then:

Bl \AB]: :[B].'. Bε B . D : Aεe\(B) .v . ΛεeKUn -a- B):.Bεel(A).~ (B =A).
^>.B=A

PR [A£]::Hp(3).\=>:
4. Aεe\(B).v.Aεe\(Un±B): [Tl; 1; 2]
5. A =B.v.Aεe\(Όn ±B): [4;A7;2]
6. Aεe\(Un±B). [5; 3]

7. Unϋ5ε Un ±B> [Al; 6]
8. Un ε (Un -s. B) + B. [D5; 7]
9. (Un ±B)εex(B). [D4; 8]

10. Aεex(B). [A13; 9; 6]
11. -04εex(5)). \A14;2]

B =A [10; 11]

B2 [AB].'. AεA :[B]:Bεe\(A).^>.B =A : BεB. - (Aεe\(B)).^.

Aεe\(Όn±B)
PR [A£].\Hp(4):D:

[3c]
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5 Cεel(A). f ,
6. Cεex(J5). LAI5, 1, 3, 4J
7. C=A. [2; 5]
8. Aεex(B). [6; 7]
9. Un = (Un J L 5 ) + 5 . [A19; 3]

10. Aεel(Un). [AZS; 1]
11. Aεel((Un -=- B) + B). [9, 10]

Aεel(Un -s-5). |Ai7; 11; 8]

B3 [A]::AεA:[B]: Bεe\{A).^.B =A : = / .AεA.\[B].\ Bε 5. D :Aεe\(B)
.v.Aεel(Un J . 5 ) [fiZ; 52]

54 [AB]: : [SC]ΛAε5 + C.^:A = B.v.A = C.\ 5εel(A). - (5= A).
=>. 5 = A

PR [A5]::Hp(3).#.3. .
4. ~CBεex(A)).\ [Ai4; 2]

[ac]. .
5. A = B + C. [AiG; 2; 3]
6. i ε 5 + C. [Dfl; 5]
7. 5εex(C): [04; 6]
8. A = 5 . v . A = C: [2; 6]
9. A = J3.v.5εex(A). . [8; 7]

B=A [9; 4]
55 [ABC].\[B]:Bεe\(A).^.B =A : Aε5 + C . =>: A = B. v . A = C

PR [ABC]: :Hp(2):3.\
3. AεKltBUC). [D4; 2]
4. 5εex(C). [D4; 2]
5. 5εel(A). [Ti;4;2>I;3]
6. Cεel(A). [Z>5; 4; Ti; Dl; 3]
7. Aεel(A)/. [Ti; 2;A5]

8. EεEUC. )
9. Fεe\(E). V [01; 3; 7]

10. Fεel(A).)
11. F = A. [1; 10]
12. Aεe\(E): [9; 11]
13. E = B.v.E = C.\ [8; ΓJ; 4; 6]
14. Aεel(5).v. Aεel(C): [12; 13]

A = B.v.A= C [U;A7; 5; 6]

B6 [A]::AzA:[B]:Bte\(A).^> B=A: = .'.AεA.'.[BC]. .AεB + C.
=) :A=5.v .A = C [B4; B5]

B7 [AB]::[BC].\Aεe\(B + C). ̂  :A εel(5). v .A εel(C) .*. Bεe\(A).
- ( 5 = A ) . D . 5 =A

PR [A5]::Hp(3). .D. .
4. Aεel(A).\ [Ai;A5; 2]

[3c]. .
5. A = B + C. [A16; 2; 3]
6. 5εex(C). [Dfl;5;D4]
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7. AεeliB + C): [5; 4]
8. Aεel(B).v.AεeKc): [1; 7]
9. B = A.v.Bεe\(C): [8; A7; 2; A2; 2]

10. £ = A.v.~0Bεex(C)): [9; Ai4]
5 = A [10; 6]

B8 [A BC].'.[B]: Bεel(A) .^. B = A:Aεe\(B + C). D :Aεel(5). v .Aεel(C)
PR [A 5C]: :Hp(2) . ' .=>/.
3. 5 + C ε β + C . [AI; 2]
4. Bεex(C). [z>4; 3]
5. B + C = KltBUC). [D4; A3; T3; 3]
6. Aεel(KlθBUC)). [£i ; 2; 5]
7. KI(5UC)εKI(5UC)/. [Ai; 6]

8. £ε5UC. ^
9. Fεel(E)..\ [Dl; 6; 7]

10. Fεel(A). )
11. F = A . [1; 10]
12. Aεelfe): [9; 8]
13. E=B.v.E=C.\ [8;Df4; T2; 4; D3]

Aεe\(B).v .Aεel(c) [El; 13; 12]

B9 [A]::AεA:[B]:Bεe\(A).^.B = A: = .\AεA.\[BC]/.Aεe\(B + C ) .
D: Aεel(J5).v.Aεel(C) [55; 57]

Bi6> [A B\.\ [a]: 5ε Kl(α). D . 5εc : Bεel(A). - (B = A). D . 5 = A
PR [AB].'.Hp(3):D.
4. 5εpr(A). [i)^, 2; 3]
5. AεKKpr(A)). [A12; 4]
6. Aεpr(A). [1; 5]

5= A [Aiί?; 6]

Bll [Aa].'.[B]: Bεe\(A).^. B= A:AεKl(a).^).Aεa

PR [Aα].\Hp(2):D.

[ 35].
3. Bεa . [^ ;^5; 2; Dl]
4. £εel(A). [Z)i; 2; 3]

Aεα [1; 4; 3]

B12 [A].'.AεA :[B]: Bεe\{A).^.B =A : = :A ε A: [a]: AεKlfo). D . Aε α

[5ii; 5itf]
515 [AC]. .[α]:Aεel(KI(α)).=).[3jB].JBεα. Aεel(5): Cεel(A).- (C= A).

=>. C = A
PR [AC].#.Hp(3):D.
4. Cεpr(A). [D ;̂ 2; 3]
5. Aεel(KI(pr(A))). \A12;A8;4]

6. 5εpr(A). > r ,
7. Aεel(5). J [l> b J

8. A = 5 . [Z)^;A7; 6; 7]
C = A [D2;6; 8]
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B14 [Aa].'.[B]: Bεel(A) ,-D . B =A :A εel(KI(α)). =>. [ 3 £ ] . Bεa . Aεe\(B)
PR [Aα].\Hp(2):3.
3. KΙ(α)εKKα). [AI; 2]

4. βεα. )
5. Fεe\(B). > [ZλZ; 3; 2]
6. Fεel(A). )
7. F = A. [1; 6]

[gβ]. 5εα. AεelCδ) [4; 5; 7]

5i5 [A]Λ AεA : [5]: Bεe\{A). =>. 5 = A : = :A εA : [α]: Aεel(Kl(a)).
D.[g5].5εα. Λεel(5) [B14; B13]

B16 [A].'. AεA :[B]:Bεel(A).Ό.B=A: = . AεA.[B].~ (Bεpr{A))
[All; D2\

Since B3, B6, B9, B12, B15 and B16 are theorems of mereology, as it
was proved above, we obtained a proof that definitions Dl and DIΛ - Dl.β
define exactly the same concept, viz. of mereological atom.

3.5 It will be shown now that in the field of general mereology the atomistic
axioms presented in 3.3, point (B), viz. the formulas V and VI - V6 are
mutually equivalent. Again, cf. 3.4, let us assume axiom A and its con-
sequences which are given in 2. And, we introduce to the system definitions
Dl andDII in order to define "αtm" and " a t " in the field of mereology.
Then:

3.5.1 {V} «=* {VI}. A proof, by Al, Dl and Dll, is obvious.

3.5.2 {Vl} ^ ίV2}. (a) Assume VI Then:

Zl [BCD]: Cε Kl(αtm) .D εe\(B). =>. [^F].Fεel(D). Fεe\(C)
PR [BCD]:Hp(2).^>.

[*F].
3. Fεot(D) [Tl; VI; 2]
4. .Pεαtm. [Dll; 3]
5. Fεel(D). [Dll; 3]

6. jPεel(C). [Dl; 1; 4]

[1F].Fεe\(D).Fεe\(C) [5; 6]

V2 [A]:AεA.D.Un = Kl(αtm)
PR [A] : . :Hp(l).3: :
2. A ε v : : [Df2; 1]

[ 3 5 ] : :
3. J3εKI(V). [A4; 2]
4. 5 = Un. [A5; T5; 3; Z^]

[3C].
5. Cεαtm. . [Fi DII; 1]

[3C].\
6. CεKKαtm): [A4; 5]
7. [D]:Z)εel(i5).=>.[3JP].

FεeKDJ.FεelίC): [ZI; 6]
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8. Bεel(C). [T1;3;A6;Ί]
9. Cεel(B). [Ti;6;D2;3]

10. C=B:: [A7; 9; 10]
Un = Kl(αtm) \A3; T3; 6; 10; 4]

Thus, {Vl} -» {V2}. (b) Now, assume V2. Then:

VI [A]:A εA . D . [3β].J5εαt(A)
PR [A]:Hp(l).D.
2. Aεel(Un). [AiS, 1]
3. Un=KI(αtm). [V2; 1]
4. Aεel(KKαtm)). [2; 3]
5. KΙ(αtm)εKKαtm). |AI; 4]

6. E'εαtm. J
7. 5εel(£). > [Di; 5; 4]
8. ^εel(A). )
9. B = E. [DI; 6; 7]

[ 3 5] .5εαtU) [DΠ; 6; 9; 8]

Thus, {V2} -> {Fi}. Hence, by (a), {Fi} <=? {F2}.

3.5.3 {Vl} & {V3}. (a) Assume VI, Then:

Zi. [AJ5i)]:JBεKI(αtU)).2)εel(5).D.[3F].Fεel(D).2ϊ1εelU)
PR \ABD]:Hv(2).^.

[3EF].
3. £εαt(A). ]
4. JPεel(E). > [Z>1; 1; 2]
5. Fεe\(D). )
6. Fεel(A). [DΠ;A2;4;3]

[ g jF].^εel(i)).Fεel(A) [5; 6]

Z^ [A5C]: SεKI(αt(A)).Z)εel(A).D.[g^].JPεel(Z)).Fεel(5)
PR [ABC].\Hp(2).D:

3. Jίεαt(D). [Γi; F2; 2]
4. Kεαt(A). [DII; A2; 2; 3]
5. A-εel(B). [Dl; 1; 4]

6. JEεαt(A). )
7. jPεel(E). > [Dl; 1; 5]
8. .FεeK/ί:). )
9. Fεel(D). [Z>II; A2; 8; 3]

10. F =E . [DΠ; DI; 6; 7]
11. FεelCB): [DI; 1; 6; 10]

[3JP]. Fεβl(D).Fεβl(B) [9; 11]

V3 [A]:AεA.D.AεKI(αt(A))

PR [A]::Hp(l).D.#.
[3C].
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2. Cεαt(A).'. [VI; 1]

3. BεK\(at(A)): [A4; 2]
4. [Z>]:jDεelCδ).=>.[3.F]. Fεe\(D). Fεe\(A):

\Z1\ 3]
5. [D]:Z>εel(A).z).[3Jp]. Fεe\(D). Fεe\(B):

[22, 3]
6. Bεel(A). [Tl Aβ; 3; 4]
7. Aεel(B). \A6; 1; 5]
8. A = 5 . \ £47; 7; 6]

AεKKαt(A)) [3; 8]

Thus, {Fi} -> {V3}. (b) Now, assume TO. Then:

VI [A]:AεA.Ό.[iB].Bεa\(A)
PR jχj:Hp(l).D.
2. Aεel(A). [A 5; 1]
3. AεKKatU)). [VI; 1]

[35].Bεαt(A) [ ^ ; 3 ; 2 ]

Thus, {F5} -> {71}. Hence, by (a), {Vl} <=* {V3}.

3.5.4 {Fl} ^ {F4} •=* {F5}. (a) Assume Fl. Then:

Zl \ABD].'.[C]: Cεck(A).Ώ. CεcΛ(B): Dεel(A) .Ώ .[^F]. Fεelφ).

Fεe\(B)
PR [AJ52)]. .Hp( l ) :3 .

3. Fεαt(i)). [Γi; Vi; 2]
4. Fεαt(A). [DΠ;A2;3;2]
5. FεaX(P). [1; 4]

[ 3 F].Fεel(D).Fεel(β) [/>Π; 3; 5]

F4 [A5]/.AεA:[C]:Cεαt(A).D.Cεαt(5):D.Aεel(5) [Zl;A6]

Thus, {Fl} -> {F4}. (b) Assume V4. Then:

F5 [Λ5] . ' .AεΛ.5ε5: [C] :CεαtU).Ξ.Cεαt(5) :D.A =B [V4; A7]

Thus, {F4} -> {V5}. (c) Assume F5. Then:

Zl [A BC]: Cεe\(A). Bεat(C) ,Ό . Bεat(A) [DΠ;A2]
Z2 [A\.\AεA : [ β ] : 5 ε e l ( A ) . D . [ 3 C ] . C ε e l ( S ) . - ( C = 5 ) : z > . ' .

[ 3 5 ] / . 5 ε e l ( A ) : [C]:Cεe\(B) .z>.C = B
PR [A] : :Hp(2) :=>. ' .

3. A ε e l ( A ) . . [A 5; 1]

[3c]. .
4. CεβKA). [ r «Ί

[35]:
6. Bεa\(A).- (5 εαt(C^). v .-(5εαt(A)).

J3εαt((Λ: [Tl; F5; 1; 4; 5]
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7. j5εαt(A).'. [6; Zl\ 4]

[iB]/. Bεe\(A) :[C]:Cεe\(B) . Ό . C= B [DU; Oil 7]

VI [A]:AεA.D.[3£].£εαt(A) [Z2; DU; Dl]

Thus, {F5} -> {Vl}. Therefore, by (a) and (b), {Vl} •=> {V4} «=* {V5}.

3.5.5 {V3} <=± {V6}. (a) Assume V3. Then:

V6 [A]:: AεA .^.'.[^a].-. A&K\(a) :[BC]: Bεa .Cεe\(B) . D . C= 5

[73; Z>Π; Z>l]

Thus, {V3} -> {76}. (b) Assume 75. Then:

71 [A]:AεA.D.[ 3 5].βεαt(A)
PR [A]: :Hp(l).=>::

ha]::
2. AεKI(fl): )
3. [BC]:Bεa. Cεe\(B).Ώ. C=B.\ \ [V6; 1]

[3B].\
4. .Bεα. [Ti;Λ5; 2)1; 2]
5. 5εβl(A): [D1;2;A]
6. [C]:Cεel(5).=>. C = 5 : : [3;"4]

[3β].Bεαt(A) [Tl; Dl; DU; 4; 6; 5]

Thus, {V6} -> {7i}. Hence, by 3.5.3. and (a),

{V3} & {V6}.

3.5.6 Points 3.5.1 - 3.5.5 imply at once that in the field of mereology taken
together with definitions DI and DU: {V} «=* {Vl} <=* {72} *=? {75} ^ {74} «̂
{75} ^ {75}.

BIBLIOGRAPHY

[1] Canty, J. T., LesniewskVs ontology and GδdeVs incompleteness theorem, Ph.D.
thesis in Philosophy, University of Notre Dame, Notre Dame, Indiana (June 1967).

[2] Canty, J. T., "Lesniewskr*s terminological explanations as recursive con-
cepts," Notre Dame Journal of Formal Logic, vol. X, (1969), pp. 337-369.

[3] Canty, J. T., "Ontology: Lesniewski's logical language," Foundation of Lan-
guage, vol. 5 (1969), pp. 237-257.

[4] Canty, J. T., "The numerical epsilon," Notre Dame Journal of Formal Logic,
vol. X (1969), pp. 47-63.

[5] Clay, R. E., Contributions to mereology, Ph.D. thesis in Mathematics, Univer-
sity of Notre Dame, Notre Dame, Indiana (August 1961).

[6] Clay, R. E., "The dependence of a mereological axiom," Notre Dame Journal
of Formal Logic, vol. XI (1970), pp. 471-472.

[7} Lejewski, C, "A note on a problem concerning the axiomatic foundations of
mereology," Notre Dame Journal of Formal Logic, vol. IV (1962), pp. 135-139.



ATOMISTIC MEREOLOGY I 103

[8] Lejewski, C , ' 'Consistency of Lesniewski's mereology," The Journal of
.Symbolic Logic, vol. 34 (1969), pp. 321-328.

[9] Lesniewski, S., "O podstawach matematyki," (On the foundations of mathema-
tics), Przeglad Filozoficzny {Philosophical Review), vol. 30 (1927), pp. 164-
206; vol. 31 (1928), pp. 261-301; vol. 32 (1929), pp. 60-101; vol. 33 (1930),
pp. 75-105; vol. 34 (1931), pp. 142-170.

[10] Lesniewski, S., "Uber die Grundlagen der Ontologie," Comptes Rendus des
seances de la Societe des Sciences et des Lettres de Varsovie, Classe III, vol.
23 (1930), pp. 111-132.

[11] Luschei, E. C., The logical system of Lesniewski, North-Holland Publishing
Company, Amsterdam (1962).

[12] Schroder, E., Vorlesungen uber die Algebra der Logik (Zweiter Band), Volume
I, part 1, Leipzig, (1891), and Volume I, part 2, Leipzig (1909), Reprinted by
Chelsea Publishing Company, Bronx, New York (1963).

[13] Slupecki, J., "Lesniewski's calculus of Names," Studia Logica, vol. 3 (1955),
pp. 7-76.

[14] Sobociήski, B., "L*analyse de l'antinomie russellienne par Lesniewski,"
Methodos, vol. 1 (1949), pp. 94-107, 220-228, 308-316; vol. 2 (1950), pp. 237-
257.

[15] Sobociήski, B., "Lattice-theoretical and mereological forms of Hauber's law,"
Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 81-85.

[16] Sobociήski, B., "Studies in Lesniewski's mereology," Year book for 1954-55 of
Polish Society of Arts and Sciences Abroad, vol. 5 (1955), pp. 34-48, London
(1955).

[17] Sobociήski, B., "Successive Simplifications of the Axiom-System of Lesniew-
ski's Ontology," in Polish Logic, 1920-1939, edited by S. McCall, Clarendon
Press , Oxford (1967), pp. 188-200.

[18] Tarski, A., "On the foundations of Boolean algebra," in A. Tar ski, Logic,
Semantics, Metamathematics, Clarendon Press, Oxford (1956), pp. 320-341.

To be continued.

University of Notre Dame
Notre Dame, Indiana




